Advances in the Lattice QCD calculation of TMDs

ECT* Workshop: Opportunities with JLab Energy and Luminosity Upgrade Trento, Italy, Sep. 26-30, 2022

YONG ZHAO
SEP 28, 2022

Outline

- TMDs in the non-perturbative region
- Lattice calculations from quasi-TMDs
- Outlook

3D Tomography of the Proton

Hard Scattering

Jefferson Lab 12 GeV

The Electron-Ion Collider

3D Tomography of the Proton

From TMD Handbook, TMD Topical Collaboration, to appear soon.

TMDs from experiments

TMD processes:

Semi-Inclusive DIS
$\sigma \sim f_{q / P}\left(x, k_{T}\right) D_{h / q}\left(x, k_{T}\right)$

HERMES, COMPASS, JLab, EIC, ...

Drell-Yan

$$
\sigma \sim f_{q / P}\left(x, k_{T}\right) f_{q / P}\left(x, k_{T}\right) \quad \sigma \sim D_{h_{1} / q}\left(x, k_{T}\right) D_{h_{2} / q}\left(x, k_{T}\right)
$$

Dihadron in $\mathrm{e}^{+} \mathbf{e}^{-}$

Fermilab, RHIC,
LHC, ...

Babar, Belle, BESIII, ...

TMDs from global analyses

Semi-inclusive deep inelastic scattering: $l+p \longrightarrow l+h\left(P_{h}\right)+X$

$$
\begin{aligned}
& \frac{d \sigma^{W}}{d x d y d z_{h} d^{2} \mathbf{P}_{h T}} \sim \int d^{2} \mathbf{b}_{T} e^{i \mathbf{b}_{T} \mathbf{P}_{h T} / z} \\
& \times f_{i / p}\left(x, \mathbf{b}_{T}, Q, Q^{2}\right) D_{h i}\left(z_{h}, \mathbf{b}_{T}, Q, Q^{2}\right) \\
& f_{i / p}\left(x, \mathbf{b}_{T}, \mu, \zeta\right)=f_{i / p}^{\text {pert }}\left(x, b^{*}\left(b_{T}\right), \mu, \zeta\right) \\
& \times\left(\frac{\zeta}{Q_{0}^{2}}\right)^{g_{K}\left(b_{T}\right) / 2} \longrightarrow f_{i / p}^{\mathrm{NP}^{2}\left(x, b_{T}\right) \longrightarrow \text { Intrinsic TMD }}
\end{aligned}
$$

$$
Q_{0} \sim 1 \mathrm{GeV}
$$

Non-perturbative when $b_{T} \sim 1 / \Lambda_{\mathrm{QCD}}$!

TMDs from global analyses

Unpolarized quark TMD

Scimemi and Vladimirov, JHEP 06 (2020).

Quark Sivers function

Cammarota, Gamberg, Kang et al. (JAM Collaboration), PRD 102 (2020).

TMDs from global analyses

Collins-Soper Kernel $\quad K\left(b_{T}, \mu\right)=K^{\text {pert }}\left(b_{T}, \mu\right)+g_{K}\left(b_{T}\right)$

Bacchetta, Bertone, Bissolotti, et al., MAP Collaboration, 2206.07598

TMD definition

- Beam function:

Hadronic matrix element

- Soft function :

Vacuum matrix element

$$
f_{i}\left(x, \mathbf{b}_{T}, \mu, \zeta\right)=\lim _{\epsilon \rightarrow 0} Z_{\mathrm{UV}} \lim _{\tau \rightarrow 0} \frac{B_{i}}{\sqrt{S^{q}}}
$$

Collins-Soper scale: $\zeta=2\left(x P^{+} e^{-y_{n}}\right)^{2}$
Rapidity divergence regulator

First principles calculation of TMDs from the above matrix elements would greatly complement global analyses!

TMD definition

- Beam function:

Hadronic matrix element

- Soft function :

$$
n_{b}^{2}=0
$$

Vacuum matrix element

$$
f_{i}\left(x, \mathbf{b}_{T}, \mu, \zeta\right)=\lim _{\epsilon \rightarrow 0} Z_{\mathrm{UV}} \lim _{\tau \rightarrow 0} \frac{B_{i}}{\sqrt{S^{q}}}
$$

Collins-Soper scale: $\zeta=2\left(x P^{+} e^{-y_{n}}\right)^{2}$
Rapidity divergence regulator

First principles calculation of TMDs from the above matrix elements would greatly complement global analyses!

Lattice QCD

Lattice gauge theory: a systematically improvable approach to solve non-perturbative QCD.

Imaginary time: $t \rightarrow i \tau \quad O(i \tau) \xrightarrow{?} O(t)$

Simulating real-time dynamics has been extremely difficult due to the issue of analytical continuation.

Progress in the lattice study of TMDs

- Lorentz invariant method
- Musch, Hägler, Engelhardt, Negele and Schäfer et al.
- Primary efforts focused on ratios of TMD x-moments (w/o soft function) (2009-)
- Quasi-TMDs
- Large-momentum effective theory (Ji, 2013, 2014; Ji, Liu, Liu, Zhang and YZ, 2021)
- One-loop studies of quasi beam and soft functions (Ji, Yuan, Scäfer, Liu, Liu, Ebert, Stewart, YZ, Vladimirov, Wang, ..., 2015-2022)
- Method to calculate the Collins-Soper kernel (Ji, Yuan et al., 2015; Ebert, Stewart and YZ, 2018)
- Method to calculate the soft function, and thus the x and b_{T} dependence of TMDs (Ji, Liu and Liu, 2019)
- Derivation of factorization formula (Ebert, Schindler, Stewart and YZ , 2022)
- First lattice results (SWZ, LPC, ETMC/PKU, SVZES, 2020-)

Quasi TMD in the LaMET formalism

- Beam function in Collins scheme:
- Quasi beam function :

$n_{b}^{\mu}\left(y_{B}\right) \equiv\left(-e^{2 y_{B}}, 1,0_{\perp}\right)$

Spacelike but close-to-lightcone $\left(y_{B} \rightarrow-\infty\right)$ Wilson lines, not calculable on the lattice :)

Equal-time Wilson lines, directly calculable on the lattice:

Related by Lorentz invariance, equivalent in the large \tilde{P}^{z} or $\left(-y_{B}\right)$ expansion.

Ebert, Schindler, Stewart and YZ, JHEP 04, 178 (2022).

TMDs from lattice QCD

$$
\frac{\tilde{f}_{i / p}^{\text {naive }[s]}\left(x, \mathbf{b}_{T}, \mu, \tilde{P}^{z}\right)}{\sqrt{S_{r}^{q}\left(b_{T}, \mu\right)}}=C\left(\mu, x \tilde{P}^{z}\right) \exp \left[\frac{1}{2} K\left(\mu, b_{T}\right) \ln \frac{\left(2 x \tilde{P}^{z}\right)^{2}}{\zeta}\right]
$$

Reduced soft function \checkmark
Ji, Liu and Liu, NPB 955 (2020),
PLB 811 (2020).

Matching coefficient:

- Ji, Sun, Xiong and Yuan, PRD91 (2015);
- Ji, Jin, Yuan, Zhang and YZ, PRD99 (2019);
- Ebert, Stewart, YZ, PRD99 (2019), JHEP09 (2019) 037;
- Ji, Liu and Liu, NPB 955 (2020), PLB 811 (2020);
- Vladimirov and Schäfer, PRD 101 (2020);
- Ebert, Schindler, Stewart and YZ, JHEP 04, 178 (2022).
- Independent of spin;
- Vladimirov and Schäfer, PRD 101 (2020);
- Ebert, Schindler, Stewart and YZ, JHEP 09 (2020);
- Ji, Liu, Schäfer and Yuan, PRD 103 (2021).
- No quark-gluon or flavor mixing, which makes gluon calculation much easier.

One-loop matching for gluon TMDs:
Ebert, Schindler, Stewart and YZ, 2205.12369.

TMDs from lattice QCD

$$
\frac{\tilde{f}_{i / p}^{\text {naive }[s]}\left(x, \mathbf{b}_{T}, \mu, \tilde{P}^{z}\right)}{\sqrt{S_{r}^{q}\left(b_{T}, \mu\right)}}=C\left(\mu, x \tilde{P}^{z}\right) \exp \left[\frac{1}{2} K\left(\mu, b_{T}\right) \ln \frac{\left(2 x \tilde{P}^{z}\right)^{2}}{\zeta}\right]
$$

$$
\times f_{i / p}^{[s]}\left(x, \mathbf{b}_{T}, \mu, \zeta\right)
$$

* Collins-Soper kernel;

$$
K\left(\mu, b_{T}\right)=\frac{d}{d \ln \tilde{P}^{z}} \ln \frac{\tilde{f}_{i / p}^{\text {naive }[s]}\left(x, \mathbf{b}_{T}, \mu, \tilde{P}^{z}\right)}{C\left(\mu, x \tilde{P}^{z}\right)}
$$

* Flavor separation; $\quad \frac{f_{i / p}^{[s]}\left(x, \mathbf{b}_{T}\right)}{f_{j / p}^{\left.[/]^{\prime}\right]}\left(x, \mathbf{b}_{T}\right)}=\frac{\tilde{f}_{i / p}^{\text {naive }[s]}\left(x, \mathbf{b}_{T}\right)}{\tilde{f}_{j / p}^{\text {nive }\left[s^{\prime}\right]}\left(x, \mathbf{b}_{T}\right)}$
* Spin-dependence, e.g., Sivers function (single-spin asymmetry);
* Full TMD kinematic dependence.
* Twist-3 PDFs from small b_{T} expansion of TMDs. Ji, Liu, Schäfer and Yuan, PRD 103 (2021).
* Higher-twist TMDs. Rodini and Vladimirov, JHEP 08 (2022).

Collins-Soper (CS) kernel from lattice QCD

$$
K^{q}\left(\mu, b_{T}\right)=\frac{1}{\ln \left(P_{1}^{z} / P_{2}^{z}\right)} \ln \frac{C\left(\mu, x P_{2}^{z}\right) \int d b^{z} e^{i b^{z} x P_{1}^{z}} \tilde{Z}^{\prime}\left(b^{z}, \mu, \tilde{\mu}\right) \tilde{Z}_{\mathrm{UV}}\left(b^{z}, \tilde{\mu}, a\right) \tilde{B}_{\mathrm{ns}}\left(b^{z}, \mathbf{b}_{T}, a, \eta, P_{1}^{z}\right)}{C\left(\mu, x P_{1}^{z}\right) \int d b^{z} e^{i b^{z} x P_{2}^{z}} \tilde{Z}^{\prime}\left(b^{z}, \mu, \tilde{\mu}\right) \tilde{Z}_{\mathrm{UV}}\left(b^{z}, \tilde{\mu}, a\right) \tilde{B}_{\mathrm{ns}}\left(b^{z}, \mathbf{b}_{T}, a, \eta, P_{2}^{z}\right)}
$$

$$
\begin{gathered}
\begin{array}{c}
\text { Perturbative } \\
\text { matching }
\end{array} \\
\times\left\{1+\mathcal{O}\left[\frac{1}{\left(x \tilde{P}^{z} b_{T}\right)^{2}}, \frac{\Lambda_{\mathrm{QCD}}^{2}}{\left(x \tilde{P}^{z}\right)^{2}}\right]\right\}
\end{gathered}
$$

Renormalization (and operator mixing)

Shanahan, Wagman and YZ, PRD 104 (2021).

Current status for the Collins-Soper kernel

	Lattice setup	Renormalization	Operator mixing	Fourier transform	Matching	x-plateau search
$\begin{gathered} \text { SWZ20 } \\ \text { PRD } 102 \text { (2020) } \\ \text { Quenched } \end{gathered}$	$\begin{gathered} a=0.06 \mathrm{fm}, \\ m_{\pi}=1.2 \mathrm{GeV}, \\ P_{\max }^{z}=2.6 \mathrm{GeV} \end{gathered}$	Yes	Yes	Yes	LO	Yes
$\begin{gathered} \text { LPC20 } \\ \text { PRL } 125 \text { (2020) } \end{gathered}$	$\begin{gathered} a=0.10 \mathrm{fm} \\ m_{\pi}=547 \mathrm{MeV} \\ P_{\max }^{z}=2.11 \mathrm{GeV} \end{gathered}$	N/A	No (small)	N/A	LO	N/A
SVZES 21 JHEP 08 (2021)	$\begin{gathered} a=0.09 \mathrm{fm} \\ m_{\pi}=422 \mathrm{MeV} \\ P_{\max }^{+}=2.27 \mathrm{GeV} \end{gathered}$	N/A	No	N/A	NLO	N/A
$\begin{gathered} \text { PKU/ETMC } \\ \mathbf{2 1} \\ \text { PRL } 128 \text { (2022) } \end{gathered}$	$\begin{gathered} a=0.09 \mathrm{fm} \\ m_{\pi}=827 \mathrm{MeV}, \\ P_{\max }^{z}=3.3 \mathrm{GeV} \end{gathered}$	N/A	No	N/A	LO	N/A
$\begin{gathered} \text { SWZ21 } \\ \text { PRD } 106 \text { (2022) } \end{gathered}$	$\begin{gathered} a=0.12 \mathrm{fm} \\ m_{\pi}=580 \mathrm{MeV} \\ P_{\max }^{z}=1.5 \mathrm{GeV} \end{gathered}$	Yes	Yes	Yes	NLO	Yes
$\begin{gathered} \text { LPC22 } \\ \text { PRD } 106 \text { (2022) } \end{gathered}$	$\begin{gathered} a=0.12 \mathrm{fm} \\ m_{\pi}=670 \mathrm{MeV} \\ P_{\max }^{z}=2.58 \mathrm{GeV} \\ \hline \end{gathered}$	Yes	No (small)	Yes	NLO	Yes

Collins Soper kernel

Comparison between lattice results and global fits

MAP22: Bacchetta, Bertone, Bissolotti, et al., 2206.07598
SV19: I. Scimemi and A. Vladimirov, JHEP 06 (2020) 137
Pavia19: A. Bacchetta et al., JHEP 07 (2020) 117
Pavia 17: A. Bacchetta et al., JHEP 06 (2017) 081
CASCADE: Martinez and Vladimirov, 2206.01105

| Approach | Collaboration |
| :---: | :---: |\(\left|\begin{array}{c|c|}\hline Quasi beam

functions\end{array} \quad $$
\begin{array}{c}\text { P. Shanahan, M. Wagman and YZ } \\
\text { (SWZ21), } \\
\text { Phys. Rev.D 104 (2021) }\end{array}
$$\right|\)

Improved calculation with TMD wave function

$\Phi:$ Quasi-TMD wave function

Q.-A. Zhang, et al. (LPC), PRL 125 (2020);
Y. Li et al., PRL 128 (2022);
M.-H. Chu et al. (LPC22), Phys.Rev.D 106 (2022).

- Physical pion mass and reduced systematics from Fourier transform
- Better suppressed power correction
- More stable extraction of x-dependence
- Renormalization of nonlocal operator
- Systematic treatment of operator mixing using the RI-xMOM scheme
- Green, Jansen, and Steffens, Phys.Rev.Lett. 121 (2018) and PRD 101 (2020).
- Constantinou, Panagopoulos, and Spanoudes, PRD 99 (2019).

Reduced soft function from LaMET

Light-meson form factor:

$$
\begin{aligned}
& F\left(b_{T}, P^{z}\right)=\langle\pi(-P)| j_{1}\left(b_{T}\right) j_{2}(0)|\pi(P)\rangle \\
& \stackrel{P^{z} \gg m_{N}}{=} S_{q}^{r}\left(b_{T}, \mu\right) \int d x d x^{\prime} H\left(x, x^{\prime}, \mu\right) \\
& \\
& \quad \times \Phi^{\dagger}\left(x, b_{T}, P^{z}\right) \Phi\left(x^{\prime}, b_{T}, P^{z}\right)
\end{aligned}
$$

Tree-level approximation:

- Ji, Liu and Liu, NPB 955 (2020), PLB 811 (2020);
- Ji and Liu, PRD 105, 076014 (2022);
- Deng, Wang and Zeng, 2207.07280.

$$
\begin{gathered}
H\left(x, x^{\prime}, \mu\right)=1+\mathcal{O}\left(\alpha_{s}\right) \\
\Rightarrow S_{q}^{r}\left(b_{T}\right)=\frac{F\left(b_{T}, P^{z}\right)}{\left[\tilde{\Phi}\left(b^{z}=0, b_{T}, P^{z}\right)\right]^{2}}
\end{gathered}
$$

First lattice results with tree-level matching

$$
\begin{gathered}
a=0.10 \mathrm{fm} \\
m_{\pi}=547 \mathrm{MeV} \\
P_{\max }^{z}=2.11 \mathrm{GeV}
\end{gathered}
$$

Q.-A. Zhang, et al. (LPC), PRL 125 (2020).

$$
\begin{gathered}
a=0.09 \mathrm{fm} \\
m_{\pi}=827 \mathrm{MeV} \\
P_{\max }^{z}=3.3 \mathrm{GeV}
\end{gathered}
$$

Y. Li et al., PRL 128 (2022).

Beyond tree-level, it is necessary to obtain the x-dependence to carry out the convolution.

Conclusion

- The quark and gluon quasi TMDs can be related to the new LR scheme, which can be factorized into the physical TMDs;
- There is no mixing between quarks of different flavors, quark and gluon channels, or different spin structures.
- The method for calculating all the leading-power TMDs is complete;
- Lattice results for the Collins-Soper kernel and soft function are promising, but systematics need to be under control.

Outlook

Targets for lattice QCD studies:

Observables	Status
Non-perturbative Collins-Soper kernel	\checkmark, keep improving the systematics
Soft factor	\checkmark, to be under systematic control
Info on spin-dependent TMDs (in ratios)	In progress
Proton v.s. pion TMDs, $\left(x, b_{T}\right)$ (in ratios)	In progress
Flavor dependence of TMDs, $\left(x, b_{T}\right)$ (in ratios)	to be studied
TMDs and TMD wave functions, $\left(x, b_{T}\right)$	In progress
Gluon TMDs $\left(x, b_{T}\right)$	to be studied
Wigner distributions/GTMDs $\left(x, b_{T}\right)$	to be studied

Backup slides

Data used by the MAP collaboration in 2206.07598

Bacchetta, Bertone, Bissolotti, et al., MAP Collaboration, 2206.07598

LaMET calculation of the collinear PDFs

A state-of-the-art calculation of the pion valence quark PDF with fine lattices, large momentum and NNLO matching:

Gao, Hanlon, Mukherjee, Petreczky, Scior, Syritsyn and YZ, PRL 128, 142003 (2022).

Factorization relation with the TMDs

Lattice

Quasi

$$
\begin{aligned}
& \tilde{f}_{i}\left(x, \mathbf{b}_{T}, \mu, \tilde{\zeta}, \tilde{P}^{z}\right)=\lim _{\tilde{P} \gg m_{N}} \lim _{a \rightarrow 0} \tilde{Z}_{\mathrm{UV}} \frac{\tilde{B}_{i}}{\sqrt{S^{q}}} \\
& \text { Lorentz invariance } \downarrow y_{\tilde{P}}=y_{P}-y_{B} \\
& f_{i}^{\mathrm{LR}}\left(x, \mathbf{b}_{T}, \mu, \zeta, y_{P}-y_{B}\right)=\lim _{-y_{B} \gg 1} \lim _{\epsilon \rightarrow 0} Z_{\mathrm{UV}}^{\mathrm{LR}} \frac{B_{i}}{\sqrt{S^{q}}} \\
& \text { Same matrix elements, but } \uparrow \text { Perturbative matching in } \\
& \text { different orders of UV limits } \\
& f_{i}\left(x, \mathbf{b}_{T}, \mu, \zeta\right) \stackrel{\downarrow}{=} \lim _{\epsilon \rightarrow 0} Z_{\mathrm{UV}} \lim _{y_{B} \rightarrow-\infty} \frac{B_{i}}{\sqrt{S^{q}}}
\end{aligned}
$$

Continuum

Factorization relation with the TMDs

Lattice

Quasi

Continuum
$\tilde{f}_{i}\left(x, \mathbf{b}_{T}, \mu, \tilde{\zeta}, \tilde{P}^{z}\right)=\lim _{\tilde{P} \ggg m_{N}} \lim _{a \rightarrow 0} \tilde{Z}_{\mathrm{UV}} \frac{\tilde{B}_{i}}{\sqrt{S^{q}}}$

Same matrix elements, but \uparrow Perturbative matching in different orders of UV limits LaMET!

$$
f_{i}\left(x, \mathbf{b}_{T}, \mu, \zeta\right)=\lim _{\epsilon \rightarrow 0} Z_{\mathrm{UV}} \lim _{y_{B} \rightarrow-\infty} \frac{B_{i}}{\sqrt{S^{q}}}
$$

Backup slides

$\propto \delta_{i j} \quad$ Can mix with singlet channel and with gluons

$$
b^{2}=-b_{z}^{2}-b_{T}^{2}<b_{T}^{2} \sim 1 / \Lambda_{\mathrm{QCD}}^{2}
$$

Hard particles cannot propagate that far!

