Advances in the Lattice QCD calculation of TMDs

ECT* Workshop: Opportunities with JLab Energy and Luminosity Upgrade Trento, Italy, Sep. 26—30, 2022 YONG ZHAO SEP 28, 2022

Outline

TMDs in the non-perturbative region

Lattice calculations from quasi-TMDs

Outlook

3D Tomography of the Proton

3D Tomography of the Proton

Leading Quark TMDPDFs $() \rightarrow NL$

Nucleon Spin

Quark Spin

From TMD Handbook, TMD Topical Collaboration, to appear soon.

TMDs from experiments

TMD processes:

HERMES, COMPASS, JLab, EIC, ...

Fermilab, RHIC, LHC, ... Babar, Belle, BESIII, ... Χ

Nucleon Polarization

TMDs from global analyses

Semi-inclusive deep inelastic scattering: $l + p \longrightarrow l + h(P_h) + X$

$$\frac{d\sigma^W}{dxdydz_h d^2 \mathbf{P}_{hT}} \sim \int d^2 \mathbf{b}_T \ e^{i\mathbf{b}_T \cdot \mathbf{P}_{hT}/z}$$

×
$$f_{i/p}(x, \mathbf{b}_T, Q, Q^2) D_{h/i}(z_h, \mathbf{b}_T, Q, Q^2)$$

Kang, Prokudin, Sun and Yuan, PRD

$$f_{i/p}(x, \mathbf{b}_T, \mu, \zeta) = f_{i/p}^{\text{pert}}(x, b^*(b_T), \mu, \zeta) \xrightarrow{93, 014009 (2016)} \\ \times \left(\frac{\zeta}{Q_0^2}\right)^{g_K(b_T)/2} \xrightarrow{f_{i/p}^{\text{NP}}(x, b_T)} \xrightarrow{\text{Collins-Soper kernel (NP part)}} \\ \text{Intrinsic TMD}$$

Non-perturbative when $b_T \sim 1/\Lambda_{\rm OCD}$!

 $Q_0 \sim 1 \text{ GeV}$

TMDs from global analyses

Unpolarized quark TMD

Scimemi and Vladimirov, JHEP 06 (2020).

Quark Sivers function

Cammarota, Gamberg, Kang et al. (JAM Collaboration), PRD 102 (2020).

TMDs from global analyses

Bacchetta, Bertone, Bissolotti, et al., MAP Collaboration, 2206.07598

TMD definition

Beam function:

Hadronic matrix element

• Soft function :

Vacuum matrix element

$$f_i(x, \mathbf{b}_T, \mu, \zeta) = \lim_{\epsilon \to 0} Z_{\text{UV}} \lim_{\tau \to 0} \frac{B_i}{\sqrt{S^q}}$$

Collins-Soper scale: $\zeta = 2(xP^+e^{-y_n})^2$
Rapidity divergence regulator

First principles calculation of TMDs from the above matrix elements would greatly complement global analyses!

TMD definition

Beam function:

First principles calculation of TMDs from the above matrix elements would greatly complement global analyses!

Soft function :

Lattice QCD

Lattice gauge theory: a systematically improvable approach to solve non-perturbative QCD.

Imaginary time: $t \to i\tau$ $O(i\tau) \xrightarrow{?} O(t)$

Simulating real-time dynamics has been extremely difficult due to the issue of analytical continuation.

Progress in the lattice study of TMDs

- Lorentz invariant method
 - Musch, Hägler, Engelhardt, Negele and Schäfer et al.
 - Primary efforts focused on ratios of TMD x-moments (w/o soft function) (2009-)

Quasi-TMDs

- Large-momentum effective theory (Ji, 2013, 2014; Ji, Liu, Liu, Zhang and YZ, 2021)
- One-loop studies of quasi beam and soft functions (Ji, Yuan, Scäfer, Liu, Liu, Ebert, Stewart, YZ, Vladimirov, Wang, ..., 2015-2022)
- Method to calculate the Collins-Soper kernel (Ji, Yuan et al., 2015; Ebert, Stewart and YZ, 2018)
- Method to calculate the soft function, and thus the x and b_T dependence of TMDs (Ji, Liu and Liu, 2019)
- Derivation of factorization formula (Ebert, Schindler, Stewart and YZ, 2022)
- First lattice results (SWZ, LPC, ETMC/PKU, SVZES, 2020-)

Quasi TMD in the LaMET formalism

 Beam function in Collins scheme: Quasi beam function :

Spacelike but close-to-lightcone ($y_B \rightarrow -\infty$) Wilson lines, not calculable on the lattice \bigotimes

Equal-time Wilson lines, directly calculable on the lattice

Related by Lorentz invariance, equivalent in the large \tilde{P}^z or $(-y_R)$ expansion.

Ebert, Schindler, Stewart and YZ, JHEP 04, 178 (2022).

TMDs from lattice QCD

$$\frac{\tilde{f}_{i/p}^{\text{naive}[s]}(x, \mathbf{b}_T, \mu, \tilde{P}^z)}{\sqrt{S_r^q(b_T, \mu)}} = C(\mu, x \tilde{P}^z) \exp\left[\frac{1}{2}K(\mu, b_T)\ln\frac{(2x\tilde{P}^z)^2}{\zeta}\right]$$

$$\times f_{i/p}^{[s]}(x, \mathbf{b}_T, \mu, \zeta) \left\{1 + \mathcal{O}\left[\frac{1}{(x\tilde{P}^z b_T)^2}, \frac{\Lambda_{\text{QCD}}^2}{(x\tilde{P}^z)^2}\right]\right\}$$

Reduced soft function <

Ji, Liu and Liu, NPB 955 (2020), PLB 811 (2020).

Matching coefficient:

Independent of spin;

- Ji, Sun, Xiong and Yuan, PRD91 (2015);
- Ji, Jin, Yuan, Zhang and YZ, PRD99 (2019);
- Ebert, Stewart, YZ, PRD99 (2019), JHEP09 (2019) 037;
- Ji, Liu and Liu, NPB 955 (2020), PLB 811 (2020);
- Vladimirov and Schäfer, PRD 101 (2020);
- Ebert, Schindler, Stewart and YZ, JHEP 04, 178 (2022).
- Vladimirov and Schäfer, PRD 101 (2020);
- Ebert, Schindler, Stewart and YZ, JHEP 09 (2020);
- Ji, Liu, Schäfer and Yuan, PRD 103 (2021).

No quark-gluon or flavor mixing, which makes gluon calculation much easier.

One-loop matching for gluon TMDs:

Ebert, Schindler, Stewart and YZ, 2205.12369.

TMDs from lattice QCD

$$\frac{\tilde{f}_{i/p}^{\text{naive}[s]}(x, \mathbf{b}_T, \mu, \tilde{P}^z)}{\sqrt{S_r^q(b_T, \mu)}} = C(\mu, x \tilde{P}^z) \exp\left[\frac{1}{2}K(\mu, b_T)\ln\frac{(2x\tilde{P}^z)^2}{\zeta}\right] \times f_{i/p}^{[s]}(x, \mathbf{b}_T, \mu, \zeta) \left\{1 + \mathcal{O}\left[\frac{1}{(x\tilde{P}^z b_T)^2}, \frac{\Lambda_{\text{QCD}}^2}{(x\tilde{P}^z)^2}\right]\right\}$$

* Collins-Soper kernel;
* Flavor separation;
$$\frac{f_{i/p}^{[s]}(x, \mathbf{b}_T)}{f_{j/p}^{[s']}(x, \mathbf{b}_T)} = \frac{\tilde{f}_{i/p}^{\text{naive}[s]}(x, \mathbf{b}_T)}{\tilde{f}_{j/p}^{\text{naive}[s']}(x, \mathbf{b}_T)} = \frac{\tilde{f}_{i/p}^{\text{naive}[s']}(x, \mathbf{b}_T)}{\tilde{f}_{j/p}^{\text{naive}[s']}(x, \mathbf{b}_T)}$$

* Spin-dependence, e.g., Sivers function (single-spin asymmetry);

* Full TMD kinematic dependence.

* Twist-3 PDFs from small *b*_T expansion of TMDs. Ji, Liu, Schäfer and Yuan, PRD 103 (2021).

* Higher-twist TMDs. Rodini and Vladimirov, JHEP 08 (2022).

Collins-Soper (CS) kernel from lattice QCD

 $\gamma_{\zeta}^{q,\overline{\mathrm{MS}}}(b_{T},\mu) = \frac{d \, 1_{f} \overline{\mathrm{MS}}}{\ln d p_{1}^{z}/p_{2}^{z}} (\ln, \frac{C_{TMD}^{\overline{\mathrm{MS}}}(\mu, xP_{2}^{z}) \int db^{z} e^{ib^{z} xp_{1}^{z}} \widetilde{B}_{q}^{\overline{\mathrm{MS}}}(b^{z}, b_{T}, \eta, \mu, p_{1}^{z})}{C_{TMD}^{\overline{\mathrm{MS}}}(\mu, xp_{1}^{z}) \int db^{z} e^{ib^{z} xp_{2}^{z}} \widetilde{B}_{q}^{\overline{\mathrm{MS}}}(b^{z}, b_{T}, \eta, \mu, p_{2}^{z})}$

$$K^{q}(\mu, b_{T}) = \frac{1}{\ln(P_{1}^{z}/P_{2}^{z})} \ln \frac{C(\mu, xP_{2}^{z}) \int db^{z} \ e^{ib^{z}xP_{1}^{z}} \ \tilde{Z}'(b^{z}, \mu, \tilde{\mu}) \tilde{Z}_{\text{UV}}(b^{z}, \tilde{\mu}, a) \tilde{B}_{\text{ns}}(b^{z}, \mathbf{b}_{T}, a, \eta, P_{1}^{z})}{C(\mu, xP_{1}^{z}) \int db^{z} \ e^{ib^{z}xP_{2}^{z}} \ \tilde{Z}'(b^{z}, \mu, \tilde{\mu}) \tilde{Z}_{\text{UV}}(b^{z}, \tilde{\mu}, a) \tilde{B}_{\text{ns}}(b^{z}, \mathbf{b}_{T}, a, \eta, P_{1}^{z})}$$

$$\begin{array}{c} \text{Perturbative}\\ \text{matching}\\ \times \left\{1 + \mathcal{O}\left[\frac{1}{(x\tilde{P}^{z}b_{T})^{2}}, \frac{\Lambda_{\text{QCD}}^{2}}{(x\tilde{P}^{z})^{2}}\right]\right\}\end{array}$$

$$\begin{array}{c} \text{Renormalization (and}\\ \text{operator initiation} \\ m_{\pi} \end{array}$$

Current status for the Collins-Soper kernel

	Lattice setup	Renormalization	Operator mixing	Fourier transform	Matching	<i>x</i> -plateau search
SWZ20 PRD 102 (2020) Quenched	a = 0.06 fm, $m_{\pi} = 1.2 \text{ GeV},$ $P_{\text{max}}^{z} = 2.6 \text{ GeV}$	Yes	Yes	Yes	LO	Yes
LPC20 PRL 125 (2020)	a = 0.10 fm, $m_{\pi} = 547 \text{ MeV},$ $P_{\text{max}}^{z} = 2.11 \text{ GeV}$	N/A	No (small)	N/A	LO	N/A
SVZES 21 JHEP 08 (2021)	a = 0.09 fm, $m_{\pi} = 422 \text{ MeV},$ $P_{\text{max}}^{+} = 2.27 \text{ GeV}$	N/A	No	N/A	NLO	N/A
PKU/ETMC 21 PRL 128 (2022)	a = 0.09 fm, $m_{\pi} = 827 \text{ MeV},$ $P_{\text{max}}^{z} = 3.3 \text{ GeV}$	N/A	No	N/A	LO	N/A
SWZ21 PRD 106 (2022)	a = 0.12 fm, $m_{\pi} = 580$ MeV, $P_{\text{max}}^{z} = 1.5$ GeV	Yes	Yes	Yes	NLO	Yes
LPC22 PRD 106 (2022)	a = 0.12 fm, $m_{\pi} = 670 \text{ MeV},$ $P_{\text{max}}^{z} = 2.58 \text{ GeV}$	Yes	No (small)	Yes	NLO	Yes

Collins Soper kernel

Comparison between lattice results and global fits

MAP22: Bacchetta, Bertone, Bissolotti, et al., 2206.07598 SV19: I. Scimemi and A. Vladimirov, JHEP 06 (2020) 137 Pavia19: A. Bacchetta et al., JHEP 07 (2020) 117 Pavia 17: A. Bacchetta et al., JHEP 06 (2017) 081 CASCADE: Martinez and Vladimirov, 2206.01105

Approach	Collaboration	
Quasi beam functions	P. Shanahan, M. Wagman and YZ (SWZ21), Phys. Rev.D 104 (2021)	
	QA. Zhang, et al. (LPC20), Phys.Rev.Lett. 125 (2020).	
Quasi TMD wavefunctions	Y. Li et al. (ETMC/PKU 21), Phys.Rev.Lett. 128 (2022).	
	MH. Chu et al. (LPC22), Phys.Rev.D 106 (2022)	
Moments of quasi TMDs	Schäfer, Vladmirov et al. (SVZES21), JHEP 0 8 (2021)	

Reduced soft function from LaMET

Light-meson form factor: $F(b_T, P^z) = \langle \pi(-P) | j_1(b_T) j_2(0) | \pi(P) \rangle$

$$\stackrel{P^{z} \gg m_{N}}{=} \frac{S_{q}^{r}(b_{T},\mu)}{\int} dx dx' H(x,x',\mu)$$
$$\times \Phi^{\dagger}(x,b_{T},P^{z}) \Phi(x',b_{T},P^{z})$$

Tree-level approximation:

- Ji and Liu, PRD 105, 076014 (2022);
- Deng, Wang and Zeng, 2207.07280.

$$H(x, x', \mu) = 1 + \mathcal{O}(\alpha_s)$$

$$\Rightarrow S_q^r(b_T) = \frac{F(b_T, P^z)}{[\tilde{\Phi}(b^z = 0, b_T, P^z)]^2}$$

First lattice results with tree-level matching

Beyond tree-level, it is necessary to obtain the *x*-dependence to carry out the convolution.

Conclusion

- The quark and gluon quasi TMDs can be related to the new LR scheme, which can be factorized into the physical TMDs;
- There is no mixing between quarks of different flavors, quark and gluon channels, or different spin structures.
- The method for calculating all the leading-power TMDs is complete;
- Lattice results for the Collins-Soper kernel and soft function are promising, but systematics need to be under control.

Outlook

Targets for lattice QCD studies:

Observables	Status		
Non-perturbative Collins-Soper kernel	, keep improving the systematics		
Soft factor	 to be under systematic control 		
Info on spin-dependent TMDs (in ratios)	In progress		
Proton v.s. pion TMDs, (x, b_T) (in ratios)	In progress		
Flavor dependence of TMDs, (x, b_T) (in ratios)	to be studied		
TMDs and TMD wave functions, (x, b_T)	In progress		
Gluon TMDs (x, b_T)	to be studied		
Wigner distributions/GTMDs (x, b_T)	to be studied		

Backup slides

Data used by the MAP collaboration in 2206.07598

Bacchetta, Bertone, Bissolotti, et al., MAP Collaboration, 2206.07598

LaMET calculation of the collinear PDFs

A state-of-the-art calculation of the pion valence quark PDF with fine lattices, large momentum and NNLO matching:

Gao, Hanlon, Mukherjee, Petreczky, Scior, Syritsyn and YZ, PRL 128, 142003 (2022).

Factorization relation with the TMDs

Ebert, Schindler, Stewart and YZ, JHEP 04, 178 (2022).

Continuum

Factorization relation with the TMDs

Ebert, Schindler, Stewart and YZ, JHEP 04, 178 (2022).

Backup slides

i, *j* (including spinor indices) remain intact

 $\propto \delta_{ij}$ Can mix with singlet channel and with gluons

$$b^2 = - b_z^2 - b_T^2 < b_T^2 \sim 1/\Lambda_{\rm QCD}^2$$

Hard particles cannot propagate that far!