High Precision Neutral Pion Transition Form Factor Measurement with the CEBAF 24 GeV Energy Upgrade

A. Gasparian NC A&T State University, Greensboro NC USA

for the PrimEx Collaboration

Outline

- PrimEx program with 24 GeV upgrade
- π^0 transition form factor on nuclei
- π^0 transition form factor on atomic electron
- Proposed experimental setup
- Kinematics and geometrical acceptances
- Summary

Physics Motivation: Symmetries in QCD

Classical QCD Lagrangian in Chiral limit is invariant under:

 $SU_L(3) \times SU_R(3) \times U_A(1) \times U_B(1)$

- Chiral SU_L(3)xSU_R(3) spontaneously broken:
 - 8 Goldstone bosons (π,K,η)
- U_A(1) is explicitly broken:
 (axial or chiral anomaly)
 - $\succ \quad \Gamma(\pi^0 \rightarrow \gamma \gamma), \, \Gamma(\eta \rightarrow \gamma \gamma), \, \Gamma(\eta' \rightarrow \gamma \gamma)$
 - > mass of η_0
- quarks are massive and different, SU(3) is broken:
 - Goldstone bosons are massive
 - > mixing of $\pi^0 \eta \eta'$

The π^0 , η , η' system provides a rich laboratory to study the symmetry structure of QCD at low energies.

The PrimEx Project with 12 GeV at JLab

• Experimental program:

- 1) Precision measurements of two-photon decay widths (real photon exchange):
 - a) $\Gamma(\pi^0 \rightarrow \gamma \gamma)$ b) $\Gamma(\eta \rightarrow \gamma \gamma)$
 - c) $\Gamma(\eta' \rightarrow \gamma \gamma)$
- 2) Transition Form Factors at very low Q² range, 0.001-0.5 GeV²/c² (virtual photon exchange):
 - a) $F(\gamma\gamma^* \rightarrow \pi^0)$

b)
$$F(\gamma\gamma^* \rightarrow \eta)$$

c) $F(\gamma\gamma^* \rightarrow \eta')$

Physics reach:

- a) precision tests of chiral symmetry and anomalies
- b) determination of light quark mass ratio
- c) mixing angles
- d) π^0 , η and η' interaction electromagnetic radii
- e) Is η' an approximate Goldstone boson?
- f) Critical contributions to HLbL calculations for $(g-2)_{\mu}$

Included in the JLab @12 GeV upgrade CDR

- Challenge of the method:
 - > measure the cross section at forward angles with high precision
 - > extract the Primakoff amplitude from diff. cross sections vs. angle

An Example: $\Gamma(\pi^0 \rightarrow \gamma \gamma)$ Decay width Measurement PrimEx Experiments in Hall B at JLab

PrimEx-I performed in Hall B in 2004

using:

- high resolution, high intensity Hall B photon tagging facility.
- new high resolution hybrid multichannel EM calorimeter (HyCal):
 - 34 x 34 matrix of 2.05 x 2.05 x 18 cm³ PbWO₄ shower detectors
 - 576 Pb-glass shower detectors (3.82x3.82x45.0 cm³)
 - ♦ Total area: 118 x 118 cm²
- set of 12 scintillator veto counters.
- new pair spectrometer for photon flux control at high intensities.

beam

PrimEx-II: Extracted Differential Cross Sections

- To extract $\Gamma(\pi^0 \rightarrow \gamma \gamma)$:
 - angular and energy resolutions smeared the theoretical distributions to fit the experimental cross sections.

$\Gamma(\pi^0 \rightarrow \gamma \gamma)$: Final Result from PrimEx

 Weighted average from two experiments, PrimEx-I and PrimEx-II is:

 $Γ(π^0 \rightarrow \gamma \gamma)$ = 7.802 ±0.052(stat) ± 0.105(syst.) eV

with the total uncertainty of: $\pm 1.5\%$

 the nuclear background contribute significantly to the total uncertainty.

Theory and Experiments

Decay Width Measurements of π^0 , η and η' Mesons with the 24 GeV Energy Upgrade

- Critical for the $\Gamma(\eta \rightarrow \gamma \gamma)$ and $\Gamma(\eta' \rightarrow \gamma \gamma)$ measurements with few percent accuracies
- Requires a high energy photon tagger:
 - ✓ Is that the Hall D tagger?
- Requires high resolution and large acceptance electromagnetic calorimeter:
 - ✓ HyCal with all PbWO₄ crystals
- Requires a "clean" beamline (vacuum from target up to detection region)
- Requires a "cleaning" dipole magnet
- Use nuclear targets, similar to PrimEx
 - Background from the nuclear processes will still be dominated

Trento 2022, 24 GeV upgrade workshop

e beam

 $\Gamma(\eta \rightarrow \gamma \gamma)$ and $\Gamma(\eta' \rightarrow \gamma \gamma)$ Measurements with the 24 GeV Energy Upgrade

Transition Form Factor Measurements on Nuclear Targets with the 24 GeV Energy Upgrade

- "cleaning" dipole magnet cannot be used
 - relatively large electromagnetic background
- Sub percent resolutions in cross section are needed :
 - not easy experiments
- Will use nuclear targets, similar to PrimEx
 - background from the nuclear processes is still present

$F(\gamma\gamma * \rightarrow \pi^0)$ Transition Form Factor Experiment on Electron Target

• Change the nuclear target to atomic electron $e^- + e^- \rightarrow e^2 + e^- + \pi^0$

• The problem, requires threshold energy for γ^*

 $\pi^0 \rightarrow \gamma \gamma$

 $\mathsf{E}_{\gamma^*} = ((m_{\pi 0} + m_{e\text{-}})^2 - m_{\gamma^*}^2 - m_{e\text{-}}^2)/(2 m_{e\text{-}})$

for $Q^2 \approx 0.001 \text{ GeV}^2$: $E_{\gamma^*} \approx 18 \text{ GeV}$

- Experimental method: detect all 4 final state particles:
 - ✓ scattered electrons
 - ✓ recoil electrons
 - two photons from pion decay
- Providing full control of the experiment:
 - reaction identification;
 - total energy conservation;
 - total 3-momentum conservation.

$F(\gamma\gamma * \rightarrow \pi^0)$ Transition Form Factor Experiment Differential Cross Section on Electron Target

- Change the nuclear target to atomic electron $e^- + e^- \rightarrow e^2 + e^- + \pi^0$

 $\pi^0 \rightarrow \gamma \gamma$

 No nuclear processes on electron contributing to the background

Main challenges for nuclear targets:

- nuclear background
- nuclear effects in form factor
- no recoil detection

The Proposed Experimental Setup: (PRad – II experimental setup)

- Target to detector distance: $Z \approx 10 \text{ m}$
- Detection of the forward scattered electrons in HyCal/GeM (low Q² range: 10⁻³ 10⁻¹ GeV²)
- $\pi^0 \rightarrow \gamma \gamma$ detection with the HyCal calorimeter
- Detection of the Recoil electron:
 - ✓ with the HyCal calorimeter (at $Q^2 \approx 10^{-3} 10^{-2} \text{ GeV}^2$ range);
 - ✓ or/and with the scintillator ring close to target from the PRad-II experiment (for $Q^2 \approx 10^{-1} \text{ GeV}^2$)

Experimental Setup (Side View)

 $F(\gamma\gamma * \rightarrow \pi^0)$ Transition Form Factor Experiment (Reaction Kinematics at $E_e = 24$ GeV)

$$e^{-} + e^{-} \rightarrow e^{+} + e^{-} + \pi^{0}$$

 $\pi^{0} \rightarrow \gamma \gamma$

- Scattered electron in HyCal (provides low Q² range: $\approx 10^{-3} - 10^{-1} \text{ GeV}^2$): $\vartheta \approx 0.3^0 - 3^0$, $E_{e^2} \approx 0.3 - 3.5 \text{ GeV}$
- The γ^* and π^0 are produced on extremely forward directions with energies >20 GeV
- Recoil electrons angle: (forward 90⁰)
- $\pi^0 \rightarrow \gamma \gamma$ decay is very forward due to high energy

 $F(\gamma\gamma * \rightarrow \pi^{0}) \text{ Transition Form Factor Experiment}$ (Geometrical Acceptance at E_e = 24 GeV)

- Only GEM/HyCal are used for all 4 final state particles (including the Recoil Electrons)
- Scattered electron in HyCal: $\vartheta_{e'} \approx 0.3^0 - 3^0$, $E_{e'} \approx 0.3 - 3.5 \text{ GeV}$

 $E_{\gamma} > 0.5 \text{ GeV}$ from $\pi^0 \rightarrow \gamma \gamma$ decayRecoil Electron $\vartheta_{recoil e} = 0.3^0 - 3^0$ Recoil Electron $E_{recoil e} > 0.03 \text{ GeV}$ Recoil Electron

 $F(\gamma\gamma * \rightarrow \pi^0)$ Transition Form Factor Experiment (Reaction Kinematics at $E_e = 24$ GeV and Relatively High Q² Range (~10⁻¹ GeV²)

HyCal angular angular coverage at Z=10 m:

 $\vartheta \approx 0.3^{\circ} - 3^{\circ}$

 For the Q2 ~ 10⁻¹ GeV² range recoil electrons are out of the HyCal acceptance

The Proposed Experimental Setup: New ScintillatorRing

Add a scintillator ring like the PRad-II experiment

Transition Form Factor Measurements on Electron Target (combination of HyCal/GEM and Scintillator Ring

 $E_e = 24 \text{ GeV}$ $Q^2 = 0.01 \text{ GeV}^2$

 $F(\gamma\gamma * \rightarrow \pi^{0}) \text{ Transition Form Factor Experiment}$ (Geometrical Acceptance at E_e = 24 GeV)

 Detection of all 4 final state particles in HyCal (including the Recoil electron)

Transition Form Factor Measurements on Electron Target (X-Y distribution of events on HyCal)

Transition Form Factor Measurements on Electron Target (Experimental Resolutions)

 $E_e = 24 \text{ GeV}$ $Q^2 = 0.01 \text{ GeV}^2$

Transition Form Factor Measurements on Electron Target (kinematical distributions)

Summary

- The CEBAF 24 GeV energy upgrade will significantly enhance the PrimEx experimental program at JLab.
- It will make critical imputes to symmetries, most importantly, their partial breaking effects in QCD directly observable at GeV energy range.
- The sub-percent measurement of the $\Gamma(\pi^0 \rightarrow \gamma\gamma)$ transition form factor at low Q² range on the atomic electron will provide a critical input to the current $(g-2)_{\mu}$ anomaly in physics.
- Currently, work is in progress for the optimization and final development of the $\Gamma(\pi^0 \rightarrow \gamma \gamma)$ experiment on atomic electron.

The PrimEx project was supported in part by NSF MRI award PHY-0079840 My work is supported in part by research award NSF PHY-PHY-1812421

Transition Form Factor Measurements on Electron Target

Hybrid EM Calorimeter (HyCal)

Combination of PbWO₄ and Pb-glass detectors (118x118 cm²)

- 34 x 34 matrix of 2.05 x 2.05 x 18 cm³ PbWO₄ shower detectors (1152 PbWO₄ detectors)
- ✓ 576 Pb-glass shower detectors (3.82x3.82x45.0 cm³)
- 2 x 2 PbWO₄ modules removed in middle for beam passage
- ✓ ≈7.5 m from target
- Good energy and position resolutions:
 - ✓ $\sigma_{\rm E}$ / E = 2.6% / √E
 - \checkmark σ_{xy} / E = 2.7 mm/ \sqrt{E}
- Good photon detection efficiency (≈100%)
- Served in 3 precision experiments!

front view, before Light Monitoring System assembly

Transition Form Factor Measurements on Electron Target

A. Gasparian

PrimEx Approach for a New Generation Primakoff Experiment

- Use tagged photon beam:
 - better knowledge of photon flux
 - energy and timing of incident photons
- Parallel measurement of purely QED processes to control/verify the cross section on 1% level:
 - ✓ Compton scattering from target electrons $(\gamma + e^- \rightarrow \gamma + e^-)$
 - ✓ e^+e^- Pair production from target $(\gamma + {}^{12}C \rightarrow e^+ + e^- + {}^{12}C)$
- Use high resolution electromagnetic calorimeter:
 - ✓ better π^0 invariant mass resolution
 - ✓ better π^0 production angle resolution
 - less background in "event selection"
- Use particle ID detectors for charged background separation:
 - reduction of background at event selection stage
- Monitor photon flux at high intensities (with Pair Spectrometer):
 - ✓ photon flux measurement on 1% level