

SIDIS off unpolarized protons at COMPASS

Andrea Moretti

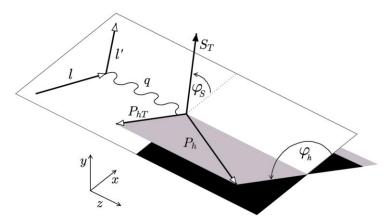
on behalf of the COMPASS Collaboration

Introduction

Semi-Inclusive Deep Inelastic Scattering (SIDIS) is a powerful tool to access the rich and complex structure of the nucleon.

Depending on the nucleon polarization, several (TMD)-PDFs can be accessed

In this talk: focus on the SIDIS off unpolarized nucleons


Quark Nucleon	U unpolarized	L longitudinally polarized	T transversely polarized
U unpolarized	$f_1^q(x,k_T^2)$ number density		$h_1^{\perp q}(x,k_T^2)$ Boer-Mulders
L longitudinally polarized		$g_1^q(x,k_T^2)$ helicity	$h_{1L}^{\perp q}(x,k_T^2)$ Kotzinian-Mulders worm-gear L
T transversely polarized	$f_{1\perp}^{q}(x,k_T^{2})$ Sivers	$g_{1T}^{\perp q}(x,k_T^2)$ Kotzinian-Mulders worm-gear T	$h_1^q(x,k_T^2)$ transversity $h_{1T}^{\perp q}(x,k_T^2)$ Pretzelosity

Cross section for unpolarized SIDIS

In SIDIS, a high energy lepton scatters off a nucleon target and at least one hadron is observed in the final state.

For an unpolarized nucleon target and in the one-photon exchange approximation **the fully-differential cross-section** reads:

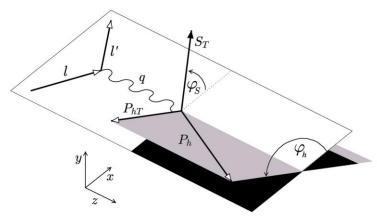
The Gamma Nucleon System (GNS)

Bacchetta et al., JHEP 02 (2007) 093

$$\frac{\mathrm{d}^5 \sigma}{\mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \, \mathrm{d}\varphi_h \mathrm{d}P_T^2} = \frac{2\pi\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right)$$

$$\cdot \left(F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} F_{UU}^{\cos\varphi_h} \cos\varphi_h \cos\varphi_h + \varepsilon F_{UU}^{\cos2\varphi_h} \cos2\varphi_h + \lambda_l \sqrt{2\varepsilon(1-\varepsilon)} F_{LU}^{\sin\varphi_h} \sin\varphi_h \right)$$

- *x* is the Bjorken variable
- Q^2 the photon virtuality
- $\gamma = \frac{2Mx}{0}$ (small in COMPASS kinematics)
- $y = 1 \frac{E_{\ell'}}{E_{\ell}}$ the inelasticity with $E_{\ell'}$ the energy of the incoming (scattered) lepton in the target rest frame
- $\varepsilon(y) = \frac{1 y \frac{1}{4}\gamma^2 y^2}{1 y + \frac{1}{2}y^2 + \frac{1}{4}\gamma^2 y^2}$


- λ_l is the beam polarization.
- z is the fraction of photon energy carried by the hadron
- φ_h its azimuthal angle in the Gamma Nucleon System
- P_T its transverse momentum w.r.t. the photon

Cross section for unpolarized SIDIS

In SIDIS, a high energy lepton scatters off a nucleon target and at least one hadron is observed in the final state.

For an unpolarized nucleon target and in the one-photon exchange approximation **the fully-differential cross-section** reads:

The Gamma Nucleon System (GNS)

$$\frac{\mathrm{d}^{5}\sigma}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}\varphi_{h}\mathrm{d}P_{T}^{2}} = \frac{2\pi\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2x}\right)$$

$$\cdot\left(F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)}F_{UU}^{\cos\varphi_{h}}\cos\varphi_{h} + \varepsilon F_{UU}^{\cos2\varphi_{h}}\cos2\varphi_{h} + \lambda_{l}\sqrt{2\varepsilon(1-\varepsilon)}F_{LU}^{\sin\varphi_{h}}\sin\varphi_{h}\right)$$

The structure functions $F_{XY[Z]}^{[f(\varphi_h)]}$ can be written at high Q^2 in terms of

- TMD Parton Distributions Functions (PDFs)
- TMD Fragmentation Functions (FFs).

Unpolarized structure functions

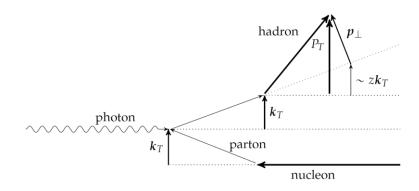
Unpolarized SIDIS \rightarrow access to the **number density TMD** and to the **Boer-Mulders TMD** h_1^{\perp}

Quark Nucleon	U unpolarized	L longitudinally polarized	T transversely polarized
U unpolarized	$ \begin{pmatrix} f_1^q(x, k_T^2) \\ \text{number} \\ \text{density} \end{pmatrix} $		$\begin{pmatrix} h_1^{\perp q}(x,k_T^2) \\ \text{Boer-Mulders} \end{pmatrix}$

Boer-Mulders function h_1^{\perp} couples to the **Collins FF** H_1^{\perp} : fragmentation of a transversely polarized quarks into hadron

The correlation between k_T and s_T generates a neat quark transverse polarization

Up to order 1/Q (i.e. at twist-3) in Wandzura-Wilczek approximation *:


$$F_{UU,T} = \mathcal{C}[f_1D_1]$$

$$Cahn\,effect \qquad Boer-Mulders\,term$$

$$F_{UU}^{\cos\varphi_h} = \frac{2M}{Q}\mathcal{C}\left[-\frac{(\widehat{h}\cdot\vec{k_T})}{M}f_1D_1 - \frac{(\widehat{h}\cdot\vec{p_\perp})k_T^2}{zM^2M_h}h_1^\perp H_1^\perp + \cdots\right]$$

$$F_{UU}^{\cos2\varphi_h} = \mathcal{C}\left[-\frac{2(\widehat{h}\cdot\vec{k_T})(\widehat{h}\cdot\vec{p_\perp}) - \vec{k_T}\cdot\vec{p_\perp}}{zM\,M_h}h_1^\perp H_1^\perp\right]$$

$$Boer-Mulders\,term$$

where C[wfD] is the convolution over the unobservable transverse momenta:

$$\mathcal{C}[wfD] = x \sum_{a} e_{a}^{2} \int d^{2} \vec{k}_{T} \int d^{2} \vec{p}_{\perp} \delta^{2} (\vec{P}_{T} - \vec{k}_{T} - \vec{p}_{\perp}) w(\vec{k}_{T}, \vec{p}_{\perp}) f^{a}(x, \vec{k}_{T}) D^{a}(z, \vec{p}_{\perp})$$

$$\hat{h} = \vec{P}_{T} / |\vec{P}_{T}|$$

^{*} possible further contributions at high *z* from the *Berger-Brodsky* mechanism Brandenburg et al., *Phys.Lett.B* 347 (1995) 413-418

Unpolarized structure functions

Gaussian Ansatz → the TMD PDFs and FFs factorize as:

$$f_{1}^{q}(x,k_{T}^{2}) = f_{1}^{q}(x) \frac{e^{-\frac{k_{T}^{2}}{\langle k_{T,q}^{2} \rangle}}}{\pi \langle k_{T,q}^{2} \rangle} \qquad \qquad D_{1}^{h/q}(z,p_{\perp}^{2}) = D_{1}^{h/q}(z) \frac{e^{-\frac{p_{\perp}^{2}}{\langle p_{\perp,h/q}^{2} \rangle}}}{\pi \langle p_{\perp,h/q}^{2} \rangle}$$

from which, assuming flavour independence, it follows that e.g.

$$F_{UU,T} = x \sum_{q} e_q^2 f_1^q(x) D_1^{h/q}(z) \frac{e^{-\frac{P_T^2}{\langle P_T^2 \rangle}}}{\pi \langle P_T^2 \rangle}$$

 $\rightarrow P_T^2$ distributions

$$F_{UU\mid BM}^{\cos\varphi_{h}} = -\frac{2zP_{T}\langle k_{T}^{2}\rangle}{Q\langle P_{T}^{2}\rangle}F_{UU,T}$$

$$F_{UU\mid BM}^{\cos\varphi_{h}} = -\frac{2P_{T}\langle k_{T}^{2}\rangle\langle p_{\perp}^{2}\rangle}{zQMM_{h}\langle P_{T}^{2}\rangle^{3}}\left(\langle p_{\perp}^{2}\rangle\langle P_{T}^{2}\rangle + z^{2}\langle k_{T}^{2}\rangle\langle P_{T}^{2} - \langle P_{T}^{2}\rangle\right)\right)\frac{\sum_{q}xh_{1}^{\perp q}(x)H_{1}^{\perp}(z)}{\sum_{q}xf_{1}^{q}(x)D_{1}(z)}F_{UU,T}$$

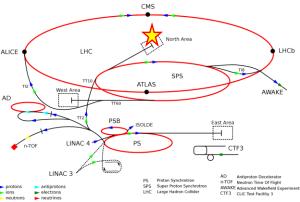
$$\Rightarrow \textbf{Azimuthal asymmetries}$$

$$F_{UU\mid BM}^{\cos2\varphi_{h}} = \frac{P_{T}^{2}\langle k_{T}^{2}\rangle\langle p_{\perp}^{2}\rangle}{MM_{h}\langle P_{T}^{2}\rangle^{2}}\frac{\sum_{q}xh_{1}^{\perp q}(x)H_{1}^{\perp}(z)}{\sum_{q}xf_{1}^{q}(x)D_{1}(z)}F_{UU,T}$$

Both sets of observables measured in COMPASS with an unpolarized proton target after well known measurements on deuteron

EPJC 73 (2013) 2531 PRD 97(2018) 032006 NPB 886 (2014) 1046 NPB 956 (2020) 115039

The COMPASS experiment



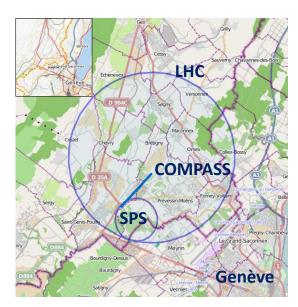
COMPASS contribution to the understanding of the nucleon structure

 spin asymmetries with transverse and longitudinal spin polarization important results on the extraction of transversity and Sivers functions

SIDIS with unpolarized target

azimuthal asymmetries and P_T^2 -distributions on deuteron

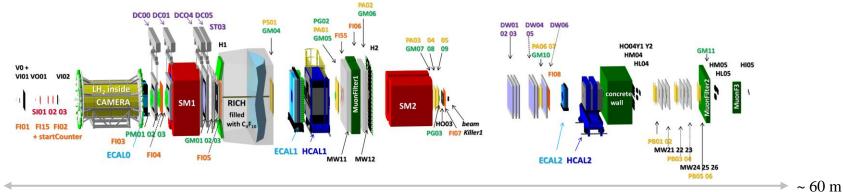
COMPASS (COmmon Muon Proton Apparatus for Structure and Spectroscopy):


- 24 institutions from 13 countries (about 220 physicists)
- a fixed target experiment
- located in the CERN North Area, along the SPS M2 beamline

Broad research program:

- SIDIS with μ beam, with (un)polarized deuteron or proton target.
- Hadron spectroscopy with hadron beams and nuclear targets
- Drell-Yan measurement with π^- beam with polarized target
- Deeply Virtual Compton Scattering (DVCS)
- ...

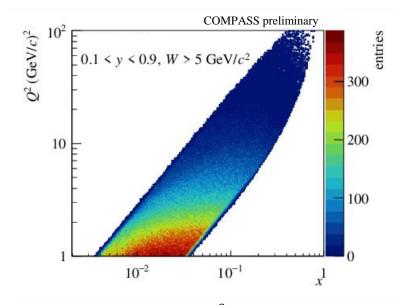
A multipurpose apparatus:


- Two-stage spectrometer, about 330 detector planes
- μ identification, RICH, calorimetry

The COMPASS location at CERN

The 2016 COMPASS run

The 2016 COMPASS experimental setup


In 2016 (and 2017) the data-taking was dedicated to the measurement of Deeply Virtual Compton Scattering (DVCS).

In parallel, new SIDIS data have been collected in COMPASS, with:

- 160 GeV/c μ beam (μ ⁺ and μ ⁻ with balanced statistics)
- Unpolarized, 2.5 m long liquid hydrogen target

Part of the data has been analyzed → ~ 6.5 million hadrons

Here: a selection of the results

The $x - Q^2$ coverage

Event and hadron selection

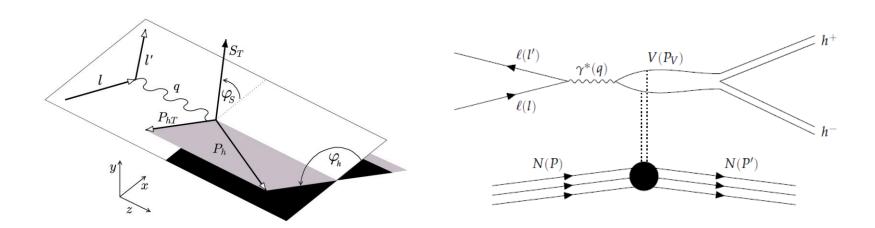
Events and hadron selection – standard

 $Q^2 > 1 (\text{GeV}/c)^2$

 $W > 5 \text{ GeV}/c^2$

z > 0.1

0.003 < x < 0.130

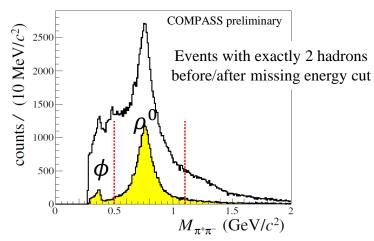

 $P_T > 0.1 \text{ GeV}/c$

0.2 < y < 0.9

 $\theta_{\gamma} < 60 \text{ mrad}$

Non-negligible fraction of the selected hadrons:

produced in the decay of diffractively-produced vector mesons

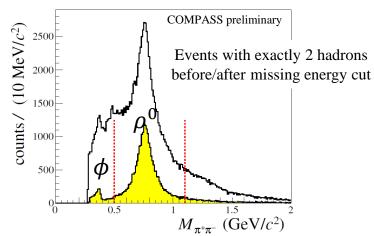


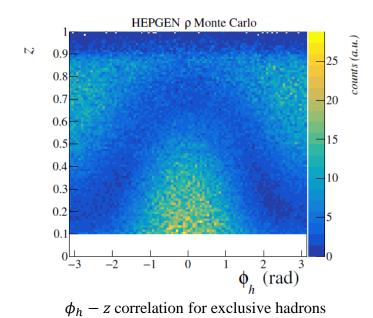
Hadrons from the decay of exclusive diffractive vector mesons (exclusive hadrons), very interesting per se, constitute a relevant source of background for the SIDIS measurement.

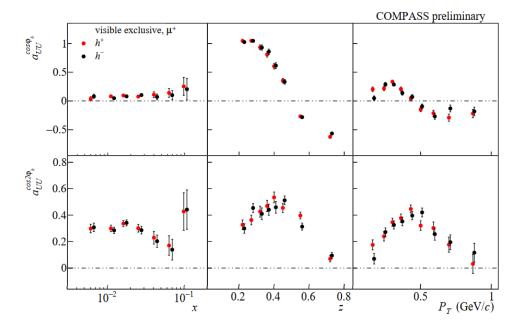
The two most important channels: $\rho^0 \to \pi^+\pi^-$ and $\phi \to K^+K^-$

• Well visible in the data at vanishing missing energy

$$E_{miss} = \frac{M_X^2 - M_p^2}{2M_p}$$

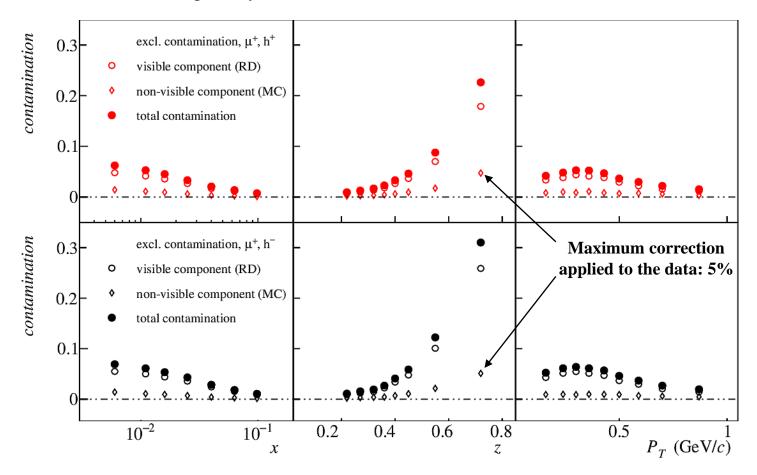

Hadrons from the decay of exclusive diffractive vector mesons (*exclusive hadrons*), very interesting per se, constitute a relevant source of background for the SIDIS measurement.


The two most important channels: $\rho^0 \to \pi^+\pi^-$ and $\phi \to K^+K^-$


• Well visible in the data at vanishing missing energy

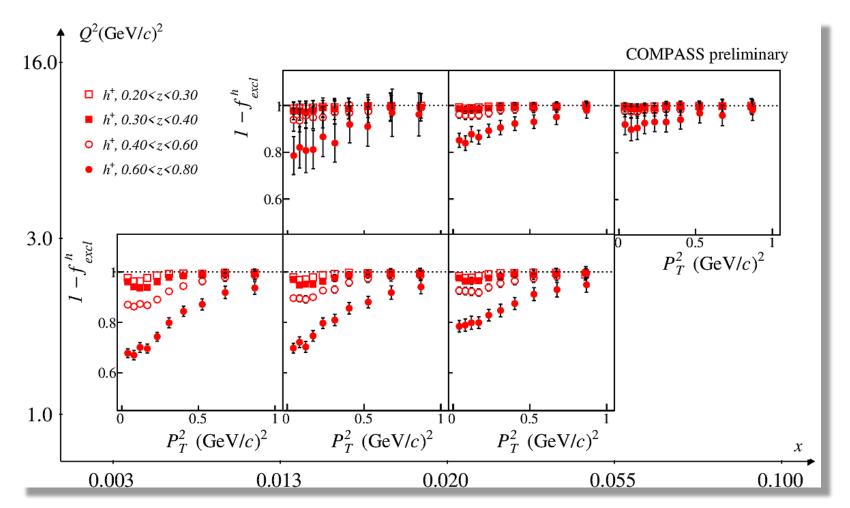
$$E_{miss} = \frac{M_X^2 - M_p^2}{2M_p}$$

- Strong modulations in the azimuthal angle
- Contamination as high as 30% at high z



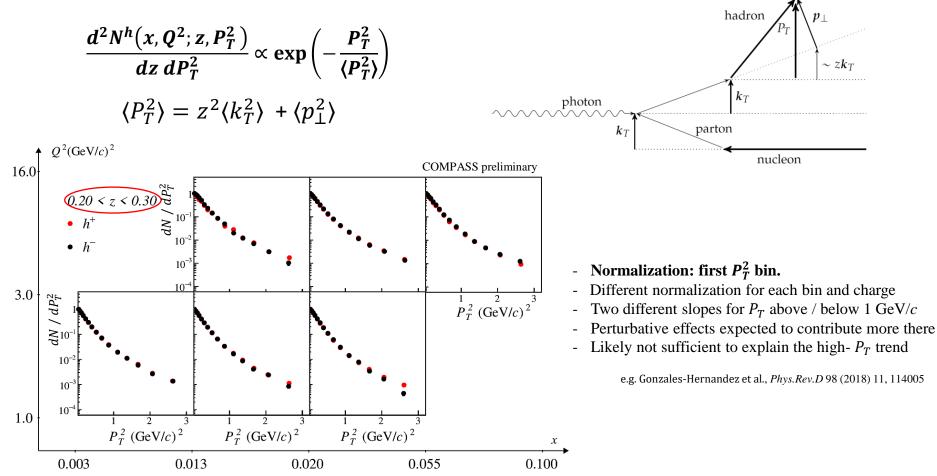
Impact on the azimuthal asymmetries measured on a deuteron target: COMPASS, Nucl. Phys. B 956 (2020) 115039

Estimated exclusive hadrons contaminations in the data: ~80% is fully reconstructed


- The fully reconstructed exclusive events are discarded in the analysis
 - The partially reconstructed is estimated from Monte Carlo

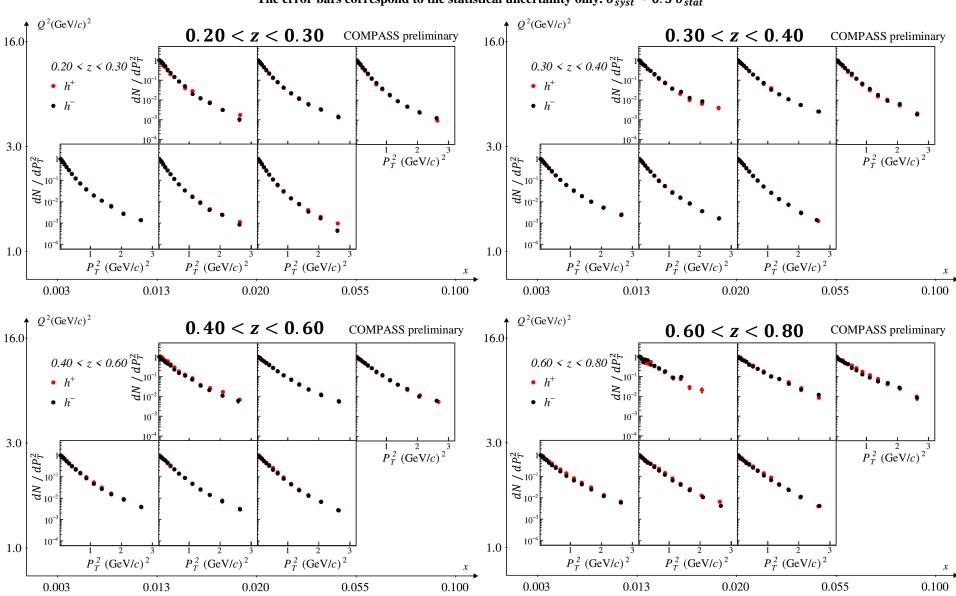
Estimated exclusive hadrons contaminations in the data: ~80% is fully reconstructed

- The fully reconstructed exclusive events are discarded in the analysis
 - The partially reconstructed is estimated from Monte Carlo


Transverse momentum distributions

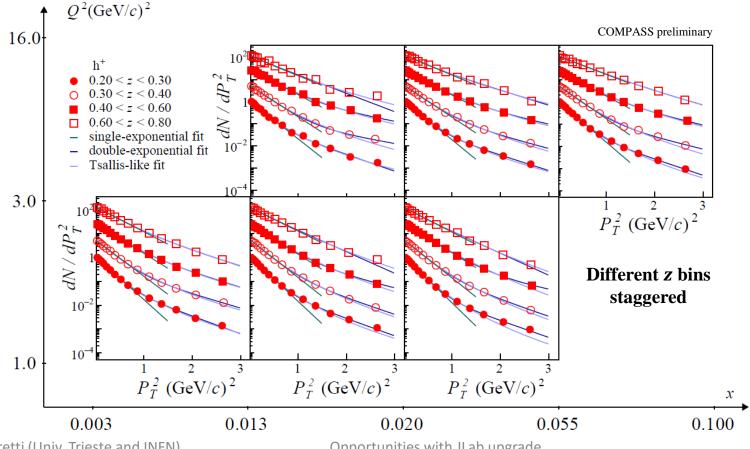
Transverse-momentum distributions

- give relevant information on k_T and p_{\perp}
- are interesting for the TMD evolution studies: a lot of theoretical work to reproduce the experimental distributions over a large energy range


In gaussian approximation, at small values of P_T , the number of hadrons is expected to follow:

Transverse momentum distributions

The error bars correspond to the statistical uncertainty only. $\sigma_{syst} \sim 0.3~\sigma_{stat}$

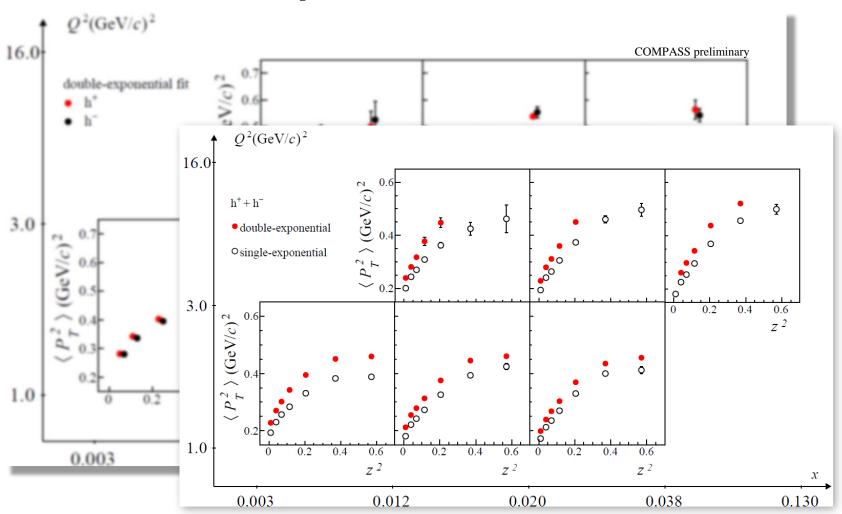

Fit of the P_T^2 - distributions

 P_T^2 – distributions fitted with three different functions:

- $f(x) = \alpha \exp\left(-\frac{x}{\beta}\right) \Longrightarrow \langle P_T^2 \rangle = \beta$ • a single-exponential up to 1 GeV/c:
- $g(x) = A \exp\left(-\frac{x}{a}\right) + B \exp\left(-\frac{x}{b}\right) \Longrightarrow \langle P_T^2 \rangle = \frac{Aa^2 + Bb^2}{4a + Bb}$ • a double-exponential up to 3 GeV/c:
- a Tsallis-like power law up to 3 GeV/c: $h(x) = c_0(1+c_1x)^{-c_2} \Longrightarrow \langle P_T^2 \rangle = \frac{1}{c_1(c_2-2)}$


Very similar results

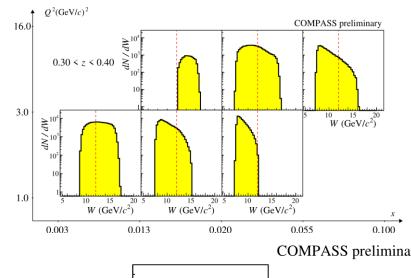
Fit of the P_T^2 - distributions

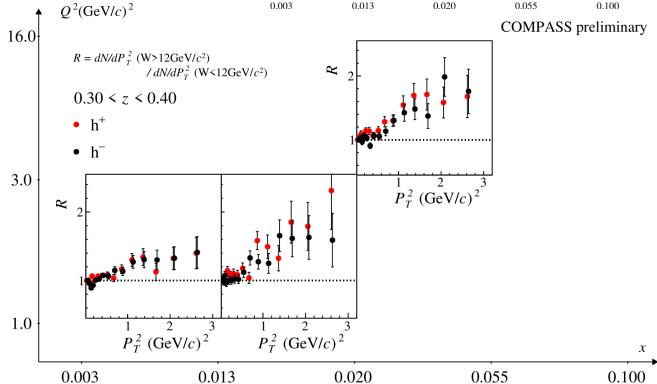

Leading Order expectation: $\langle P_T^2 \rangle = z^2 \langle k_T^2 \rangle + \langle p_\perp^2 \rangle$ Deviation from linearity: already there with the deuteron multiplicities / distributions

Fit of the P_T^2 - distributions

Leading Order expectation: $\langle P_T^2 \rangle = z^2 \langle k_T^2 \rangle + \langle p_\perp^2 \rangle$ Deviation from linearity: already there with the deuteron multiplicities / distributions

Kinematic dependences




Investigation of kinematic dependences on Q^2 , W

- Distributions in 2 W bins + ratio high-over-low Q² + ratio high-over-low W
- Distributions in $4 Q^2$ bins
- ..

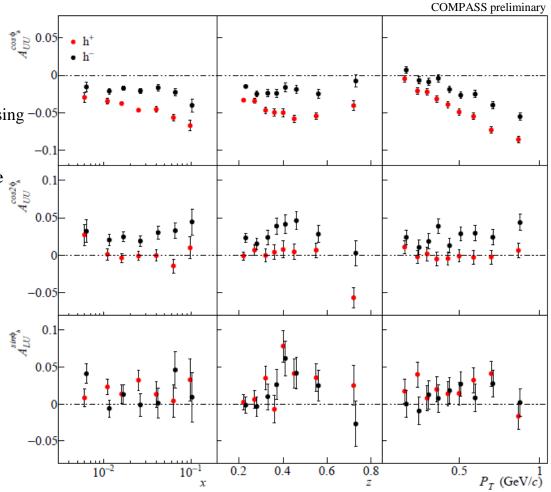
Interesting observation: increase of $\langle P_T^2 \rangle$ with W

Phase-space effect

Azimuthal asymmetries – 1D

Azimuthal asymmetries: defined as the following ratios

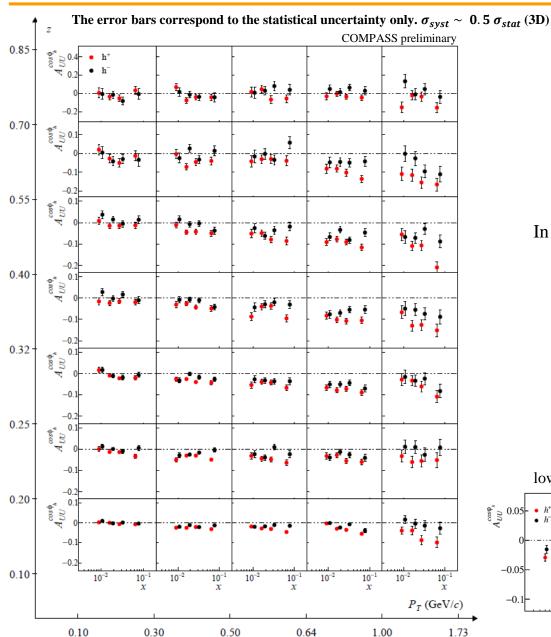
$$A_{UU}^{\cos\phi_h} = \frac{F_{UU}^{\cos\phi_h}}{F_{UU,T}}$$


$$A_{UU}^{\cos 2\phi_h} = \frac{F_{UU}^{\cos 2\phi_h}}{F_{UU,T}}$$

$$A_{LU}^{\sin\phi_h} = \frac{F_{LU}^{\sin\phi_h}}{F_{UU,T}}$$

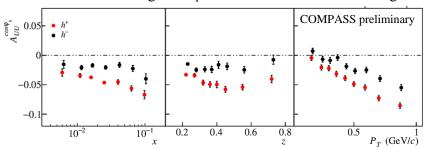
Steps in the measurement:

- Exclusive hadrons:
 - the visible component is discarded
 - the non-visible component is *subtracted* using -0.05 the HEPGEN Monte Carlo
- Acceptance correction


 Fit of the amplitude of the modulation in the hadrons
 - as a function of x, z or P_T (1D)
 - with a simultaneous binning (3D)
 - Strong kinematic dependences
 - Interesting differences between positive and negative hadrons, as observed in previous measurements by COMPASS on deuteron and by HERMES

The error bars correspond to the statistical uncertainty only. $\sigma_{syst} \sim \sigma_{stat}$ (1D)

Azimuthal asymmetries – $3D - A_{UU}^{\cos\phi_h}$

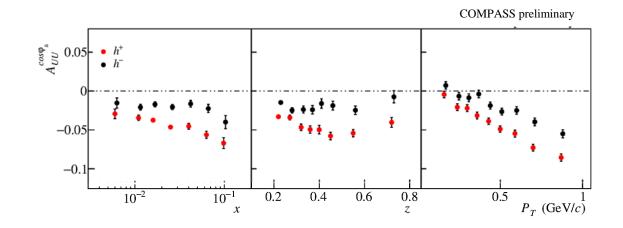

3D azimuthal asymmetries for positive and negative hadrons

Clear signal, strong dependence on P_T ; compatible with zero at high z. In agreement with COMPASS deuteron results.

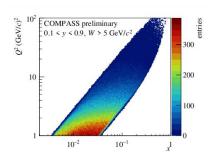
Expectation from Cahn effect:

$$A_{UU|Cahn}^{\cos\phi_h} = -\frac{2zP_T\langle k_T^2\rangle}{Q\langle P_T^2\rangle}$$

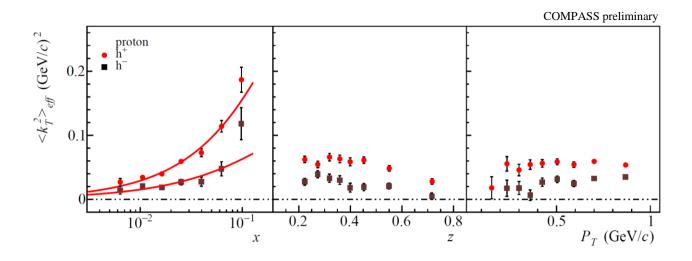
Comparison with the 1D case: lowest z and highest P_T bin not included in the average



Extraction of $\langle k_T^2 \rangle$ from $A_{UU}^{\cos \phi_h}$



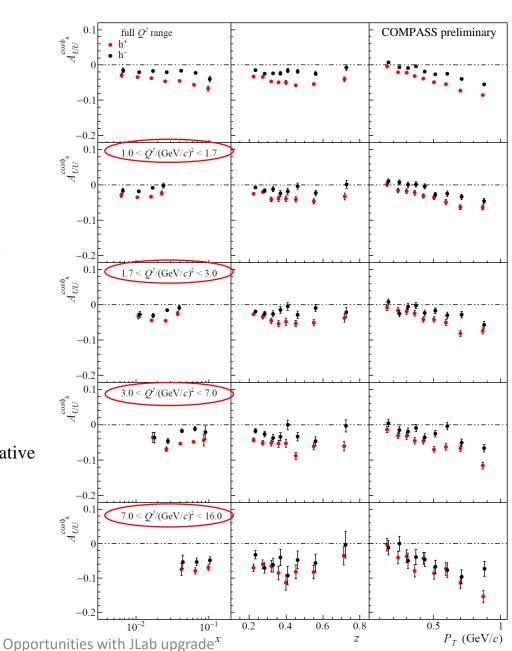
Extraction of $\langle k_T^2 \rangle$ from the 1D – asymmetry assuming only Cahn effect at work


$$\left\langle k_T^2 \right\rangle_{eff} = -\frac{Q \left\langle P_T^2 \right\rangle A_{UU}^{\cos\phi_T}}{2zP_T}$$

Power-law fit of $\langle k_T^2 \rangle(x)$

Is it an x – or Q^2 – dependence (or both)?

Azimuthal asymmetries $-1D - Q^2$ dependence

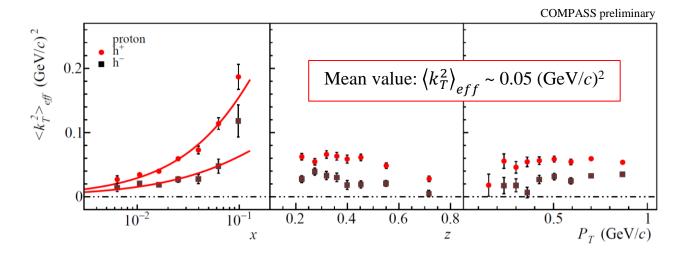


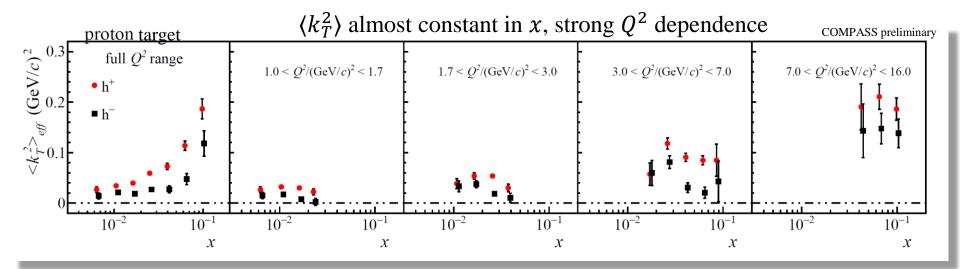
Binning in Q^2

• Flavor-independent expectation from the Cahn effect:

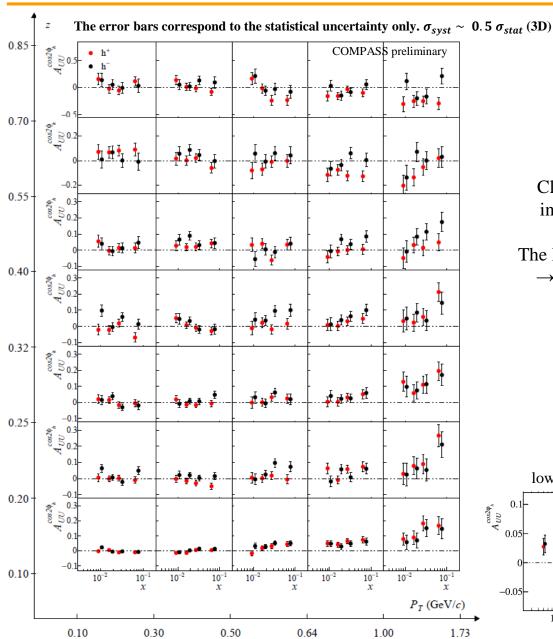
$$A_{UU|Cahn}^{\cos\phi_h} = -\frac{2zP_T\langle k_T^2\rangle}{Q\langle P_T^2\rangle}$$

- The $A_{UU}^{\cos\phi_h}$ asymmetry is observed to increase with Q^2 unexpected!
- The difference between positive and negative hadrons decreases with Q^2 .
- Almost no Q^2 dependence for $A_{UU}^{\cos 2\phi_h}$

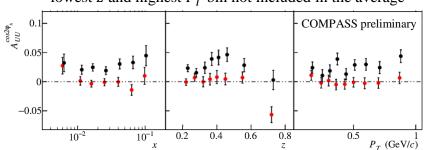



Extraction of $\langle k_T^2 \rangle$ from $A_{UU}^{\cos \phi_h}$

Extraction of $\langle k_T^2 \rangle$ assuming only Cahn effect at work


$$\left\langle k_T^2 \right\rangle_{eff} = -\frac{Q \left\langle P_T^2 \right\rangle A_{UU}^{\cos\phi_T}}{2zP_T}$$

Azimuthal asymmetries – $3D - A_{UU}^{\cos 2\phi_h}$



3D azimuthal asymmetries for positive and negative hadrons

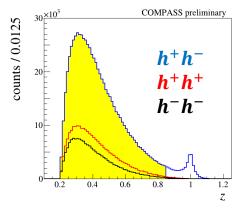
Clear signal, strong dependence on x and P_T ; interesting change of sign along z at high P_T .

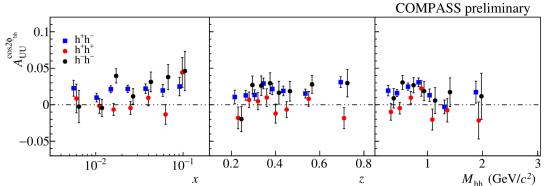
The larger contribution from the $h_1^{\perp}H_1^{\perp}$ convolution \rightarrow direct information on h_1^{\perp} may be extracted

Comparison with the 1D case: lowest z and highest P_T bin not included in the average

A rich program

P_T^2 -distributions

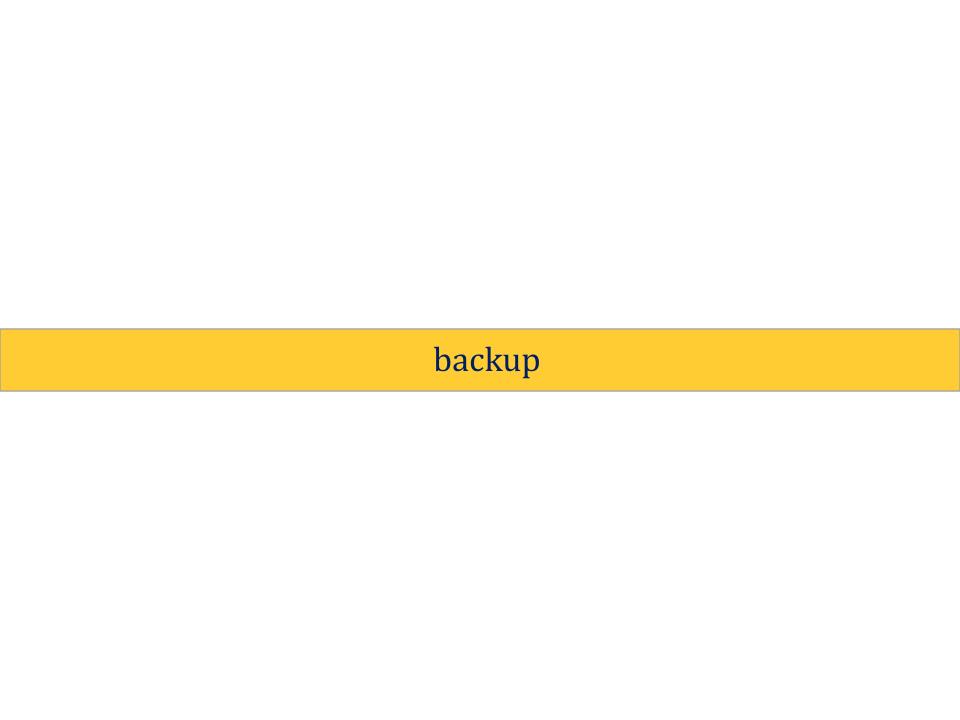

- For positive and negative hadrons in bins of x, Q^2 and z (4,2,4)
- Fits with single exponential, double exponential and Tsallis
- $\langle P_T^2 \rangle$ vs. z^2 as from the double exponential fit
- Fit of $\langle P_T^2 \rangle$ vs. z^2 in bins of x, Q^2 and z
- Distributions in q_T and q_T^2
- Distributions in 2 W bins + ratio high-over-low Q^2 + ratio high-over-low W
- Distributions in $4 Q^2$ bins


Azimuthal asymmetries $A_{UU}^{\cos\phi_h}$, $A_{UU}^{\cos2\phi_h}$ and $A_{LU}^{\sin\phi_h}$

- 1D: standard binning in x, z or P_T
- Also: low-z and high- P_T -- for completeness
- 1D standard + 4 bins in Q^2 : interesting evolution of $A_{IIII}^{\cos\phi_h}$
- 1D standard + 2 bins in Q^2 and 2 bins in W
- 3D: standard binning (simultaneous in x, z and P_T)
- In addition to deuteron analysis: low-z bin

New: Dihadron azimuthal asymmetries $A_{UU}^{\cos 2\phi_{hh}}$, $A_{UU}^{\cos(\phi_{hn}-\phi_R)}$, $A_{UU}^{\cos\phi_R}$ and $A_{UU}^{\cos\phi_{hh}}$

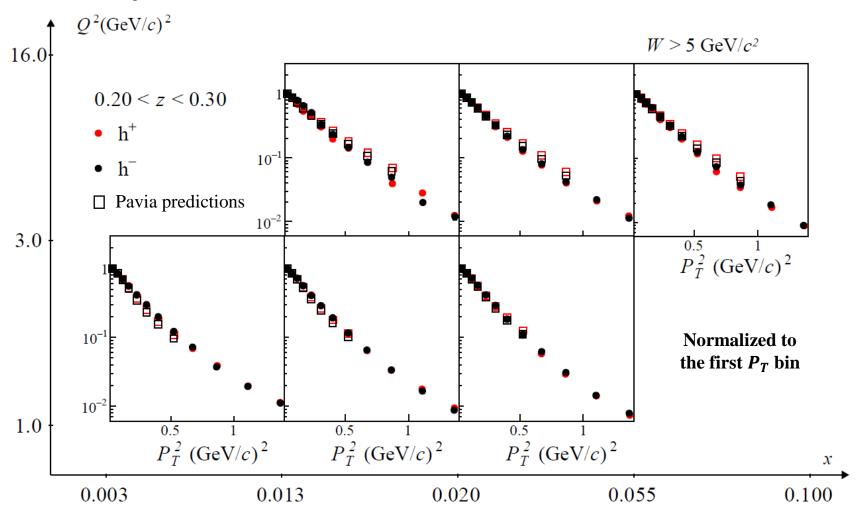
- 1D: standard binning in x, z or P_T
- Focus on Boer-Mulders related asymmetries
- Shown at Transversity 2022 and IWHSS 2022


Conclusions and Perspectives

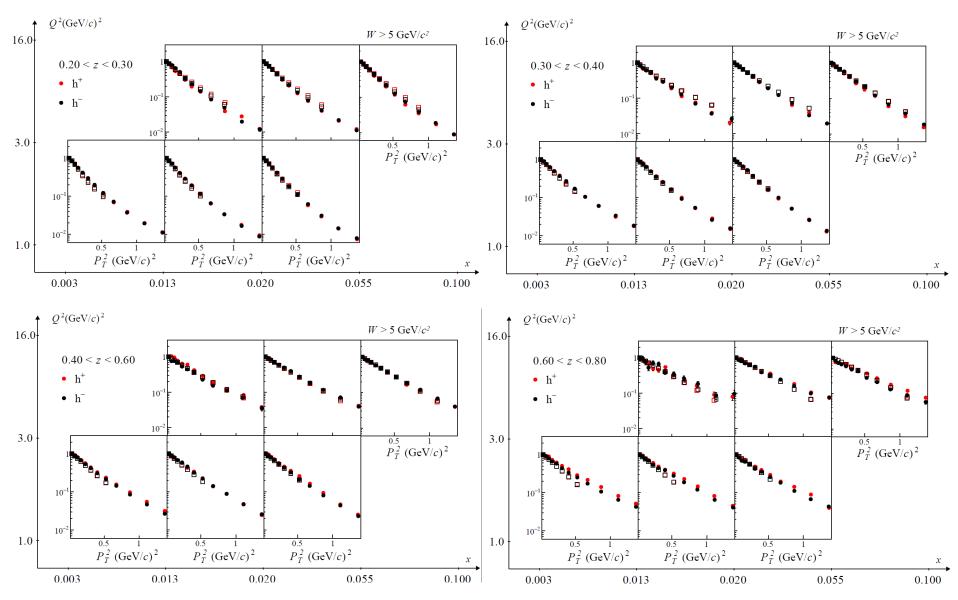
- Transverse momentum distributions and azimuthal asymmetries: "fundamental" observables to access the nucleon structure in unpolarized SIDIS
- **COMPASS** has produced new results for both of them, using a **proton** target Here a selection of the main results and a "flash" of new 2h results
- Intriguing investigations of their properties: rich kinematic dependences, h^+h^- differences, ...

Still a lot to be understood and/or addressed

- Difference between positive and negative hadrons in azimuthal asymmetries but same P_T^2 -slopes
- Kinematic dependences (sometimes *counterintuitive* for azimuthal asymmetries)
- Impact of phase-space limitations in the production of hadrons (for the P_T -distributions)
- Role of twist-3 contributions
- Impact of radiative corrections may be relevant e.g. for the Q^2 dependence of the azimuthal asymmetries
- Role of vector mesons inclusively produced in SIDIS particularly for their contribution to the P_T^2 distributions at low P_T

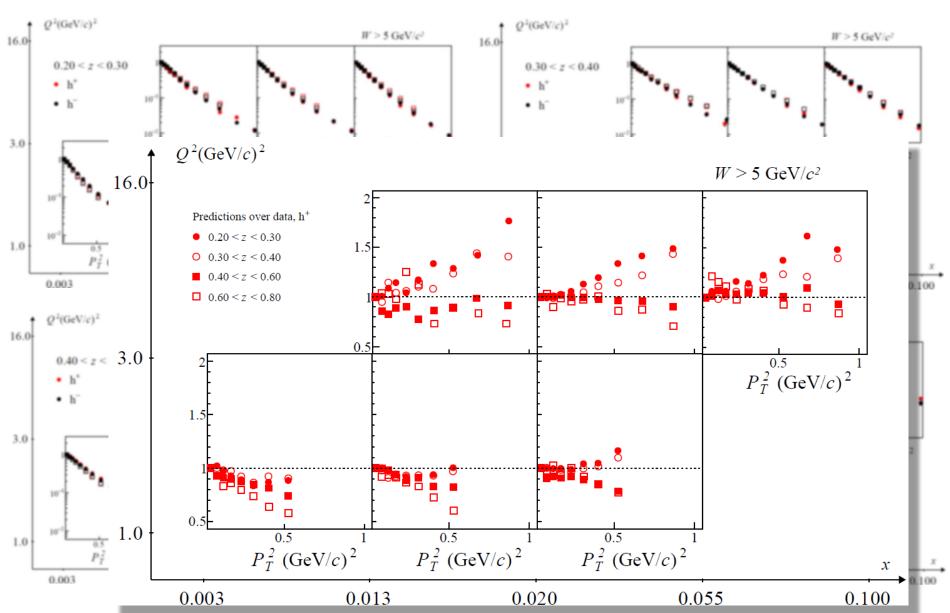


Comparison with Pavia fit (PV-17)


Comparison with the predictions of the P_T -dependent SIDIS cross section as from PV-17 [A. Bacchetta et al., JHEP 06 (2017) 081]

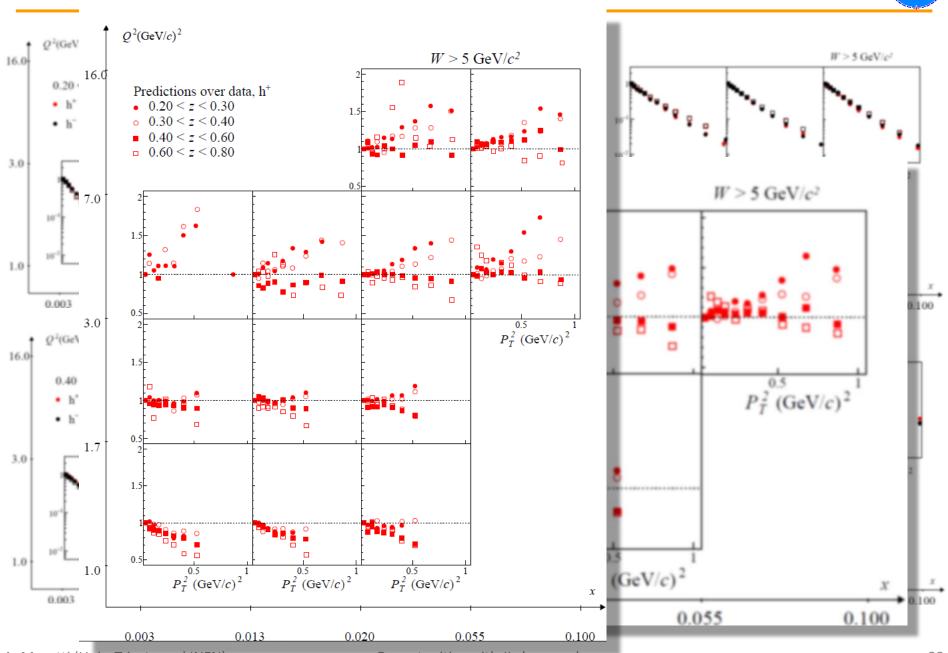
- PV-17: SIDIS $ep(D) \rightarrow e\pi^{\pm}(K^{\pm})X$ (HERMES)
 - SIDIS $\mu D \rightarrow \mu h^{\pm} X$ (COMPASS)
 - Drell-Yan (E228, E605)
 - Z boson production (CDF, D0)

Comparison with Pavia fit (PV-17) Pavia predictions



Comparison with Pavia fit (PV-17)

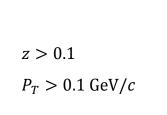
☐ Pavia predictions



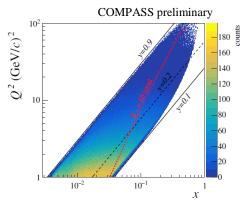
Comparison with Pavia fit (PV-17)

☐ Pavia predictions

The 2016 COMPASS run

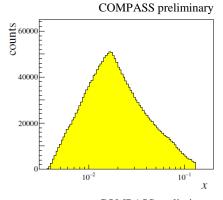


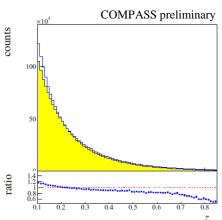
Events and hadron selection – standard

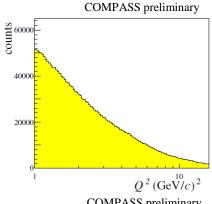

$$Q^2 > 1 (\text{GeV}/c)^2$$

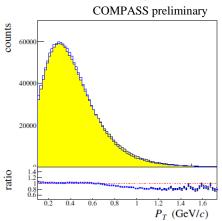
$$W > 5 \text{ GeV}/c^2$$

 θ_{ν} < 60 mrad

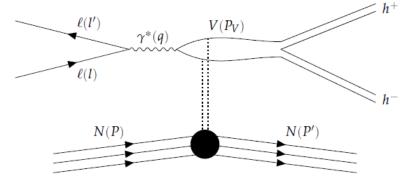


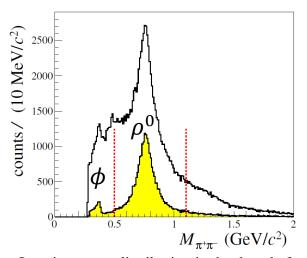

Size of the hadron sample: ~ 6.5 M hadrons

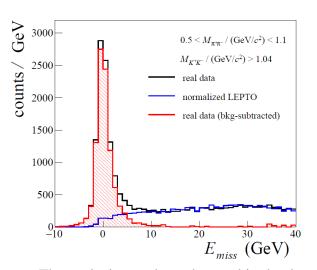



Comparison with the LEPTO Monte Carlo simulation.

Exclusive contribution at high z in the data

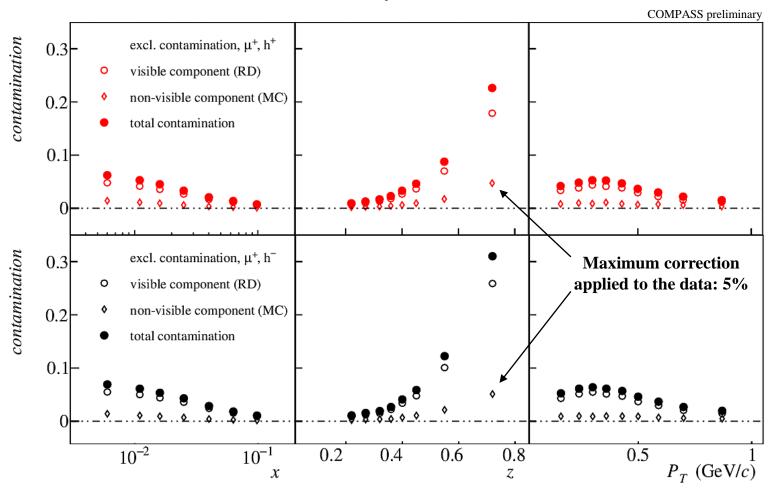





- The exclusive events fully reconstructed in the data are
 - 1) selected by cutting in missing energy E_{miss}
 - 2) used to normalized the HEPGEN Monte Carlo, needed to take into account the non-reconstructed part
 - 3) discarded
- The exclusive events non-fully reconstructed are subtracted using the normalized HEPGEN Monte Carlo
- This procedure does not require the knowledge of the absolute cross-section for the diffractive production, not well known (~ 30% relative uncertainty)

The diffractive production of a vector meson *V* and its decay into a hadron pair

Invariant mass distribution in the data, before and after cutting in missing energy

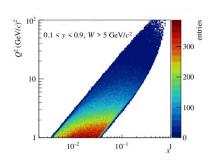


The exclusive peak as observed in the data

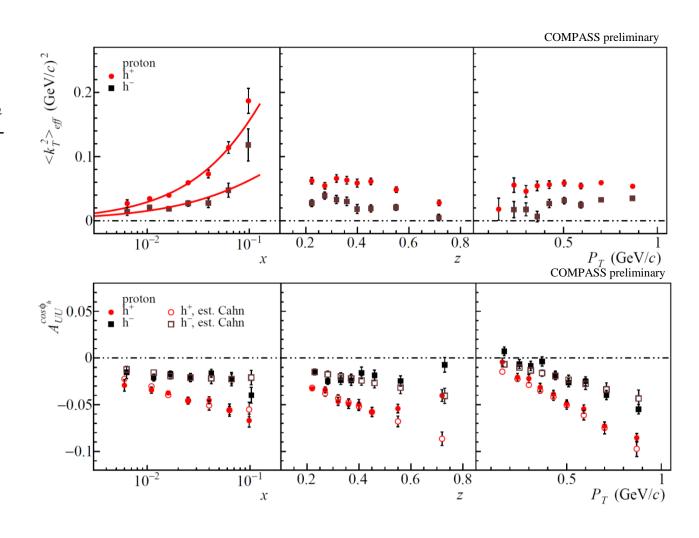
Estimated exclusive hadrons contaminations in the data:

~80% is fully reconstructed

Extraction of $\langle k_T^2 \rangle$ from $A_{UU}^{\cos \phi_h}$

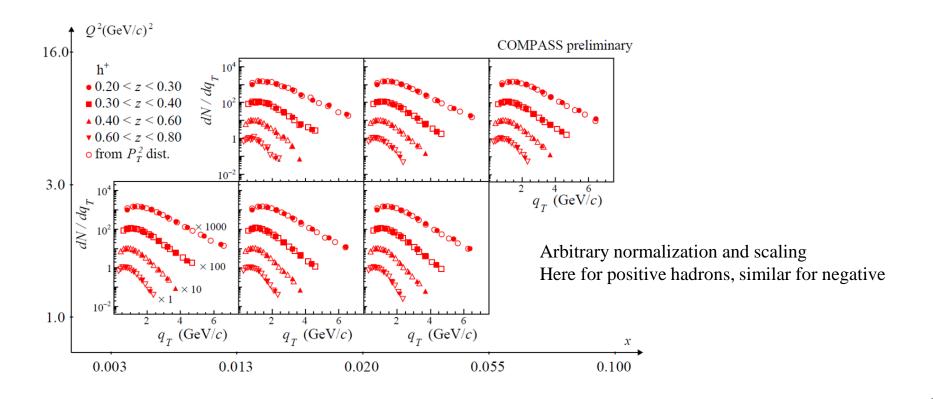


Extraction of $\langle k_T^2 \rangle$ assuming only Cahn effect at work


$$\left\langle k_T^2 \right\rangle_{eff} = -\frac{Q \left\langle P_T^2 \right\rangle A_{UU}^{cos\phi_h}}{2zP_T}$$

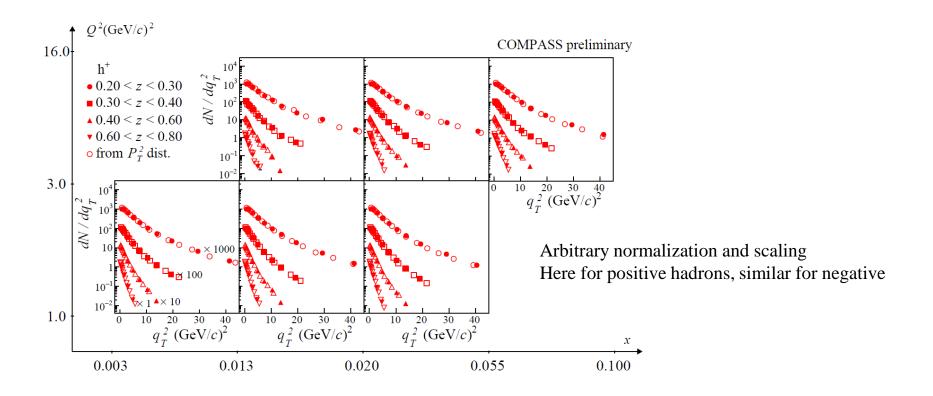
Power-law fit of $\langle k_T^2 \rangle(x)$

Rather satisfactory description also vs z (below 0.5) and P_T


Is it an x – or Q^2 – dependence (or both)?

q_T distributions

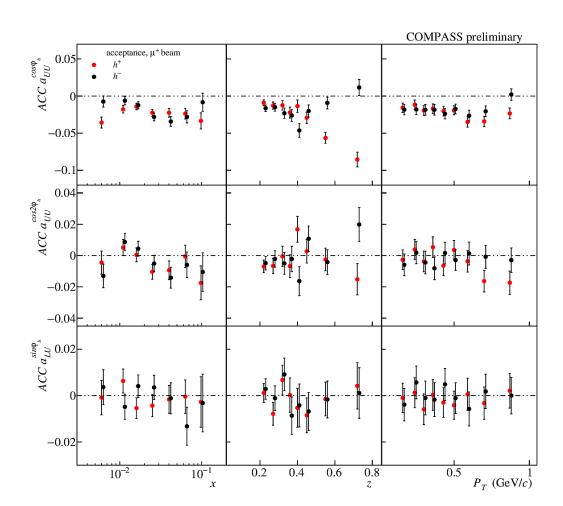
- $q_T = P_T / z$, often indicated to set the limits of applicability of the TMD formalism (expected to hold at low q_T/Q)
- q_T distributions measured using the same hadron sample selected for the standard P_T^2 distributions
- Comparison with the approximated formula:


$$\frac{dN_h}{dz \, dP_T^2} = \frac{dN_h}{dz \, 2P_T dP_T} = \frac{dN_h}{dz \, dP_T/z} \frac{1}{2zP_T} \approx \frac{dN_h}{dz \, dq_T} \frac{1}{2zP_T}$$

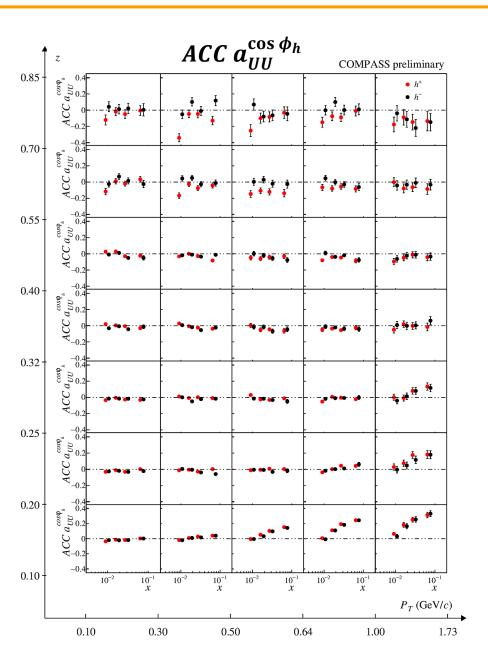
q_T^2 distributions

- $q_T = P_T / z$, often indicated to set the limits of applicability of the TMD formalism (expected to hold at low q_T/Q)
- q_T distributions measured using the same hadron sample selected for the standard P_T^2 distributions
- Comparison with the approximated formula:

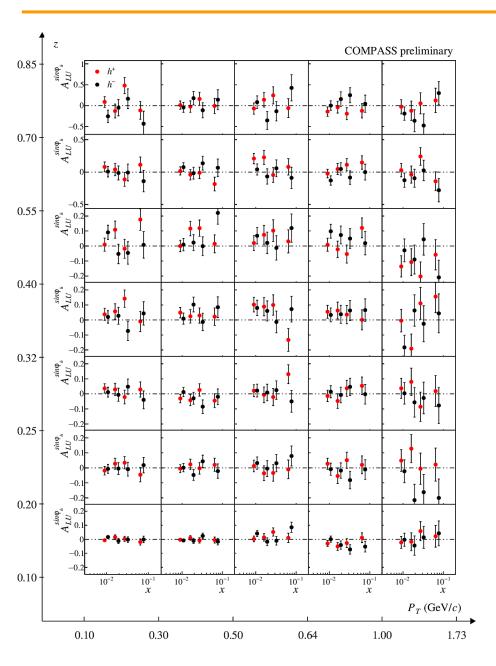
$$\frac{dN_h}{dz \, dq_T^2} = \frac{dN_h}{dz \, 2q_T dq_T} = \frac{dN_h}{dz \, dq_T} \frac{1}{2q_T}$$


AZIMUTHAL ASYMMETRIES 1D

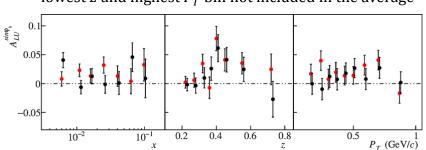
Acceptance modulations


Correction for acceptance applied to each ϕ bin, taken as the ratio of reconstructed and generated hadrons:

$$c_{acc}(\phi) = \frac{N_h^{rec}(\phi^{rec})}{N_h^{gen}(\phi^{gen})}$$


Azimuthal modulations of the acceptance in 1D binning, for μ^+ beam and positive (red) and negative hadrons (black).

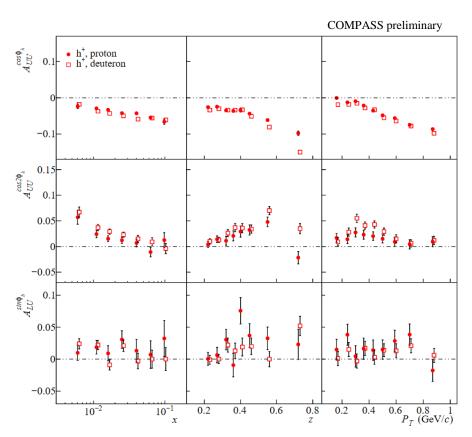
Acceptance modulations


Azimuthal asymmetries – 3D

3D azimuthal asymmetries for positive and negative hadrons

 $A_{LU}^{sin\phi_h}$ as a function of x, in bins of z (rows) and P_T (columns).

Comparison with the 1D case: lowest z and highest P_T bin not included in the average

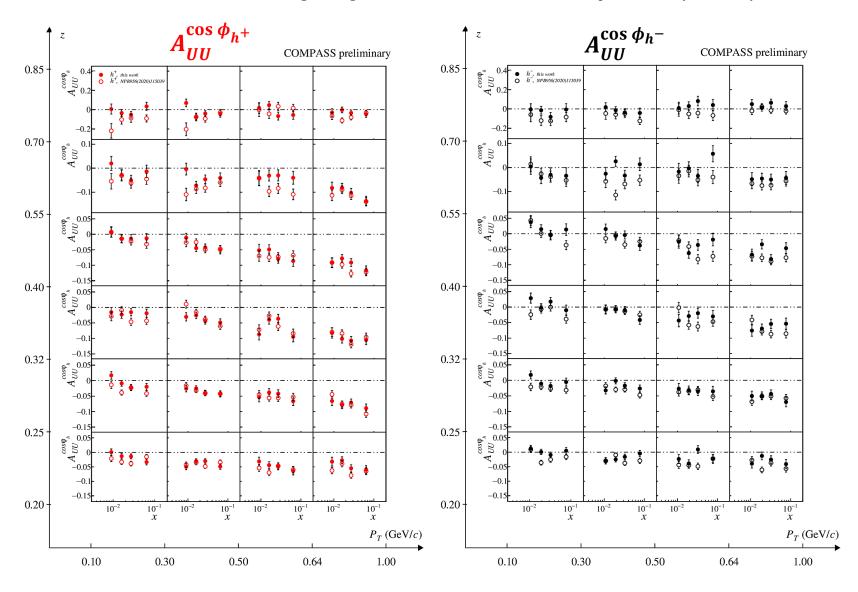


Comparison with deuteron results

Exclusive hadrons discarded / subtracted

COMPASS preliminary subtracted • h⁺, proton • h⁺, deuteron -0.10 $A_{UU}^{cos2\phi_{_{h}}}$ 0.1 0.05 -0.05 $A_{LU}^{sim \phi_b}$ 0.05 -0.0510-2 10^{-1} 0.2 0.4 0.6 0.8 0.2 0.4 ${}^{0.6}_{P_T} {}^{0.8}_{({\rm GeV}/c)}$

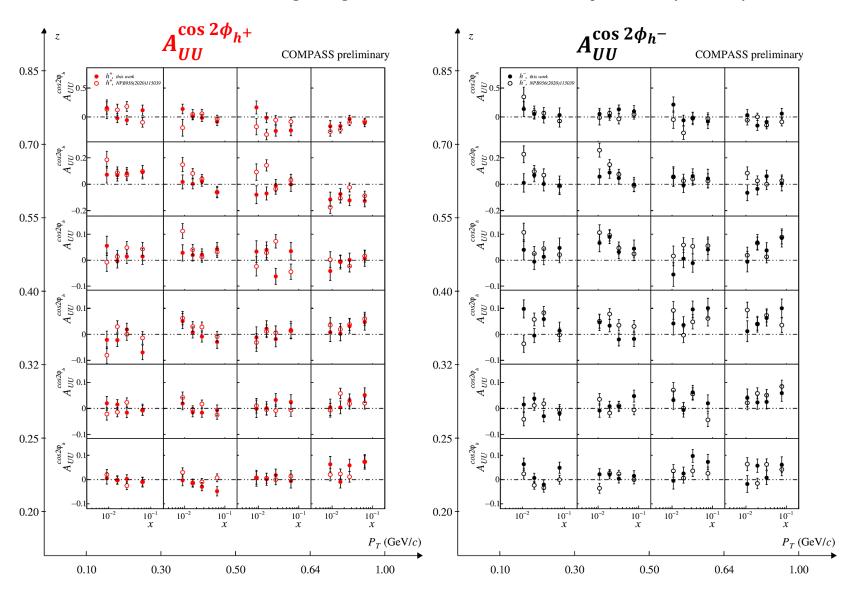
Exclusive hadrons not discarded / subtracted



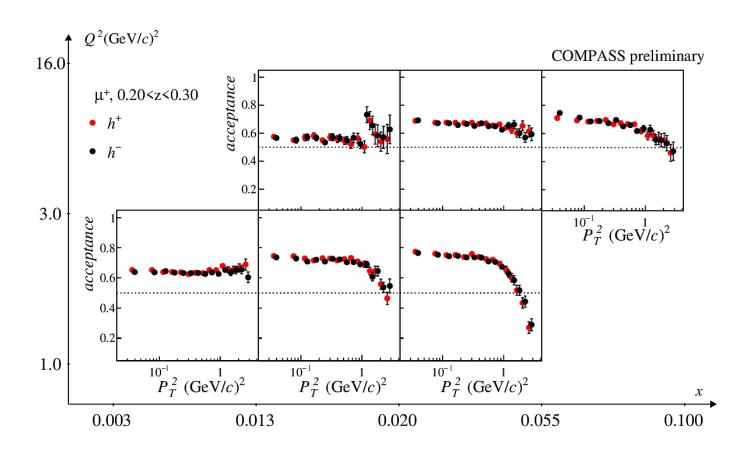
Difference visible also before the DVM subtraction / correction

Comparison with deuteron results

Current results (full points) compared to published results on deuteron [COMPASS, NPB 956 (2020) 115039].


Proton and deuteron results are in good agreement, as observed in other experiments (HERMES).

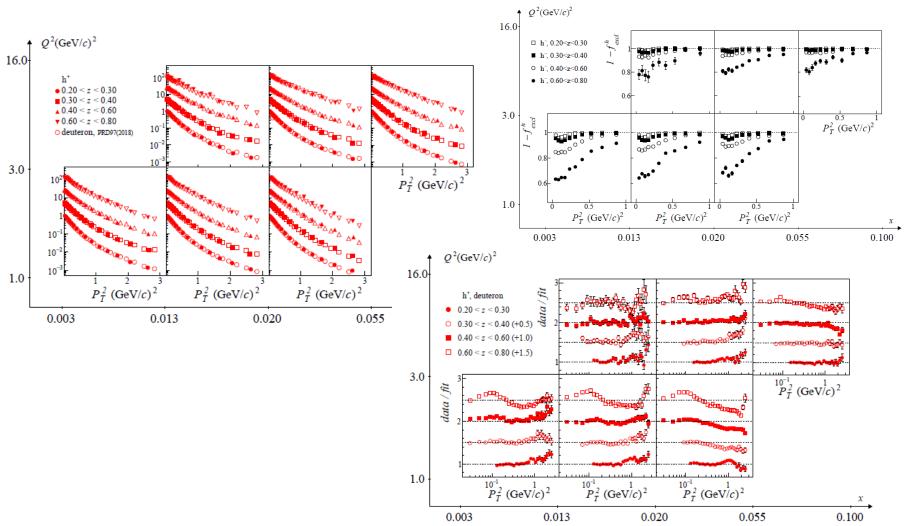
Comparison with deuteron results


Current results (full points) compared to published results on deuteron [COMPASS, NPB 956 (2020) 115039].

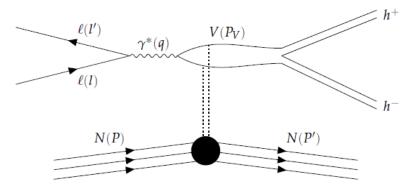
Proton and deuteron results are in good agreement, as observed in other experiments (HERMES).

$$c_{acc}(P_T^2) = \frac{N_h^{rec}(P_T^{rec \ 2})}{N_h^{gen}(P_T^{gen \ 2})}$$

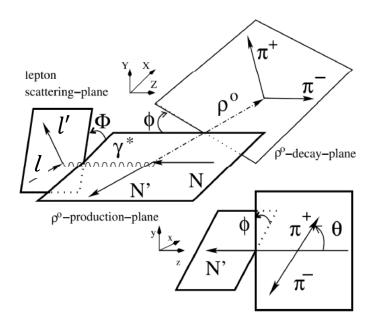
The acceptance is shown here in the first z bin, for positive and negative hadrons. A flat plateau at values larger than 50% and, in some bins, a decrease at large P_T^2 .


P_T^2 - DISTRIBUTIONS

Comparison with deuteron results

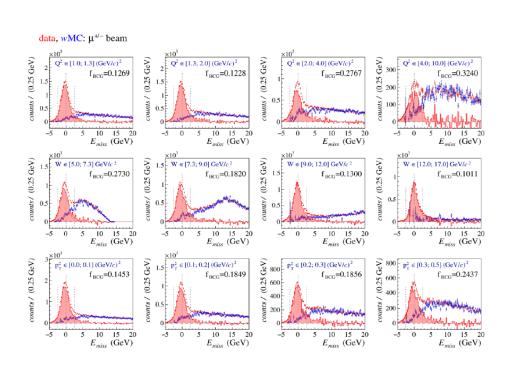

The new results are compared to published results on a deuteron target [COMPASS, PRD97(2018) 032006]

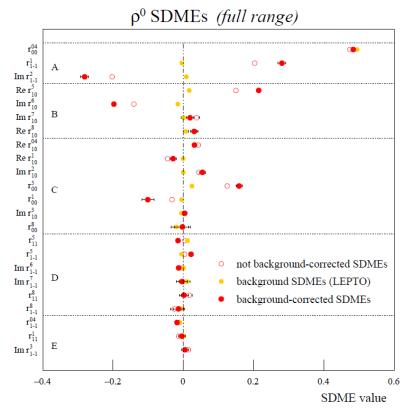
The old results have been renormalized over the first point and averaged over x and Q^2 in order to match the current binning, while the z and P_T^2 binning has not been modified.


The agreement between new proton results and old deuteron ones is given in the plot on the right

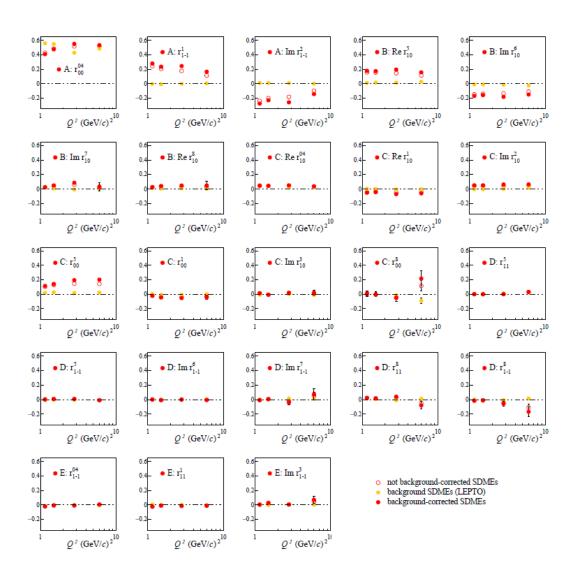
Exclusive ρ^0 Spin Density Matrix Elements

The diffractive production of a vector meson *V* and its decay into a hadron pair


$$\begin{split} W^{II}(\cos\theta,\Phi,\phi) &= \frac{3}{8\pi^2} \Bigg[\frac{1}{2} \left(1 - r_{00}^{04} \right) + \frac{1}{2} \left(3 r_{00}^{04} - 1 \right) \cos^2\theta - \sqrt{2} \mathrm{Re} \left\{ r_{10}^{04} \right\} \sin 2\theta \cos\phi - r_{1-1}^{04} \sin^2\theta \cos 2\phi \\ &- \epsilon \cos 2\Phi \left(r_{11}^1 \sin^2\theta + r_{00}^1 \cos^2\theta - \sqrt{2} \mathrm{Re} \left\{ r_{10}^1 \right\} \sin^2\theta \cos\phi - r_{1-1}^1 \sin^2\theta \cos 2\phi \right) \\ &- \epsilon \sin 2\Phi \left(\sqrt{2} \mathrm{Im} \left\{ r_{10}^2 \right\} \sin 2\theta \sin\phi + \mathrm{Im} \left\{ r_{1-1}^2 \right\} \sin^2\theta \sin 2\phi \right) \\ &+ \sqrt{2\epsilon \left(1 + \epsilon \right)} \cos\Phi \left(r_{11}^5 \sin^2\theta + r_{00}^5 \cos^2\theta - \sqrt{2} \mathrm{Re} \left\{ r_{10}^5 \right\} \sin 2\theta \cos\phi - r_{1-1}^5 \sin^2\theta \cos 2\phi \right) \\ &+ \sqrt{2\epsilon \left(1 + \epsilon \right)} \sin\Phi \left(\sqrt{2} \mathrm{Im} \left\{ r_{10}^6 \right\} \sin 2\theta \sin\phi + \mathrm{Im} \left\{ r_{1-1}^6 \right\} \sin^2\theta \sin 2\phi \right) \Bigg] \end{split}$$


$$\begin{split} W^L(\cos\theta,\Phi,\phi) &= \frac{3}{8\pi^2} \Bigg[\sqrt{1-\epsilon^2} \left(\sqrt{2} \mathrm{Im} \left\{ r_{10}^3 \right\} \sin 2\theta \sin \phi + \mathrm{Im} \left\{ r_{1-1}^3 \right\} \sin^2\theta \sin 2\phi \right) \\ &+ \sqrt{2\epsilon \left(1 - \epsilon \right)} \cos \Phi \left(\sqrt{2} \mathrm{Im} \left\{ r_{10}^7 \right\} \sin 2\theta \sin \phi + \mathrm{Im} \left\{ r_{1-1}^7 \right\} \sin^2\theta \sin 2\phi \right) \\ &+ \sqrt{2\epsilon \left(1 - \epsilon \right)} \sin \Phi \left(r_{11}^8 \sin^2\theta + r_{00}^8 \cos^2\theta - \sqrt{2} \mathrm{Re} \left\{ r_{10}^8 \right\} \sin 2\theta \cos \phi - r_{1-1}^8 \sin^2\theta \cos 2\phi \right) \Bigg] \end{split}$$

Exclusive ρ^0 Spin Density Matrix Elements


UML fit of the observed pion distributions, correcting for the apparatus acceptance, in three steps:

- SDMEs with no background correction
- SIDIS background fraction estimation and background SDMEs
- SDMEs with SIDIS background correction

Exclusive ρ^0 Spin Density Matrix Elements

