« Studies of DVCS with polarized beams and targets » AKA Status and prospectives for GPDs

GPDs & experiments: where do we stand What's missing from the GPD picture Plans for DVCS with polarized positrons beam Plans for DDVCS with high-lumi µCLAS12 Perspectives for DVCS@CLAS20+ Conclusions: what should we point on to be « competitive » to the EIC

Silvia Niccolai, IJCLab Orsay Opportunities with JLab energy and luminosity upgrade Trento (Italy), 29/9/2022

Exclusive reactions giving access to GPDs

Deeply Virtual Compton Scattering and GPDs

Accessing GPDs through DVCS

$$T^{DVCS} \sim \Pr_{1}^{\oplus} \underbrace{GPDs(x,\xi,t)}_{x \pm \xi} dx \pm i\pi GPDs(\pm\xi,\xi,t) + \dots$$

$$Re\mathcal{H}_{q} = e_{q}^{2} P_{0}^{+1} \Big(H^{q}(x,\xi,t) - H^{q}(-x,\xi,t) \Big) \Big[\frac{1}{\xi-x} + \frac{1}{\xi+x} \Big] dx$$

$$Im\mathcal{H}_{q} = \pi e_{q}^{2} \Big[H^{q}(\xi,\xi,t) - H^{q}(-\xi,\xi,t) \Big]$$
Proton
Polarized beam, unpolarized target:
$$Im\{\mathcal{H}_{p} \\ \Delta \sigma_{LU} \sim \sin\phi \operatorname{Im}\{F_{1}\mathcal{H} + \xi(F_{1}+F_{2})\widetilde{\mathcal{H}} - kF_{2}\mathcal{E} + \dots\}$$

$$Im\{\mathcal{H}_{p} \\ \Delta \sigma_{UL} \sim \sin\phi \operatorname{Im}\{F_{1}\widetilde{\mathcal{H}} + \xi(F_{1}+F_{2})(\mathcal{H} + x_{B}/2\mathcal{E}) - \xi kF_{2}\widetilde{\mathcal{E}}\}$$

$$Im\{\mathcal{H}_{q} \\ \mathcal{H}_{p} \\ Polarized beam, longitudinal target:$$

$$\Delta \sigma_{LL} \sim (A+B\cos\phi) \operatorname{Re}\{F_{1}\widetilde{\mathcal{H}} + \xi(F_{1}+F_{2})(\mathcal{H} + x_{B}/2\mathcal{E}) - \xi kF_{2}\widetilde{\mathcal{E}}\}$$

$$Im\{\mathcal{H}_{q} \\ \mathcal{H}_{q} \\ \mathcal{H}_{p} \\ Dnpolarized beam, transverse target:$$

$$Im\{\mathcal{H}_{q} \\ \mathcal{H}_{q} \\ \mathcal{H}$$

Neutron $\{ \widetilde{\mathcal{H}}_{p}, \widetilde{\mathcal{H}}_{p}, \mathscr{E}_{p} \}$ $\{ \widetilde{\mathcal{H}}_{n}, \widetilde{\mathcal{H}}_{n}, \mathscr{E}_{n} \}$ $\{\mathcal{L}_{\mathbf{p}}, \widetilde{\mathcal{H}}_{\mathbf{p}}\}$ $\mathbf{f}_{\mathbf{n}}, \mathcal{E}_{\mathbf{n}}\}$ $\{p, \widetilde{\mathcal{H}}_{p}\}$ $\{\mathbf{f}_n, \mathcal{E}_n\}$ $\{p, \mathcal{E}_p\}$ **n**} $\{\widetilde{\mathcal{H}}_{p}, \widetilde{\mathcal{H}}_{p}, \mathcal{E}_{p}\}$ $\{\widetilde{\mathcal{H}}_{n}, \widetilde{\mathcal{H}}_{n}, \mathcal{E}_{n}\}$

$$\sigma \sim \left| T^{DVCS} + T^{BH} \right|^{2}$$
$$\Delta \sigma = \sigma^{+} - \sigma^{-} \propto I (DVCS \cdot BH)$$

Measured p-DVCS observables and constraints on GPDs

PRD95, 011501 (2017)

N. d'Hose, S.N., A. Rostomyan, EPJA 52, 151 (2016)

Distribution of forces in the proton

V. Burkert, L. Elouadrhiri, F.X. Girod, Nature 557, 396-399 (2018)

<mark>ed</mark>→eγ(np)

Interest of DVCS on the neutron: Hall A at 6 GeV

$\Delta \sigma_{LU} \sim \sin \phi \operatorname{Im} \{ F_1 \mathcal{H} + \xi (F_1 + F_2) \widetilde{\mathcal{H}} - kF_2 \mathcal{E} \}$

M. Mazouz et al., PRL 99 (2007) 242501

E03-106: First-time measurement of $\Delta\sigma_{LU}$ for nDVCS, model-dependent extraction of J_u, J_d

$$D(e, e'\gamma)X - H(e, e'\gamma)X = n(e, e'\gamma)n + d(e, e'\gamma)d + \dots$$

nDVCS and coherent **dDVCS** separated through MM_X^2 shift:

- large correlations at low –t
- good separation at larger -t

Hall-A experiment E08-025 (2010)

- Two beam-energies: « Rosenbluth » separation of nDVCS CS
- First observation of non-zero nDVCS CS

JLab@12 GeV DVCS program

Observable (target)	12-GeV experiments	CFF sensitivity	Status
σ , $\Delta \sigma_{\text{beam}}(p)$	Hall A CLAS12	ReH(p), ImH(p)	Hall A: data taken in 2016; Phys. Rev. Lett. 128 (2022) 25, 252002 CLAS12: data taken in 2018-2019: CS analysis in progress
	Hall C		Hall C: experiment planned for 2025
BSA(p)	CLAS12	ImH(p)	BSA publication at Ad Hoc review stage
lTSA(p), lDSA(p)	CLAS12	$\operatorname{Im}\widetilde{\mathcal{H}}(p), \operatorname{Im}\mathcal{H}(p), \operatorname{Re}\widetilde{\mathcal{H}}(p), \operatorname{Im}\mathcal{H}(p)$	Experiment running until March 2023
tTSA(p)	CLAS12	ImH(p), ImE(p)	Experiment foreseen for ~2025
BSA(n)	CLAS12	ImÆ(n)	Data taken in 2019-2020, BSA analysis being finalized
lTSA(n), lDSA(n)	CLAS12	$Im\mathcal{H}(n), Re\mathcal{H}(n)$	Experiment running until March 2023

Hall A/C: high luminosity → precision, small kinematic coverage, eγ topology CLAS12: lower luminosity, large kinematic coverage, fully exclusive final state

CLAS12: preliminary beam spin asymmetry for DVCS on the proton

Data taken in 2018

$e^{n} \rightarrow e^{n}$

- Polarized beam (86%) with energy 10.6 GeV; unpolarized LH2 target
- 64 kinematical bins (Q^2 , x_B , -t)
- Many kinematics never covered before
- In previously measured kinematics, the new data are shown to be in good agreement with existing data and improve the precision of GPD fits

Examples of kinematics only accessible with ~10.6-GeV beam

Submission for publication in late October (final stage of Collaboration review)

<u>Preliminary</u> beam spin asymmetry for neutron DVCS (CLAS12)

First-ever measurement of Timelike Compton Scattering (CLAS12)

- The beam helicity asymmetry of TCS accesses the imaginary part of the CFF in the same way as in DVCS and probes the universality of GPDs
- The forward-backward asymmetry is sensitive to the real part of the CFF \rightarrow direct access to the Energy-Momentum Form Factor $D_q(t)$ (linked to the D-term) that relates to the mechanical properties of the nucleon (quark pressure distribution)
- This measurement proves the importance of TCS for GPD physics.
- Limits: very small cross section → high luminosity is necessary for a precise measurement

P. Chatagnon et al. (CLAS), Phys. Rev. Lett. 127, 262501 (2021)

Ongoing at CLAS12: DVCS (p, n) on longitudinally polarized target

First-time measurement of longitidunal target-spin asymmetry and double (beam-target) spin asymmetry for nDVCS

 $\Delta \sigma_{UL} \sim \sin \phi \operatorname{Im} \{ F_1 \widetilde{\mathcal{H}} + \xi (F_1 + F_2) (\mathcal{H} + x_B / 2\mathcal{E}) - \xi k F_2 \widetilde{\mathcal{E}} + \dots \}$

 $\Delta \sigma_{LL} \sim (\mathbf{A} + \mathbf{B} \cos \phi) \ \mathbf{R} e \{ F_1 \widetilde{\mathcal{H}} + \xi (F_1 + F_2) (\mathcal{H} + \mathbf{x}_B / 2\mathbf{E}) - \xi k F_2 \ \widetilde{\mathcal{E}} + \dots \}$

 \rightarrow 3 observables (including BSA), constraints on real and imaginary CFFs of various neutron GPDs

 $\overrightarrow{ep} \rightarrow ep\gamma$ $\overrightarrow{ed} \rightarrow e(p)n\gamma$ **CLAS12 + Longitudinally polarized target + CND**

Running from June 2022 to March 2023

Transversely polarized target for CLAS12 in development → experiment ~2026

Ultimate goals: flavor separation of CFFs & Ji's sum rule

Deeply virtual meson production and GPDs

Complications: effective scale in the hard scattering process, meson distribution amplitude

Deeply virtual meson production at CLAS

Vector mesons: exclusive ρ^0 , ω , ϕ and ρ^+ electroproduction on the proton with CLAS

K. Lukashin *et al.*, Phys. Rev. C 63, 065205, 2001 (ϕ @4.2 GeV) C. Hadjidakis *et al.*, Phys. Lett. B 605, 256-264, 2005 (ρ^{0} @4.2 GeV) L. Morand *et al.*, Eur. Phys. J. A 24, 445-458, 2005 (ω @5.75GeV) J. Santoro *et al.*, Phys. Rev. C 78, 025210, 2008 (ϕ @5.75 GeV) S. Morrow *et al.*, Eur. Phys. J. A 39, 5-31, 2009 (ρ^{0} @5.75GeV) A. Fradi, Orsay Univ. PhD thesis (ρ^{+} @5.75 GeV) Not published

Pseudoscalar mesons: exclusive π^0 and η electroproduction on the proton with CLAS

R. De Masi *et al.*, Phys. Rev. C 77, 042201(R), 2008 ($\pi^0@5.75$ GeV)

K. Park *et al.*, Phys. Rev. C 77, 015208, 2008 ($\pi^+@5.75$ GeV)

I. Bedlinskiy *et al.*, Phys. Rev. Lett. 109 (2012) 112001; Phys. Rev. C 90, 039901 (2014) ($\pi^0@5.75GeV$)

I. Bedlinskiy *et al.*, Phys. Rev. C 95, 035202 (2017) (**η@5.75GeV**)

The measured pseudo-scalar cross sections show a **strong transverse contribution** and are well described by transversity GPD models:

- Goloskokov-Kroll
- Liuti-Goldstein
- $\sigma_L \ll \sigma_T$

Recap: what have we learned so far

- ImH well constrained, in CLAS (and soon CLAS12) kinematics
- ReH constrained mainly by Hall A measurements in selected kinematics; important for D-term and distribution of forces
- Initial constraints on $\tilde{\mathcal{H}}$ from longitudinally polarized target experiments, more data coming soon
- Potential of TCS for ReH, D-term, universality of GPDs
- Importance of nDVCS for E_n sensitivity and flavor separation, but low statistics
- pDVCS on transverse target is vital to constrain E_p
- Still no information on x dependence of GPDs
- DVMP: only pseudo-scalars had until now a « succesful » GPD interpretation (transversity) \rightarrow higher Q² may be necessary

Perspectives for upgrades at JLab

Polarized positrons beam

Higher luminosity

Double beam energy

DVCS with polarized positrons beam at JLab

The important of beam-charge asymmetry for DVCS was highlighted by the pioneering HERMES experiment Disposing of a polarized positron/electron beams at JLab \rightarrow new observables = different sensitivities to GPDs Beam Charge Asymmetries proposed to be measured at CLAS12:

- The unpolarized beam charge asymmetry A_{C}^{UU} , which is sensitive to the real part of the CFF \rightarrow D-term, forces in the proton
- The polarized beam charge asymmetry A_C^{LU} , which is sensitive to the imaginary part of the CFF
- The neutral beam spin asymmetry A_0^{LU} , which is sensitive to higher twist effects

$$= A_{LU}^C \neq A_{LU}^{\pm} = \frac{\pm (\sigma_{INT} \pm \sigma_{DVCS})}{\sigma_{BH} + \sigma_{DVCS} \pm \sigma_{INT}}$$

pDVCS with polarized positrons beam at CLAS

Model predictions for the three observables

Impact of positron projected data on the extraction of ReH via global fits: major reduction of relative uncertainties, especially at low -t

V. Burkert et al., Eur. Phys. J. A (2021) 57:186

0.2

-0.4

nDVCS with polarized positrons beam at CLAS12

0.3, 0.1; 0.2/0.0; 0.1/-0.1; 0.3/-0.1

S.N. et al, Eur. Phys. J. A (2021) 57:226

Impact on the extraction of Re*E* using local fits, using the projections of approved CLAS12 nDVCS measurements with and without BCA

DDVCS: the gateway to the full kinematic mapping of GPDs

Thanks to the virtuality of the final photon, Q'², **DDVCS** allows a unique direct access to GPDs at $x \neq \pm \xi$, which is fundamental for their modeling

Experimental challenges:

- Small cross section (300 times less than DVCS)
- Need to detect muons

- Possible CLAS12 upgrade (LOI): "µCLAS12" for DDVCS and J/ψ ep→e'p'µ+µ- at L~10³⁷ cm⁻²s⁻¹ New tracker, calorimeter, shielding
 - Possible DDVCS experiment with SOLID@HallA (LOI)

Cross section DVCS @ 24 GeV, VGG predictions

pDVCS with 22-GeV beam (current CLAS12)

Simulated pDVCS events at 22 GeV (H. Avakian), passed through GEMC (current CLAS12) and standard CLAS12 reconstruction (R. De Vita)

With the current CLAS12 acceptance ~1%, mainly all new kinematics PID? Backgrounds? Further studies are needed

Conclusions (and my personal opinions)

- Exclusive reaction can provide a **wealth of information on nucleon structure**, via the measurement of **GPDs**: nucleon tomography, quark angular momentum, distribution of forces in the nucleon
- **pDVCS** has been and is being **extensively measured**, aside from **beam-charge and transverse-target observables**
- **nDVCS** measurements are ongoing, **cross sections and asymmetries are very small** → **higher luminosity** would be welcome, as well as measurements of **BCA**
- TCS & <u>DDVCS</u> are the golden channels that should be explored in the future to go beyond DVCS: universality of GPDs, real part of CFFs, x dependence of GPDs
- Higher beam energy will increase the phase space for DVCS, but also lower cross sections (strong BH dominance?); PID and backgrounds need to be studied; likely beneficial for DVMP measurements, but let's have a look first at 11-GeV data
- To have an **upgraded JLab** (CLAS12) **coexisting and competing with the EIC**, we should prove that it allows **UNIQUE physics**, not only **complementary kinematics**: pointing towards the measurements of **small-cross-section and unmeasured reactions/observables requiring high luminosity and/or polarized positrons beam can be a good strategy**; higher energy alone (without positrons and/or DDVCS) doesn't seem to me to lead to a strong enough physics case, at least in the GPDs field
- Ideally, we should aim for high-lumi, energy, and positrons $\ensuremath{\textcircled{\circ}}$

Back-up slides

Results for H_{Im} and \widetilde{H}_{Im} from the fits of JLab 2015 data

Fit to CLAS c.s. and beam pol. c.s.
 Fit to CLAS c.s., beam pol. c.s., ITSA, DSA
 Fit to Hall A c.s. and beam pol. c.s.
 VGG model

 H_{Im} has steeper t-slope than \widetilde{H}_{Im} : the axial charge (~ Δu - Δd) is more "concentrated" than the electric charge

R. Dupré, M. Guidal, S.N. , M. Vanderhaegen, EPJA 53, 171 (2017)

Comparison between vector mesons (σ)

Chiral-odd GPDs

- 4 chiral-odd GPDs (parton helicity flip)
- Difficult to access (helicity flip processes are **suppressed**)
- Chiral-odd GPDs are very little constrained
- Anomalous tensor magnetic moment: +1

$$\kappa_T = \int_{-1}^{1} \mathrm{d}x \, \overline{E}_T(x,\xi,t=0) \qquad \overline{E}_T = 2\widetilde{H}_T + E_T$$

• Link to the **transversity** distribution: $H_T^q(x, 0, 0) = h_1^q(x)$

Transverse Densities for u and d quarks in the nucleon

Exclusive π^0 electroproduction

$$\frac{d\sigma}{dQ^2 dx_B \, d\phi dt} = \Gamma(Q^2, x_B) \frac{1}{2\pi} \left(\sigma_T + \varepsilon \sigma_L + \varepsilon \cos 2\phi \sigma_{TT} + \sqrt{2\varepsilon(1+\varepsilon)} \cos \phi \sigma_{LT} \right)$$

Leading twist:
$$\sigma_{L} = \frac{4\pi\alpha_{e}}{k'Q^{6}} \left[(1-\xi^{2}) | < \widetilde{H} > |^{2} - 2\xi^{2} \operatorname{Re} \left(< \widetilde{H} >^{*} < \widetilde{E} > \right) - \frac{t'}{4m^{2}} \xi^{2} | < \widetilde{E} > |^{2} \right]$$
$$\sigma_{L} \text{ is suppressed: } \widetilde{H}^{\pi} = \frac{1}{3\sqrt{2}} \left[2\widetilde{H}^{u} + \widetilde{H}^{d} \right]$$
Generalized Compton Form

$$\sigma_T = \frac{4\pi\alpha_e}{2\kappa} \frac{\mu_{\pi}^2}{Q^4} \left[(1 - \xi^2) |< HT > |^2 - \frac{t'}{8m^2} |< \overline{E_T} > |^2 \right]$$

$$\sigma_{TT} = \frac{4\pi\alpha_e}{2\kappa} \frac{{\mu_\pi}^2}{Q^4} \frac{t'}{8m^2} |<\overline{E_T}>|^2$$

Generalized Compton Form Factors $\langle \widetilde{H} \rangle = \sum_{\lambda} \int_{-1}^{1} dx M(x, \xi, Q^2, \lambda) \widetilde{H}(x, \xi, t)$

Transversity GPD models:

- Goloskokov-Kroll
- Liuti-Goldstein

 \mathbf{X}_B

Comparison π^0/η

- \bullet Very little dependence on $x_{\scriptscriptstyle B}$ and Q^2
- Chiral-odd GPD models predict this ratio to be ~1/3 at CLAS kinematics
- Chiral-even GPD models predict this ratio to be around 1 (at low –t)

Potentially one can perform **flavor separation of transversity GPDs** combining π^0 and η

