

ECT* workshop: Opportunities with JLab Energy and Luminosity Upgrade

September 26 - 30 2022, Trento

Exploring the 3D structure of nucleon resonances based on transition GPD measurements at JLAB and JLAB20+

Stefan Diehl

Justus Liebig University Giessen University of Connecticut

09/29/2022

3-Dimensional Imaging of Quarks and Gluons

Generalized Parton Distributions (GPDs)

Generalized Parton Distributions (GPD)

3-D nucleon images in the transverse coordinate and longitudinal momentum space

4 chiral even and 4 chiral odd GPDs

Indirect access to mechanical properties of the nucleon

$$\int xH(x,\xi,t)\mathrm{d}x = M_2(t) + \frac{4}{5}\xi^2d_1(t) \leftarrow \text{pressure and shear forces}$$

Additional physics content encoded in chiral odd GPDs

$$\kappa_T^u = \int dx \bar{E}_T^u(x,\xi,t=0) \qquad \delta_T^u = \int dx H_T^u(x,\xi,t=0)$$

 \overline{E}_{T} is related to the protons H_{T} is related to the anomalous tensor magnetic moment

protons tensor charge

	quark pol.					
	N/q	U	L	T		
ool.	U	H		$ar{E}_T$		
nucleon pol	L		\widetilde{H}	\widetilde{E}_T		
nucl	T	E	\widetilde{E}	H_T,\widetilde{H}_T		
$\overline{E}_{T} = 2\widetilde{H}_{T} + E_{T}$						

Deeply Virtual Compton Scattering (DVCS)

- + Clean process
- Only sensitive to chiral even GPDs

Deeply Virtual Meson Production (DVMP)

- + Enables Flavour decomposition of GPDs
- + Access to transversity degrees of freedom described by chiral-odd GPDs

From the ground state nucleon to resonances

Ground state nucleon: (proton, neutron)

Nucleon resonances:

Orbital excitations

i.e N(1535)

i.e N(1440)

From classical GPD to transition GPDs

Past: Extensive studies of transition form factors (2D picture of transv. position)

But: How does the exitation affect the **3D structure** of the Nucleon?

- → Pressure distributions, tensor charge, ... of resonances?
- → Information encoded in transition GPDs
 - → More difficult theoretical description due to additional degrees of freedom

Simplest case: N→ Δ transition

- → 16 transition GPDs
 - 8 helicity non-flip transition GPDs (twist 2)
 - 8 helicity flip transition GPDs (twist 3)

Transition GPDs in the twist-2 sector

 $N \rightarrow \Delta$ transition: 8 twist-2 helicity non-flip transition GPDs

unpolarized:

$$\int_{-1}^{1} dx H_M(x;\xi;t) = 2G_M^*(t)$$
 for the N \downarrow transition
$$\int_{-1}^{1} dx H_C(x;\xi;t) = 2G_E^*(t)$$

$$\int_{-1}^{1} dx H_C(x;\xi;t) = 2G_C^*(t)$$

$$\int_{-1}^{1} dx H_4(x;\xi;t) = 0$$

polarized:

$$\int_{-1}^{1} dx C_1(x;\xi;t) = 2C_5^A(t)$$
 Adler form factors
$$\int_{-1}^{1} dx C_2(x;\xi;t) = 2C_6^A(t)$$

$$\int_{-1}^{1} dx C_3(x;\xi;t) = 2C_3^A(t)$$

$$\int_{-1}^{1} dx C_4(x;\xi;t) = 2C_4^A(t)$$

- \rightarrow 3 of them are dominating in the large N_C limit
- → Connection to proton-proton GPDs via symmetry considerations
- → Description of leading twist effects / longitudinal virtual photons

CLAS12 Experimental Setup in Hall B at JLAB

V. Burkert et al., Nucl. Instrum. Meth. A 959 (2020) 163419

- → Data of this talk was recorded with CLAS12 during fall 2018 and spring 2019
- → 10.6 / 10.2 GeV e⁻ beam → ~87 % average polarization → liquid H_2 target
 - → Analysed data ~ 35 % of the approved RG-A beam time

Experimental Access to Transition GPDs (twist 2)

Experimental access: Non diagonal DVCS process

$$\gamma * p \rightarrow N * \gamma \rightarrow N meson \gamma$$

factorisation for: $-t/Q^2$ small, x_B fixed

Two final states have been studied:

$$\gamma * p \to N^* \gamma \to p \pi^0 \gamma \to p \gamma \gamma \gamma$$

 $\gamma * p \to N^* \gamma \to n \pi^+ \gamma$

- → Exclusivity cuts were applied for event selection
- → Kinematic cuts:

W > 2 GeV
$$Q^2 > 1 \text{ GeV}^2$$
 y < 0.8
-t < 2 GeV² $E_{y-DVCS} > 2 \text{ GeV}$

First Theoretical Description of the Δ Region

P. A. M Guichon, L. Mosse, M. Vanderhaeghen, Phys. Rev. D68 (2003) 034018

Resonance Mass Spectrum for $N^* \rightarrow n\pi^+$

 $<Q^2> = 2.3 \text{ GeV}^2$ $<x_p> = 0.25$

preliminary

Δ-fit: Breit-Wigner + polyn. backgr.

 μ = 1.235 GeV Γ = 0.15 GeV

Q² dependence:

Resonance Mass Spectrum for $N^* \rightarrow p\pi^0$

ерπ⁰γ

300 Δ (2nd res) 200 preliminary 100 preliminary 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 M_{pπ0} [GeV]

cut on the pion long. momentum fraction α

Raw Beam Spin Asymmetries

$$A = \frac{1}{P} \frac{N^{+} - N^{-}}{N^{+} + N^{-}} \approx A_{LU}^{\sin \phi} \sin \phi$$

The non-diagonal DVMP processes

Factorisation expected for:

-t / $Q^2 << 1$ and $Q^2 > M_{\Delta}^2$, x_B fixed

$$ep \rightarrow e\Delta^0 \pi^+ \rightarrow e(p\pi^-)\pi^+$$

 $\rightarrow e(n\pi^0)\pi^+$

$$ep \rightarrow e\Delta^{+}\pi^{0} \rightarrow e(n\pi^{+})\pi^{0}$$

 $\rightarrow e(p\pi^{0})\pi^{0}$

$$ep \rightarrow e\Delta^{++}\pi^{-} \rightarrow ep\pi^{+}\pi^{-}$$

8 helicity non-flip trans. GPDs

8 helicity flip trans. GPDs

- → Needed for twist-3 sector
- → No publications exist so far

Hard exclusive $\pi^-\Delta^{++}$ production

$$ep \rightarrow e\Delta^{++}\pi^{-} \rightarrow ep\pi^{+}\pi^{-}$$

Kinematic cuts:

 $Q^2 > 1.5 \text{ GeV}^2$ W > 2 GeV

y < 0.75

 $-t < 1.5 \text{ GeV}^2$ (forward region)

Event Selection and Background Rejection

Monte Carlo Simulations

2 MC samples have been used:

a) Semi-inclusive DIS MC

- \rightarrow Does not contain the $\pi^-\Delta^{++}$ production in "forward" kinematics
- -> Contains nonres. background as well as ρ production and other potential BG channels
- → Used to estimate background shape and contaminations

b) Exclusive $\pi^-\Delta^{++}$ MC

- → Phase space simulation with a weight added to match experimental data
- \rightarrow Δ peak with PDG mass and FWHM
- → Both MCs are processed through the full simulation and reconstruction chain

Event Selection and Background Estimate

Event Selection and Background Estimate

Resulting Beam Spin Asymmetries (Q²-x_B integrated)

Q² - x_B Integrated Result

 The contribution of the non-resonant background has been subtracted

<u>Different sources of systematic uncertainty have been studied:</u> beam polarisation, background subtraction, fiducial volume, extraction method, acceptance, bin migration, radiative effects

Multidimensional Results

Perspectives for a 24 GeV JLAB upgrade

$$ep \rightarrow e\Delta^{++}\pi^{-} \rightarrow ep\pi^{+}\pi^{-}$$

Extended Q² range

- → Advantage for factorisation
- Similar for non-diagonal DVCS

Better signal / background separation

→ Higher efficiency

Conclusion and Outlook

- Transition GPDs can help us to better understand the 3D structure of resonances and the exitation process itself.
- Non-diagonal DVCS and hard exclusive π-Δ++ production can be well measured with CLAS12
- The extracted $\pi^-\Delta^{++}$ BSA is a potential first "clean" observable sensitive to p- Δ transition GPDs
- Theory predictions are so far only available for twist-2 transition GPDs
 - → Extension of the framework to the twist-3 sector is in progress
- A JLAB energy and luminosity upgrade will help to significantly improve these measurements and the extraction of transition GPDs

