Prospects on GPDs from lattice QCD

Martha Constantinou

Opportunities with JLab Energy and Luminosity Upgrade

September 28, 2022

Generalized Parton Distributions

★ Crucial in understanding hadron tomography

[H. Abramowicz et al., whitepaper for NSAC LRP, 2007]

1_{mom} + 2_{coord} tomographic images of quark distribution in nucleon at fixed longitudinal momentum

3-D image from FT with respect to longitudinal momentum transfer

★ GPDs may be accessed via exclusive reactions (DVCS, DVMP)

 \bigstar exclusive pion-nucleon diffractive production of a γ pair of high p_{\perp}

[X.-D. Ji, PRD 55, 7114 (1997)]

[J. Qiu et al, arXiv:2205.07846]

Generalized Parton Distributions

- ★ GPDs are not well-constrained experimentally:
 - x-dependence extraction is not direct. DVCS amplitude: $\mathcal{H} = \int_{-1}^{+1} \frac{H(x, \xi, t)}{x \xi + i\epsilon} dx$ (SDHEP [J. Qiu et al, arXiv:2205.07846] gives access to x)
 - independent measurements to disentangle GPDs
 - GPDs phenomenology more complicated than PDFs (multi-dimensionality)
 - and more challenges ...

Generalized Parton Distributions

- ★ GPDs are not well-constrained experimentally:
 - x-dependence extraction is not direct. DVCS amplitude: $\mathcal{H} = \int_{-1}^{+1} \frac{H(x, \xi, t)}{x \xi + i\epsilon} dx$ (SDHEP [J. Qiu et al, arXiv:2205.07846] gives access to x)
 - independent measurements to disentangle GPDs
 - GPDs phenomenology more complicated than PDFs (multi-dimensionality)
 - and more challenges ...
- ★ Essential to complement the knowledge on GPD from lattice QCD
- \star Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

 \star

Mellin moments

(local OPE expansion)

$$\bar{q}(-\frac{1}{2}z)\,\gamma^{\sigma}W[-\frac{1}{2}z,\frac{1}{2}z]\,q(\frac{1}{2}z) = \sum_{n=0}^{\infty}\frac{1}{n!}\,z_{\alpha_1}\dots z_{\alpha_n}\Big[\bar{q}\gamma^{\sigma}\overset{\leftrightarrow}{D}^{\alpha_1}\dots\overset{\leftrightarrow}{D}^{\alpha_n}q\Big]$$

$$\left\langle N(P') \big| \mathcal{O}_{V}^{\mu\mu_{1}\cdots\mu_{n-1}} \big| N(P) \right\rangle \sim \sum_{\substack{i=0 \text{even}}}^{n-1} \left\{ \gamma^{\{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \overline{P}^{\mu_{i+1}} \cdots \overline{P}^{\mu_{n-1}\}} A_{n,i}(t) - i \frac{\Delta_{\alpha} \sigma^{\alpha\{\mu}}{2m_{N}} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \overline{P}^{\mu_{i+1}} \cdots \overline{P}^{\mu_{n-1}\}} B_{n,i}(t) \right\} + \frac{\Delta^{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{n-1}}}{m_{N}} C_{n,0}(\Delta^{2}) \big|_{n \text{ even}} \right)$$

Mellin moments (local OPE expansion)

$$\langle N(P') | \mathcal{O}_{V}^{\mu\mu_{1}\cdots\mu_{n-1}} | N(P) \rangle \sim \sum_{\substack{i=0 \text{even}}}^{n-1} \left\{ \gamma^{\{\mu}\Delta^{\mu_{1}}\cdots\Delta^{\mu_{i}}\overline{P}^{\mu_{i+1}}\cdots\overline{P}^{\mu_{n-1}\}} A_{n,i}(t) - i\frac{\Delta_{\alpha}\sigma^{\alpha\{\mu}}}{2m_{N}}\Delta^{\mu_{1}}\cdots\Delta^{\mu_{i}}\overline{P}^{\mu_{i+1}}\cdots\overline{P}^{\mu_{n-1}\}} B_{n,i}(t) \right\} \\ + \frac{\Delta^{\mu}\Delta^{\mu_{1}}\cdots\Delta^{\mu_{n-1}}}{m_{N}} C_{n,0}(\Delta^{2}) \big|_{n \text{ even}} \rangle$$

Mellin moments (local OPE expansion)

$$\bar{q}(-\frac{1}{2}z)\,\gamma^{\sigma}W[-\frac{1}{2}z,\frac{1}{2}z]\,q(\frac{1}{2}z) \ = \ \sum_{n=0}^{\infty}\frac{1}{n!}\,z_{\alpha_1}\dots z_{\alpha_n}\Big[\bar{q}\gamma^{\sigma}\overset{\leftrightarrow}{D}^{\alpha_1}\dots \overset{\leftrightarrow}{D}^{\alpha_n}q\Big]$$

$$\langle N(P') | \mathcal{O}_{V}^{\mu\mu_{1}\cdots\mu_{n-1}} | N(P) \rangle \sim \sum_{\substack{i=0 \text{even}}}^{n-1} \left\{ \gamma^{\{\mu}\Delta^{\mu_{1}}\cdots\Delta^{\mu_{i}}\overline{P}^{\mu_{i+1}}\cdots\overline{P}^{\mu_{n-1}\}} A_{n,i}(t) - i\frac{\Delta_{\alpha}\sigma^{\alpha\{\mu}}}{2m_{N}}\Delta^{\mu_{1}}\cdots\Delta^{\mu_{i}}\overline{P}^{\mu_{i+1}}\cdots\overline{P}^{\mu_{n-1}\}} B_{n,i}(t) \right\} + \frac{\Delta^{\mu}\Delta^{\mu_{1}}\cdots\Delta^{\mu_{n-1}}}{m_{N}} C_{n,0}(\Delta^{2}) \Big|_{n \text{ even}})$$

★ Matrix elements of non-local operators

(quasi-GPDs, pseudo-GPDs, ...)

$$\langle N(P_f) | \bar{\Psi}(z) \Gamma \mathcal{W}(z,0) \Psi(0) | N(P_i) \rangle_{\mu}$$

$$\begin{split} \langle N(P')|O_V^\mu(x)|N(P)\rangle &= \overline{U}(P')\left\{\gamma^\mu H(x,\xi,t) + \frac{i\sigma^{\mu\nu}\Delta_\nu}{2m_N}E(x,\xi,t)\right\}U(P) + \mathrm{ht}\,,\\ \langle N(P')|O_A^\mu(x)|N(P)\rangle &= \overline{U}(P')\left\{\gamma^\mu\gamma_5\widetilde{H}(x,\xi,t) + \frac{\gamma_5\Delta^\mu}{2m_N}\widetilde{E}(x,\xi,t)\right\}U(P) + \mathrm{ht}\,,\\ \langle N(P')|O_T^{\mu\nu}(x)|N(P)\rangle &= \overline{U}(P')\left\{i\sigma^{\mu\nu}H_T(x,\xi,t) + \frac{\gamma^{[\mu}\Delta^\nu]}{2m_N}E_T(x,\xi,t) + \frac{\overline{P}^{[\mu}\Delta^\nu]}{m_N^2}\widetilde{H}_T(x,\xi,t) + \frac{\gamma^{[\mu}\overline{P}^\nu]}{m_N}\widetilde{E}_T(x,\xi,t)\right\}U(P) + \mathrm{ht}\,, \end{split}$$

★ Mellin moments (local OPE expansion)

$$\left\langle N(P') \big| \mathcal{O}_{V}^{\mu\mu_{1}\cdots\mu_{n-1}} \big| N(P) \right\rangle \sim \sum_{i=0}^{n-1} \left\{ \gamma^{\{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \overline{P}^{\mu_{i+1}} \cdots \overline{P}^{\mu_{n-1}\}} A_{n,i}(t) - i \frac{\Delta_{\alpha} \sigma^{\alpha\{\mu}}{2m_{N}} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \overline{P}^{\mu_{i+1}} \cdots \overline{P}^{\mu_{n-1}\}} B_{n,i}(t) \right\} \\ + \frac{\Delta^{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{n-1}}}{m_{N}} C_{n,0}(\Delta^{2}) \big|_{n \text{ even}} \right) \right\}$$

★ Matrix elements of non-local operators

(quasi-GPDs, pseudo-GPDs, ...)

$$\langle N(P_f) \, | \, \bar{\Psi}(z) \, \Gamma \, \mathcal{W}(z,0) \Psi(0) \, | \, N(P_i) \rangle_{\mu}$$
 Wilson line

$$\begin{split} \langle N(P')|O_V^\mu(x)|N(P)\rangle &= \overline{U}(P')\left\{\gamma^\mu H(x,\xi,t) + \frac{i\sigma^{\mu\nu}\Delta_\nu}{2m_N}E(x,\xi,t)\right\}U(P) + \mathrm{ht}\,,\\ \langle N(P')|O_A^\mu(x)|N(P)\rangle &= \overline{U}(P')\left\{\gamma^\mu\gamma_5\widetilde{H}(x,\xi,t) + \frac{\gamma_5\Delta^\mu}{2m_N}\widetilde{E}(x,\xi,t)\right\}U(P) + \mathrm{ht}\,,\\ \langle N(P')|O_T^{\mu\nu}(x)|N(P)\rangle &= \overline{U}(P')\left\{i\sigma^{\mu\nu}H_T(x,\xi,t) + \frac{\gamma^{[\mu}\Delta^\nu]}{2m_N}E_T(x,\xi,t) + \frac{\overline{P}^{[\mu}\Delta^\nu]}{m_N^2}\widetilde{H}_T(x,\xi,t) + \frac{\gamma^{[\mu}\overline{P}^\nu]}{m_N}\widetilde{E}_T(x,\xi,t)\right\}U(P) + \mathrm{ht}\,, \end{split}$$

- ★ Advantages
 - Frame independence
 - Several values of momentum transfer with same computational cost
 - Form factors extracted with controlled statistical uncertainties

★ Advantages

- Frame independence
- Several values of momentum transfer with same computational cost
- Form factors extracted with controlled statistical uncertainties

Disadvantages

- x dependence is integrated out
- GFFs are skewness independence
- Geometrical twist classification (coincides with dynamical twist of scattering processes only at leading order)
- Signal-to-noise ratio decays with the addition of covariant derivatives
- Power-divergent mixing for high Mellin moments (derivatives > 3)
- Number of GFFs increases with order of Mellin moment

Advantages

- Frame independence
- Several values of momentum transfer with same computational cost
- Form factors extracted with controlled statistical uncertainties

Disadvantages

- x dependence is integrated out
- GFFs are skewness independence
- Geometrical twist classification (coincides with dynamical twist of scattering processes only at leading order)
- Signal-to-noise ratio decays with the addition of covariant derivatives
- Power-divergent mixing for high Mellin moments (derivatives > 3)
- Number of GFFs increases with order of Mellin moment

*

Ultra-local operators (FFS)

 \bigstar

Ultra-local operators (FFS)

$$\langle N(P')|\overline{q}(0)\gamma^{\mu}q(0)|N(P)\rangle = \overline{U}(P')\left\{\gamma^{\mu}F_{1}(t) + \frac{i\sigma^{\mu\nu}\Delta_{\nu}}{2m_{N}}F_{2}(t)\right\}U(P),$$

$$\langle N(P')|\overline{q}(0)\gamma^{\mu}\gamma_{5}q(0)|N(P)\rangle = \overline{U}(P')\left\{\gamma^{\mu}\gamma_{5}G_{A}(t) + \frac{\gamma_{5}\Delta^{\mu}}{2m_{N}}G_{P}(t)\right\}U(P)$$

- Simulations at physical point available by multiple groups
- Precision data era
- Towards control of systematic uncertainties

 \bigstar

Ultra-local operators (FFS)

$$\langle N(P')|\overline{q}(0)\gamma^{\mu}q(0)|N(P)\rangle = \overline{U}(P')\left\{\gamma^{\mu}F_{1}(t) + \frac{i\sigma^{\mu\nu}\Delta_{\nu}}{2m_{N}}F_{2}(t)\right\}U(P),$$

$$\langle N(P')|\overline{q}(0)\gamma^{\mu}\gamma_{5}q(0)|N(P)\rangle = \overline{U}(P')\left\{\gamma^{\mu}\gamma_{5}G_{A}(t) + \frac{\gamma_{5}\Delta^{\mu}}{2m_{N}}G_{P}(t)\right\}U(P)$$

- Simulations at physical point available by multiple groups
- Precision data era
- Towards control of systematic uncertainties

1-derivative operators (GFFs) $\langle N(p',s')|\mathcal{O}_{V}^{\mu\nu}|N(p,s)\rangle = \bar{u}_{N}(p',s')\frac{1}{2}\Big[A_{20}(q^{2})\,\gamma^{\{\mu}P^{\nu\}} + B_{20}(q^{2})\,\frac{i\sigma^{\{\mu\alpha}q_{\alpha}P^{\nu\}}}{2m_{N}} + C_{20}(q^{2})\,\frac{1}{m_{N}}q^{\{\mu}q^{\nu\}}\Big]u_{N}(p,s)$ $\langle N(p',s')|\mathcal{O}_{A}^{\mu\nu}|N(p,s)\rangle = \bar{u}_{N}(p',s')\frac{i}{2}\Big[\tilde{A}_{20}(q^{2})\,\gamma^{\{\mu}P^{\nu\}}\gamma^{5} + \tilde{B}_{20}(q^{2})\,\frac{q^{\{\mu}P^{\nu\}}}{2m_{N}}\gamma^{5}\Big]u_{N}(p,s),$

[M. Constantinou et al. (2020 PDFLattice Report), Prog.Part.Nucl.Phys. 121 (2021) 103908]

 \bigstar

Ultra-local operators (FFS)

$$\langle N(P')|\overline{q}(0)\gamma^{\mu}q(0)|N(P)\rangle = \overline{U}(P')\left\{\gamma^{\mu}F_{1}(t) + \frac{i\sigma^{\mu\nu}\Delta_{\nu}}{2m_{N}}F_{2}(t)\right\}U(P),$$

$$\langle N(P')|\overline{q}(0)\gamma^{\mu}\gamma_{5}q(0)|N(P)\rangle = \overline{U}(P')\left\{\gamma^{\mu}\gamma_{5}G_{A}(t) + \frac{\gamma_{5}\Delta^{\mu}}{2m_{N}}G_{P}(t)\right\}U(P)$$

- Simulations at physical point available by multiple groups
- Precision data era
- Towards control of systematic uncertainties

1-derivative operators (GFFs) $\langle N(p',s')|\mathcal{O}_{V}^{\mu\nu}|N(p,s)\rangle = \bar{u}_{N}(p',s')\frac{1}{2}\Big[A_{20}(q^{2})\,\gamma^{\{\mu}P^{\nu\}} + B_{20}(q^{2})\,\frac{i\sigma^{\{\mu\alpha}q_{\alpha}P^{\nu\}}}{2m_{N}} + C_{20}(q^{2})\,\frac{1}{m_{N}}q^{\{\mu}q^{\nu\}}\Big]u_{N}(p,s)$ $\langle N(p',s')|\mathcal{O}_{A}^{\mu\nu}|N(p,s)\rangle = \bar{u}_{N}(p',s')\frac{i}{2}\Big[\tilde{A}_{20}(q^{2})\,\gamma^{\{\mu}P^{\nu\}}\gamma^{5} + \tilde{B}_{20}(q^{2})\,\frac{q^{\{\mu}P^{\nu\}}}{2m_{N}}\gamma^{5}\Big]u_{N}(p,s),$

Lesser studied compared to FFs at physical point

Decay of signal-to-noise ratio

[M. Constantinou et al. (2020 PDFLattice Report), Prog.Part.Nucl.Phys. 121 (2021) 103908]

GPDs

Through non-local matrix elements of fast-moving hadrons

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002]

Matrix elements of nonlocal (equal-time) operators with fast moving hadrons

$$\tilde{q}_{\Gamma}^{\mathrm{GPD}}(x,t,\xi,P_{3},\mu) = \int \frac{dz}{4\pi} e^{-ixP_{3}z} \quad \langle N(P_{f}) \, | \, \bar{\Psi}(z) \, \Gamma \, \mathcal{W}(z,0) \Psi(0) \, | \, N(P_{i}) \rangle_{\mu}$$

$$\Delta = P_f - P_i$$

$$t = \Delta^2 = -Q^2$$

$$\xi = \frac{Q_3}{2P_3}$$

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002]

Matrix elements of nonlocal (equal-time) operators with fast moving hadrons

$$\tilde{q}_{\Gamma}^{\text{GPD}}(x,t,\xi,P_3,\mu) = \int \frac{dz}{4\pi} e^{-ixP_3z} \quad \langle N(P_f) | \bar{\Psi}(z) \Gamma \mathcal{W}(z,0) \Psi(0) | N(P_i) \rangle_{\mu}$$

$$\Delta = P_f - P_i$$

$$t = \Delta^2 = -Q^2$$

$$\xi = \frac{Q_3}{2P_3}$$

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002]

Matrix elements of nonlocal (equal-time) operators with fast moving hadrons

$$\tilde{q}_{\Gamma}^{\mathrm{GPD}}(x,t,\xi,P_{3},\mu) = \int \frac{dz}{4\pi} e^{-ixP_{3}z} \langle N(P_{f}) | \bar{\Psi}(z) \Gamma \mathcal{W}(z,0) \Psi(0) | N(P_{i}) \rangle_{\mu}$$

Variables of the calculation:

- length of the Wilson line (z)
- nucleon momentum boost (P₃)
- momentum transfer (t)
- skewness (≤)

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002]

Matrix elements of nonlocal (equal-time) operators with fast moving hadrons

$$\tilde{q}_{\Gamma}^{\mathrm{GPD}}(x,t,\xi,P_{3},\mu) = \int \frac{dz}{4\pi} e^{-ixP_{3}z} \quad \langle N(P_{f}) \, | \, \bar{\Psi}(z) \, \Gamma \, \mathcal{W}(z,0) \Psi(0) \, | \, N(P_{i}) \rangle_{\mu}$$

$$\Delta = P_f - P_i$$

$$t = \Delta^2 = -Q^2$$

$$\xi = \frac{Q_3}{2P_3}$$

Variables of the calculation:

- length of the Wilson line (z)
- nucleon momentum boost (P₃)
- momentum transfer (t)
- skewness (₹)

Such matrix elements may be analyzed through LaMET formalism (quasi—GPDs) or coordinate space factorization (pseudo-ITD)

Complementarity is important!

[C. Alexandrou et al., PRL 125, 262001 (2020)]

[C. Alexandrou et al., PRL 125, 262001 (2020)]

- **★** ERBL/DGLAP: Qualitative differences
- \star $\xi = \pm x$ inaccessible (formalism breaks down)
- ★ x → 1 region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288]

[C. Alexandrou et al., PRL 125, 262001 (2020)]

- **★** ERBL/DGLAP: Qualitative differences
- \star $\xi = \pm x$ inaccessible (formalism breaks down)
- ★ x → 1 region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288]
 - ★ t-dependence vanishes at large-x
 - \bullet H(x,0) asymptotically equal to $f_1(x)$

[C. Alexandrou et al., PRL 125, 262001 (2020)]

- ★ ERBL/DGLAP: Qualitative differences
- \star $\xi = \pm x$ inaccessible (formalism breaks down)
- \star $x \to 1$ region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288]
 - ★ t-dependence vanishes at large-x
 - \bullet H(x,0) asymptotically equal to $f_1(x)$

[C. Alexandrou et al., PRL 125, 262001 (2020)]

- **ERBL/DGLAP: Qualitative differences**
- \star $\xi = \pm x$ inaccessible (formalism breaks down)
- $\star x \rightarrow 1$ region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288]
 - *t*-dependence vanishes at large-*x*
 - H(x,0) asymptotically equal to $f_1(x)$

$$\int_{-1}^{+1} dx x^2 H^q(x,\xi,t) = A_{20}^q(t) + 4\xi^2 C_{20}^q(t),$$

$$\int_{-1}^{+1} dx x^2 H^q(x,\xi,t) = A_{20}^q(t) + 4\xi^2 C_{20}^q(t), \qquad \int_{-1}^{+1} dx x^2 E^q(x,\xi,t) = B_{20}^q(t) - 4\xi^2 C_{20}^q(t)$$

What can we currently learn from lattice results?

What can we currently learn from lattice results?

- ★ Qualitative understanding of GPDs and their relations
- ★ Qualitative understanding of ERBL and DGLAP regions

★ Understanding of systematic effects through sum rules

$$\int_{-1}^{1} dx \, H_{T}(x,\xi,t) = \int_{-\infty}^{\infty} dx \, H_{Tq}(x,\xi,t,P_{3}) = A_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, E_{T}(x,\xi,t) = \int_{-\infty}^{\infty} dx \, E_{Tq}(x,\xi,t,P_{3}) = B_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, \widetilde{H}_{T}(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{H}_{Tq}(x,\xi,t,P_{3}) = \widetilde{A}_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, \widetilde{E}_{T}(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{E}_{Tq}(x,\xi,t,P_{3}) = 0 \,.$$

$$\int_{-1}^{1} dx \, x \, H_{T}(x, \xi, t) = A_{T20}(t) \,,$$

$$\int_{-1}^{1} dx \, x \, E_{T}(x, \xi, t) = B_{T20}(t) \,,$$

$$\int_{-1}^{1} dx \, x \, \widetilde{H}_{T}(x, \xi, t) = \widetilde{A}_{T20}(t) \,,$$

$$\int_{-1}^{1} dx \, x \, \widetilde{E}_{T}(x, \xi, t) = 2\xi \widetilde{B}_{T21}(t) \,.$$

★ Understanding of systematic effects through sum rules

$$\int_{-1}^{1} dx \, H_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, H_{Tq}(x,\xi,t,P_3) = A_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, E_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, E_{Tq}(x,\xi,t,P_3) = B_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, \widetilde{H}_{T}(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{H}_{Tq}(x,\xi,t,P_{3}) = \widetilde{A}_{T10}(t) \,,$$

[S. Bhattacharya et al., PRD 102, 054021 (2020)]

$$\int_{-1}^{1} dx \, \widetilde{E}_{T}(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{E}_{Tq}(x,\xi,t,P_{3}) = 0.$$

$$\int_{-1}^{1} dx \, x \, H_T(x, \xi, t) = A_{T20}(t) \,,$$

$$\int_{-1}^{1} dx \, x \, E_T(x, \xi, t) = B_{T20}(t) \,,$$

$$\int_{-1}^{1} dx \, x \, \widetilde{H}_{T}(x, \xi, t) = \widetilde{A}_{T20}(t) \,,$$

$$\int_{-1}^{1} dx \, x \, \widetilde{E}_{T}(x, \xi, t) = 2\xi \widetilde{B}_{T21}(t) \, .$$

★ Understanding of systematic effects through sum rules

Sum rules exist

for quasi-GPDs

$$\int_{-1}^{1} dx \, H_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, H_{Tq}(x,\xi,t,P_3) = A_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, E_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, E_{Tq}(x,\xi,t,P_3) = B_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, \widetilde{H}_{T}(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{H}_{Tq}(x,\xi,t,P_{3}) = \widetilde{A}_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, \widetilde{E}_{T}(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{E}_{Tq}(x,\xi,t,P_{3}) = 0.$$

$$\int_{-1}^{1} dx \, H_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, H_{Tq}(x,\xi,t,P_3) = A_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, E_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, E_T(x,\xi,t,P_3) = B_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, x \, E_T(x, \xi, t) = B_{T20}(t) \,,$$

 $\int_{-1}^{1} dx \, x \, H_T(x, \xi, t) = A_{T20}(t) \,,$

$$\int_{-1}^{1} dx \, x \, \widetilde{H}_{T}(x, \xi, t) = \widetilde{A}_{T20}(t) \,,$$

$$\int_{-1}^{1} dx \, x \, \widetilde{E}_T(x,\xi,t) = 2\xi \widetilde{B}_{T21}(t) \,.$$

[S. Bhattacharya et al., PRD 102, 054021 (2020)]

Lattice data on transversity GPDs

$$\int_{-2}^{2} dx H_{Tq}(x, 0, -0.69 \,\text{GeV}^{2}, P_{3}) = \{0.65(4), 0.64(6), 0.81(10)\}, \quad \int_{-2}^{2} dx H_{Tq}(x, \frac{1}{3}, -1.02 \,\text{GeV}^{2}, 1.25 \,\text{GeV}) = 0.49(5),$$

$$\int_{-1}^{1} dx \, H_{T}(x, 0, -0.69 \,\text{GeV}^{2}) = \{0.69(4), 0.67(6), 0.84(10)\}, \quad \int_{-1}^{1} dx \, H_{T}(x, \frac{1}{3}, -1.02 \,\text{GeV}^{2}) = 0.45(4),$$

$$\int_{-1}^{1} dx \, x \, H_{T}(x, 0, -0.69 \,\text{GeV}^{2}) = \{0.20(2), 0.21(2), 0.24(3)\}, \quad \int_{-1}^{1} dx \, x \, H_{T}(x, \frac{1}{3}, -1.02 \,\text{GeV}^{2}) = 0.15(2).$$

$$A_{T10}(-0.69 \,\text{GeV}^{2}) = \{0.65(4), 0.65(6), 0.82(10)\}, \quad A_{T10}(-1.02 \,\text{GeV}^{2}) = 0.49(5)$$

★ Understanding of systematic effects through sum rules

Sum rules exist

for quasi-GPDs

$$\int_{-1}^{1} dx \, H_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, H_{Tq}(x,\xi,t,P_3) = A_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, E_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, E_{Tq}(x,\xi,t,P_3) = B_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, \widetilde{H}_{T}(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{H}_{Tq}(x,\xi,t,P_{3}) = \widetilde{A}_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, \widetilde{E}_{T}(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{E}_{Tq}(x,\xi,t,P_{3}) = 0.$$

$$\int_{-1}^{1} dx \, x \, H_T(x, \xi, t) = A_{T20}(t) \,,$$

$$\int_{-1}^{1} dx \, x \, E_T(x, \xi, t) = B_{T20}(t) \,,$$

$$\int_{-1}^{1} dx \, x \, \widetilde{H}_{T}(x, \xi, t) = \widetilde{A}_{T20}(t) \,,$$

$$\int_{-1}^{1} dx \, x \, \widetilde{E}_T(x,\xi,t) = 2\xi \widetilde{B}_{T21}(t) \,.$$

[S. Bhattacharya et al., PRD 102, 054021 (2020)]

★ Lattice data on transversity GPDs

$$\int_{-2}^{2} dx H_{Tq}(x, 0, -0.69 \,\text{GeV}^{2}, P_{3}) = \{0.65(4), 0.64(6), 0.81(10)\}, \quad \int_{-2}^{2} dx H_{Tq}(x, \frac{1}{3}, -1.02 \,\text{GeV}^{2}, 1.25 \,\text{GeV}) = 0.49(5),$$

$$\int_{-1}^{1} dx \, H_{T}(x, 0, -0.69 \,\text{GeV}^{2}) = \{0.69(4), 0.67(6), 0.84(10)\}, \quad \int_{-1}^{1} dx \, H_{T}(x, \frac{1}{3}, -1.02 \,\text{GeV}^{2}) = 0.45(4),$$

$$\int_{-1}^{1} dx \, x \, H_{T}(x, 0, -0.69 \,\text{GeV}^{2}) = \{0.20(2), 0.21(2), 0.24(3)\}, \quad \int_{-1}^{1} dx \, x \, H_{T}(x, \frac{1}{3}, -1.02 \,\text{GeV}^{2}) = 0.15(2).$$

$$A_{T10}(-0.69 \,\text{GeV}^{2}) = \{0.65(4), 0.65(6), 0.82(10)\}, \quad A_{T10}(-1.02 \,\text{GeV}^{2}) = 0.49(5)$$

- lowest moments the same between quasi-GPDs and GPDs
- Values of moments decrease as t increases
- Higher moments suppressed compared to the lowest

What possible extensions can we achieve?

What possible extensions can we achieve?

★ Twist-3 GPDs

[S. Bhattacharya et al., PoS LATTICE2021 (2022) 054 arXiv:2112.05538]

$$\bigstar$$
 \widetilde{H} + \widetilde{G}_2 similar in magnitude to \widetilde{H}

- ★ Calculation expected to be performed in symmetric frame to extract the "standard" GPDs
- \star Symmetric frame requires separate calculations at each t

- ★ Calculation expected to be performed in symmetric frame to extract the "standard" GPDs
- \star Symmetric frame requires separate calculations at each t

Let's rethink calculation of GPDs!

- ★ Calculation expected to be performed in symmetric frame to extract the "standard" GPDs
- \star Symmetric frame requires separate calculations at each t

Let's rethink calculation of GPDs!

1st goal:

Extraction of GPDs in the symmetric frame using lattice correlators calculated in non-symmetric frames

- ★ Calculation expected to be performed in symmetric frame to extract the "standard" GPDs
- \star Symmetric frame requires separate calculations at each t

Let's rethink calculation of GPDs!

1st goal:

Extraction of GPDs in the symmetric frame using lattice correlators calculated in non-symmetric frames

2nd goal:

New definition of Lorentz covariant quasi-GPDs that may have faster convergence to light-cone GPDs (elimination of kinematic corrections)

Theoretical setup

[S. Bhattacharya et al., arXiv:2209.05373]

* Parametrization of matrix elements in Lorentz invariant amplitudes

$$F^{\mu}_{\lambda,\lambda'} = \bar{u}(p',\lambda') \left[\frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$$

Advantages

- Applicable to any kinematic frame and have definite symmetries
- Lorentz invariant amplitudes A_i can be related to the standard H, E GPDs
- Quasi H, E may be redefined (Lorentz covariant) to eliminate $1/P_3$ contributions:

Theoretical setup

[S. Bhattacharya et al., arXiv:2209.05373]

* Parametrization of matrix elements in Lorentz invariant amplitudes

$$F^{\mu}_{\lambda,\lambda'} = \bar{u}(p',\lambda') \left[\frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$$

Advantages

- Applicable to any kinematic frame and have definite symmetries
- Lorentz invariant amplitudes A_i can be related to the standard H, E GPDs
- Quasi H, E may be redefined (Lorentz covariant) to eliminate $1/P_3$ contributions:

$$H(z \cdot P, z \cdot \Delta, t = \Delta^2, z^2) = A_1 + \frac{\Delta_{s/a} \cdot z}{P_{avg, s/a} \cdot z} A_3$$

$$E(z \cdot P, z \cdot \Delta, t = \Delta^{2}, z^{2}) = -A_{1} - \frac{\Delta_{s/a} \cdot z}{P_{avg, s/a} \cdot z} A_{3} + 2A_{5} + 2P_{avg, s/a} \cdot z A_{6} + 2\Delta_{s/a} \cdot z A_{8}$$

Theoretical setup

[S. Bhattacharya et al., arXiv:2209.05373]

Parametrization of matrix elements in Lorentz invariant amplitudes

$$F^{\mu}_{\lambda,\lambda'} = \bar{u}(p',\lambda') \left[\frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$$

Advantages

- Applicable to any kinematic frame and have definite symmetries
- Lorentz invariant amplitudes A_i can be related to the standard H, E GPDs
- Quasi H, E may be redefined (Lorentz covariant) to eliminate $1/P_3$ contributions:

$$H(z \cdot P, z \cdot \Delta, t = \Delta^2, z^2) = A_1 + \frac{\Delta_{s/a} \cdot z}{P_{avg, s/a} \cdot z} A_3$$

$$E(z \cdot P, z \cdot \Delta, t = \Delta^{2}, z^{2}) = -A_{1} - \frac{\Delta_{s/a} \cdot z}{P_{avg, s/a} \cdot z} A_{3} + 2A_{5} + 2P_{avg, s/a} \cdot z A_{6} + 2\Delta_{s/a} \cdot z A_{8}$$

Proof-of-concept calculation (zero quasi-skewness):

$$\overrightarrow{p}_f^s = \overrightarrow{P} + \frac{\overrightarrow{Q}}{2}, \qquad \overrightarrow{p}_i^s = \overrightarrow{P} - \frac{\overrightarrow{Q}}{2} \qquad t^s = -\overrightarrow{Q}^2$$

$$\overrightarrow{p}_{i}^{s} = \overrightarrow{P} - \frac{\overrightarrow{Q}}{2}$$

$$t^s = -\overrightarrow{Q}^2$$

- asymmetric frame:

$$\overrightarrow{p}_f^{a} = \overrightarrow{P},$$

$$\overrightarrow{p}_{i}^{a} = \overrightarrow{P} - \overrightarrow{Q}$$

$$\overrightarrow{p}_f^a = \overrightarrow{P}, \qquad \overrightarrow{p}_i^a = \overrightarrow{P} - \overrightarrow{Q} \qquad t^a = -\overrightarrow{Q}^2 + (E_f - E_i)^2$$

Matrix element decomposition

Symmetric

$$C_s = \frac{2m^2}{E(E+m)}$$

$$\Gamma_0 = \frac{1}{2}(1 + \gamma^0)$$

$$\Gamma_j = \frac{i}{4}(1+\gamma^0)\gamma^5\gamma^j$$

$$(j=1,2,3)$$

$$\Pi_s^0(\Gamma_0) = C_s \left(\frac{E\left(E(E+m) - P_3^2\right)}{2m^3} A_1 + \frac{(E+m)\left(-E^2 + m^2 + P_3^2\right)}{m^3} A_5 + \frac{EP_3\left(-E^2 + m^2 + P_3^2\right)z}{m^3} A_6 \right)$$

$$\Pi_s^0(\Gamma_1) = i\,C_s\,\left(rac{EP_3Q_2}{4m^3}\,A_1 - rac{(E+m)P_3Q_2}{2m^3}\,A_5 - rac{E\left(P_3^2 + m(E+m)
ight)zQ_2}{2m^3}\,A_6
ight)$$

$$\Pi_s^0(\Gamma_2) = i C_s \left(-\frac{E P_3 Q_1}{4m^3} A_1 + \frac{(E+m) P_3 Q_1}{2m^3} A_5 + \frac{E \left(P_3^2 + m(E+m) \right) z Q_1}{2m^3} A_6 \right)$$

Asymmetric

$$C_a = \frac{2m^2}{\sqrt{E_i E_f (E_i + m)(E_f + m)}}$$

$$\Pi_0^a(\Gamma_0) = C_a \left(-\frac{(E_f + E_i)(E_f - E_i - 2m)(E_f + m)}{8m^3} A_1 - \frac{(E_f - E_i - 2m)(E_f + m)(E_f - E_i)}{4m^3} A_3 \right. \\
+ \frac{(E_i - E_f)P_3z}{4m} A_4 + \frac{(E_f + E_i)(E_f + m)(E_f - E_i)}{4m^3} A_5 + \frac{E_f(E_f + E_i)P_3(E_f - E_i)z}{4m^3} A_6 \\
+ \frac{E_f P_3(E_f - E_i)^2 z}{2m^3} A_8 \right)$$

$$\Pi_0^a(\Gamma_1) = i C_a \left(\frac{(E_f + E_i)P_3Q_2}{8m^3} A_1 + \frac{(E_f - E_i)P_3Q_2}{4m^3} A_3 + \frac{(E_f + m)Q_2z}{4m} A_4 - \frac{(E_f + E_i + 2m)P_3Q_2}{4m^3} A_5 - \frac{E_f(E_f + E_i)(E_f + m)Q_2z}{4m^3} A_6 - \frac{E_f(E_f - E_i)(E_f + m)Q_2z}{2m^3} A_8 \right)$$

$$\Pi_0^a(\Gamma_2) = i C_a \left(-\frac{(E_f + E_i)P_3Q_1}{8m^3} A_1 - \frac{(E_f - E_i)P_3Q_1}{4m^3} A_3 - \frac{(E_f + m)Q_1z}{4m} A_4 + \frac{(E_f + E_i + 2m)P_3Q_1}{4m^3} A_5 + \frac{E_f(E_f + E_i)(E_f + m)Q_1z}{4m^3} A_6 + \frac{E_f(E_f - E_i)(E_f + m)Q_1z}{2m^3} A_8 \right)$$

Matrix element decomposition

Symmetric

$$C_s = \frac{2m^2}{E(E+m)}$$

$$\Gamma_0 = \frac{1}{2}(1 + \gamma^0)$$

$$\Gamma_j = \frac{i}{4}(1+\gamma^0)\gamma^5\gamma^j$$

$$(j=1,2,3)$$

$$\Pi_s^0(\Gamma_0) = C_s \left(\frac{E\left(E(E+m) - P_3^2\right)}{2m^3} A_1 + \frac{(E+m)\left(-E^2 + m^2 + P_3^2\right)}{m^3} A_5 + \frac{EP_3\left(-E^2 + m^2 + P_3^2\right)z}{m^3} A_6 \right)$$

$$\Pi_s^0(\Gamma_1) = i \, C_s \, \left(\frac{E P_3 Q_2}{4m^3} \, A_1 - \frac{(E+m) P_3 Q_2}{2m^3} \, A_5 - \frac{E \left(P_3^2 + m(E+m)\right) z Q_2}{2m^3} \, A_6 \right)$$

$$\Pi_s^0(\Gamma_2) = i \, C_s \, \left(- \frac{E P_3 Q_1}{4m^3} \, A_1 + \frac{(E+m) P_3 Q_1}{2m^3} \, A_5 + \frac{E \left(P_3^2 + m(E+m) \right) z Q_1}{2m^3} \, A_6 \right)$$

Novel feature: z-dependence

Asymmetric

$$C_a = \frac{2m^2}{\sqrt{E_i E_f (E_i + m)(E_f + m)}}$$

$$\Pi_0^a(\Gamma_0) = C_a \left(-\frac{(E_f + E_i)(E_f - E_i - 2m)(E_f + m)}{8m^3} A_1 - \frac{(E_f - E_i - 2m)(E_f + m)(E_f - E_i)}{4m^3} A_3 + \frac{(E_i - E_f)P_3z}{4m} A_4 + \frac{(E_f + E_i)(E_f + m)(E_f - E_i)}{4m^3} A_5 + \frac{E_f(E_f + E_i)P_3(E_f - E_i)z}{4m^3} A_6 + \frac{E_fP_3(E_f - E_i)^2z}{2m^3} A_8 \right)$$

$$\Pi_0^a(\Gamma_1) = i C_a \left(\frac{(E_f + E_i)P_3Q_2}{8m^3} A_1 + \frac{(E_f - E_i)P_3Q_2}{4m^3} A_3 + \frac{(E_f + m)Q_2z}{4m} A_4 - \frac{(E_f + E_i + 2m)P_3Q_2}{4m^3} A_5 - \frac{E_f(E_f + E_i)(E_f + m)Q_2z}{4m^3} A_6 - \frac{E_f(E_f - E_i)(E_f + m)Q_2z}{2m^3} A_8 \right)$$

$$\Pi_0^a(\Gamma_2) = i C_a \left(-\frac{(E_f + E_i)P_3Q_1}{8m^3} A_1 - \frac{(E_f - E_i)P_3Q_1}{4m^3} A_3 - \frac{(E_f + m)Q_1z}{4m} A_4 + \frac{(E_f + E_i + 2m)P_3Q_1}{4m^3} A_5 + \frac{E_f(E_f + E_i)(E_f + m)Q_1z}{4m^3} A_6 + \frac{E_f(E_f - E_i)(E_f + m)Q_1z}{2m^3} A_8 \right)$$

Matrix element decomposition

Symmetric

$$C_s = \frac{2m^2}{E(E+m)}$$

$$\Gamma_0 = \frac{1}{2}(1 + \gamma^0)$$

$$\Gamma_j = \frac{i}{4}(1+\gamma^0)\gamma^5\gamma^j$$

$$(j=1,2,3)$$

$$\Pi_s^0(\Gamma_0) = C_s \left(\frac{E\left(E(E+m) - P_3^2\right)}{2m^3} A_1 + \frac{(E+m)\left(-E^2 + m^2 + P_3^2\right)}{m^3} A_5 + \frac{EP_3\left(-E^2 + m^2 + P_3^2\right)z}{m^3} A_6 \right)$$

$$\Pi_s^0(\Gamma_1) = i \, C_s \, \left(\frac{E P_3 Q_2}{4m^3} \, A_1 - \frac{(E+m) P_3 Q_2}{2m^3} \, A_5 - \frac{E \left(P_3^2 + m(E+m) \right) z Q_2}{2m^3} \, A_6 \right)$$

$$\Pi_s^0(\Gamma_2) = i\,C_s\,\left(-rac{EP_3Q_1}{4m^3}\,A_1 + rac{(E+m)P_3Q_1}{2m^3}\,A_5 + rac{E\left(P_3^2 + m(E+m)
ight)zQ_1}{2m^3}\,A_6
ight)$$

Novel feature: z-dependence

Asymmetric

$$C_a = \frac{2m^2}{\sqrt{E_i E_f (E_i + m)(E_f + m)}}$$

$$\Pi_0^a(\Gamma_0) = C_a \left(-\frac{(E_f + E_i)(E_f - E_i - 2m)(E_f + m)}{8m^3} A_1 - \frac{(E_f - E_i - 2m)(E_f + m)(E_f - E_i)}{4m^3} A_3 + \frac{(E_i - E_f)P_3z}{4m} A_4 + \frac{(E_f + E_i)(E_f + m)(E_f - E_i)}{4m^3} A_5 + \frac{E_f(E_f + E_i)P_3(E_f - E_i)z}{4m^3} A_6 + \frac{E_fP_3(E_f - E_i)^2z}{2m^3} A_8 \right)$$

No definite symmetries for Π_{μ}^{a}

$$\Pi_0^a(\Gamma_1) = i C_a \left(\frac{(E_f + E_i)P_3Q_2}{8m^3} A_1 + \frac{(E_f - E_i)P_3Q_2}{4m^3} A_3 + \frac{(E_f + m)Q_2z}{4m} A_4 - \frac{(E_f + E_i + 2m)P_3Q_2}{4m^3} A_5 - \frac{E_f(E_f + E_i)(E_f + m)Q_2z}{4m^3} A_6 - \frac{E_f(E_f - E_i)(E_f + m)Q_2z}{2m^3} A_8 \right)$$

$$\Pi_0^a(\Gamma_2) = i C_a \left(-\frac{(E_f + E_i)P_3Q_1}{8m^3} A_1 - \frac{(E_f - E_i)P_3Q_1}{4m^3} A_3 - \frac{(E_f + m)Q_1z}{4m} A_4 + \frac{(E_f + E_i + 2m)P_3Q_1}{4m^3} A_5 + \frac{E_f(E_f + E_i)(E_f + m)Q_1z}{4m^3} A_6 + \frac{E_f(E_f - E_i)(E_f + m)Q_1z}{2m^3} A_8 \right)$$

Lorentz-Invariant amplitudes

Symmetric

$$A_1 = \frac{\left(m(E+m) + P_3^2\right)}{E(E+m)} \Pi_0^s(\Gamma_0) - i \frac{P_3 Q_1}{2E(E+m)} \Pi_0^s(\Gamma_2) - \frac{Q_1}{2E} \Pi_2^s(\Gamma_3)$$

$$A_5 = -\frac{E}{Q_1} \Pi_2^s(\Gamma_3)$$

$$A_6 = \frac{P_3}{2Ez(E+m)} \Pi_0^s(\Gamma_0) + i \frac{\left(P_3^2 - E(E+m)\right)}{EQ_1 z(E+m)} \Pi_0^s(\Gamma_2) + \frac{P_3}{EQ_1 z} \Pi_2^s(\Gamma_3)$$

$$A_5 = \frac{m^2 P_3}{E_f(E_f + m)(E_i + m)} \frac{\Pi_2^a(\Gamma_1)}{C_a} - \frac{(E_f + E_i)m^2}{E_f(E_i + m)Q_1} \frac{\Pi_2^a(\Gamma_3)}{C_a}$$

$$A_{6} = \frac{P_{3}m^{2}}{E_{f}^{2}(E_{f}+m)(E_{i}+m)z} \frac{\Pi_{0}^{a}(\Gamma_{0})}{C_{a}} + i \frac{(E_{f}-E_{i}-2m)m^{2}}{E_{f}^{2}(E_{i}+m)Q_{1}z} \frac{\Pi_{0}^{a}(\Gamma_{2})}{C_{a}} + i \frac{(E_{i}-E_{f})P_{3}m^{2}}{E_{f}^{2}(E_{f}+m)(E_{i}+m)Q_{1}z} \frac{\Pi_{1}^{a}(\Gamma_{0})}{C_{a}} + \frac{(-E_{f}+E_{i}+2m)m^{2}}{E_{f}^{2}(E_{f}+E_{i})(E_{i}+m)z} \frac{\Pi_{0}^{a}(\Gamma_{1})}{C_{a}} + \frac{2P_{3}m^{2}}{E_{f}^{2}(E_{i}+m)Q_{1}z} \frac{\Pi_{0}^{a}(\Gamma_{0})}{C_{a}}$$

- Asymmetric frame equations more complex
- A_i have definite symmetries
- System of 8 independent matrix elements to disentangle the A_i

Lorentz-Invariant amplitudes

$$A_1 = \frac{(m(E+m)+P_3^2)}{E(E+m)}\Pi_0^s(\Gamma_0) - i\frac{P_3Q_1}{2E(E+m)}\Pi_0^s(\Gamma_2) - \frac{Q_1}{2E}\Pi_2^s(\Gamma_3)$$

$$A_5 = -\frac{E}{Q_1}\Pi_2^s(\Gamma_3)$$

$$A_6 = \frac{P_3}{2Ez(E+m)}\Pi_0^s(\Gamma_0) + i\frac{(P_3^2 - E(E+m))}{EQ_1z(E+m)}\Pi_0^s(\Gamma_2) + \frac{P_3}{EQ_1z}\Pi_2^s(\Gamma_3)$$

$$A_1 = \frac{2m^2}{E_f(E_i+m)}\frac{\Pi_0^a(\Gamma_0)}{C_a} + i\frac{2(E_f - E_i)P_3m^2}{E_f(E_f + m)(E_i + m)Q_1}\frac{\Pi_0^a(\Gamma_2)}{C_a} + \frac{2(E_i - E_f)P_3m^2}{E_f(E_f + E_i)(E_f + m)(E_i + m)}\frac{\Pi_1^a(\Gamma_2)}{C_a} + i\frac{2(E_i - E_f)P_3m^2}{E_f(E_i + m)Q_1}\frac{\Pi_1^a(\Gamma_2)}{C_a} + \frac{2(E_i - E_f)P_3m^2}{E_f(E_f + E_i)(E_f + m)(E_i + m)}\frac{\Pi_1^a(\Gamma_2)}{C_a}$$

$$A_5 = \frac{m^2P_3}{E_f(E_f + m)(E_i + m)}\frac{\Pi_2^a(\Gamma_1)}{C_a} - \frac{(E_f + E_i)m^2}{E_f(E_f + m)Q_1}\frac{\Pi_2^a(\Gamma_3)}{C_a}$$

$$A_6 = \frac{P_3m^2}{E_f^2(E_f + m)(E_i + m)z}\frac{\Pi_0^a(\Gamma_2)}{C_a} + i\frac{(E_f - E_i - 2m)m^2}{E_f^2(E_f + m)(E_i + m)Q_1z}\frac{\Pi_0^a(\Gamma_2)}{C_a} + i\frac{(E_i - E_f)P_3m^2}{E_f^2(E_f + m)(E_i + m)Q_1z}\frac{\Pi_1^a(\Gamma_2)}{C_a} + i\frac{(E_f - E_i - 2m)m^2}{E_f^2(E_f + m)(E_i + m)Q_1z}\frac{\Pi_1^a(\Gamma_3)}{C_a} + i\frac{(E_f - E_f - E_f)P_3m^2}{E_f^2(E_f + E_i)(E_f + m)Q_1z}\frac{\Pi_1^a(\Gamma_3)}{C_a}$$

- ★ Asymmetric frame equations more complex
- \star A_i have definite symmetries
- \bigstar System of 8 independent matrix elements to disentangle the A_i

Parameters of calculation

★ Nf=2+1+1 twisted mass (TM) fermions & clover improvement

Pion mass: 260 MeV

Lattice spacing: 0.093 fm

Volume: 32³ x 64

Spatial extent: 3 fm

- **★** Calculation:
 - isovector combination
 - zero skewness
 - T_{sink}=1 fm

frame	P_3 [GeV]	$\mathbf{Q}\left[rac{2\pi}{L} ight]$	$-t [\mathrm{GeV}^2]$	ξ	$N_{ m ME}$	$N_{ m confs}$	$N_{ m src}$	$N_{ m tot}$
symm	1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	249	8	15936
non-symm	1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.64	0	8	269	8	17216

- **★** Computational cost:
 - symmetric frame 4 times more expensive than asymmetric frame for same set of \overrightarrow{Q} (requires separate calculations at each \emph{t})

Parameters of calculation

★ Nf=2+1+1 twisted mass (TM) fermions & clover improvement

260 MeV Pion mass:

Lattice spacing: 0.093 fm

 $32^3 \times 64$

3 fm

- ★ Calculation:
 - isovector combination
 - zero skewness
 - T_{sink}=1 fm

frame	P_3 [GeV]	$\mathbf{Q} \; [rac{2\pi}{L}]$	$-t \; [\mathrm{GeV^2}]$	ξ	$N_{ m ME}$	$N_{ m confs}$	$N_{ m src}$	$N_{ m tot}$
symm	1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	249	8	15936
non-symm	1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.64	0	8	269	8	17216

Small difference:

$$t^{s} = -\overrightarrow{Q}^{2}$$

$$t^{s} = -\overrightarrow{Q}^{2} \qquad t^{a} = -\overrightarrow{Q}^{2} + (E_{f} - E_{i})^{2}$$

$$A(-0.64 \text{GeV}^2) \sim A(-0.69 \text{GeV}^2)$$

- Computational cost:
 - symmetric frame 4 times more expensive than asymmetric frame for same set of \overrightarrow{Q} (requires separate calculations at each t)

Results: A_i

- \star A_1, A_5 dominant contributions
- \star Full agreement in two frames for both Re and Im parts of A_1, A_5
- \star Remaining A_i suppressed (at least for this kinematic setup and $\xi = 0$)

Mapping of $\{\Pi_H, \Pi_E\}$ to A_i using $F^{[\gamma^0]} \sim \left[\gamma^0 H_{Q(0)}(x, \xi, t; P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M}E_{Q(0)}(x, \xi, t; P^3)\right]$ in each frame leading to frame dependent relations:

$$\Pi_H^s = A_1 + \frac{zQ_1^2}{2P_3}A_6$$

$$\Pi_E^s = -A_1 - \frac{m^2z}{P_3}A_4 + 2A_5 - \frac{z\left(4E^2 + Qx^2 + Qy^2\right)}{2P_3}A_6$$

$$\Pi_{H}^{a} = A_{1} + \frac{Q_{0}}{P_{0}}A_{3} + \frac{m^{2}zQ_{0}}{2P_{0}P_{3}}A_{4} + \frac{z(Q_{0}^{2} + Q_{\perp}^{2})}{2P_{3}}A_{6} + \frac{z(Q_{0}^{3} + Q_{0}Q_{\perp}^{2})}{2P_{0}P_{3}}A_{8}$$

$$\begin{split} \Pi_E^a &= -A_1 - \frac{Q_0}{P_0} A_3 - \frac{m^2 z (Q_0 + 2P_0)}{2P_0 P_3} A_4 + 2A_5 \\ &- \frac{z \left(Q_0^2 + 2P_0 Q_0 + 4P_0^2 + Q_\perp^2\right)}{2P_3} A_6 - \frac{z Q_0 \left(Q_0^2 + 2Q_0 P_0 + 4P_0^2 + Q_\perp^2\right)}{2P_0 P_3} A_8 \end{split}$$

Mapping of $\{\Pi_H, \Pi_E\}$ to A_i using $F^{[\gamma^0]} \sim \left[\gamma^0 H_{Q(0)}(x, \xi, t; P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M}E_{Q(0)}(x, \xi, t; P^3)\right]$ in each frame leading to frame dependent relations:

$$\Pi_H^s = A_1 + \frac{zQ_1^2}{2P_3}A_6$$

$$\Pi_E^s = -A_1 - \frac{m^2z}{P_3}A_4 + 2A_5 - \frac{z\left(4E^2 + Qx^2 + Qy^2\right)}{2P_3}A_6$$

$$\Pi_{H}^{a} = A_{1} + \frac{Q_{0}}{P_{0}}A_{3} + \frac{m^{2}zQ_{0}}{2P_{0}P_{3}}A_{4} + \frac{z(Q_{0}^{2} + Q_{\perp}^{2})}{2P_{3}}A_{6} + \frac{z(Q_{0}^{3} + Q_{0}Q_{\perp}^{2})}{2P_{0}P_{3}}A_{8}$$

$$\begin{split} \Pi_E^a &= -A_1 - \frac{Q_0}{P_0} A_3 - \frac{m^2 z (Q_0 + 2P_0)}{2P_0 P_3} A_4 + 2A_5 \\ &- \frac{z \left(Q_0^2 + 2P_0 Q_0 + 4P_0^2 + Q_\perp^2\right)}{2P_3} A_6 - \frac{z Q_0 \left(Q_0^2 + 2Q_0 P_0 + 4P_0^2 + Q_\perp^2\right)}{2P_0 P_3} A_8 \end{split}$$

\star Definition of Lorentz invariant $\Pi_H \& \Pi_E$

$$\Pi_H^{\text{impr}} = A_1$$

$$\Pi_E^{\text{impr}} = -A_1 + 2A_5 + 2zP_3A_6$$

Mapping of $\{\Pi_H, \Pi_E\}$ to A_i using $F^{[\gamma^0]} \sim \left[\gamma^0 H_{Q(0)}(x, \xi, t; P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M}E_{Q(0)}(x, \xi, t; P^3)\right]$ in each frame leading to frame dependent relations:

$$\Pi_H^s = A_1 + \frac{zQ_1^2}{2P_3}A_6$$

$$\Pi_E^s = -A_1 - \frac{m^2 z}{P_3} A_4 + 2A_5 - \frac{z \left(4E^2 + Qx^2 + Qy^2\right)}{2P_3} A_6$$

1st approach: extraction of $\{\Pi_H^S, \Pi_F^S\}$ using A_i from any frame (universal)

$$\Pi_{H}^{a} = A_{1} + \frac{Q_{0}}{P_{0}}A_{3} + \frac{m^{2}zQ_{0}}{2P_{0}P_{3}}A_{4} + \frac{z(Q_{0}^{2} + Q_{\perp}^{2})}{2P_{3}}A_{6} + \frac{z(Q_{0}^{3} + Q_{0}Q_{\perp}^{2})}{2P_{0}P_{3}}A_{8}$$

$$\begin{split} \Pi_E^a &= -A_1 - \frac{Q_0}{P_0} A_3 - \frac{m^2 z (Q_0 + 2P_0)}{2P_0 P_3} A_4 + 2A_5 \\ &- \frac{z \left(Q_0^2 + 2P_0 Q_0 + 4P_0^2 + Q_\perp^2\right)}{2P_3} A_6 - \frac{z Q_0 \left(Q_0^2 + 2Q_0 P_0 + 4P_0^2 + Q_\perp^2\right)}{2P_0 P_3} A_8 \end{split}$$

Definition of Lorentz invariant $\Pi_H \& \Pi_E$

$$\Pi_H^{\text{impr}} = A_1$$

$$\Pi_E^{\text{impr}} = -A_1 + 2A_5 + 2zP_3A_6$$

Mapping of $\{\Pi_H, \Pi_E\}$ to A_i using $F^{[\gamma^0]} \sim \left[\gamma^0 H_{Q(0)}(x, \xi, t; P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M}E_{Q(0)}(x, \xi, t; P^3)\right]$ in each frame leading to frame dependent relations:

$$\Pi_H^s = A_1 + \frac{zQ_1^2}{2P_3}A_6$$

$$\Pi_E^s = -A_1 - \frac{m^2 z}{P_3} A_4 + 2A_5 - \frac{z \left(4E^2 + Qx^2 + Qy^2\right)}{2P_3} A_6$$

$$\Pi_{H}^{a} = A_{1} + \frac{Q_{0}}{P_{0}}A_{3} + \frac{m^{2}zQ_{0}}{2P_{0}P_{3}}A_{4} + \frac{z(Q_{0}^{2} + Q_{\perp}^{2})}{2P_{3}}A_{6} + \frac{z(Q_{0}^{3} + Q_{0}Q_{\perp}^{2})}{2P_{0}P_{3}}A_{8}$$

$$\begin{split} \Pi_E^a &= -A_1 - \frac{Q_0}{P_0} A_3 - \frac{m^2 z (Q_0 + 2P_0)}{2P_0 P_3} A_4 + 2A_5 \\ &- \frac{z \left(Q_0^2 + 2P_0 Q_0 + 4P_0^2 + Q_\perp^2\right)}{2P_3} A_6 - \frac{z Q_0 \left(Q_0^2 + 2Q_0 P_0 + 4P_0^2 + Q_\perp^2\right)}{2P_0 P_3} A_8 \end{split}$$

1st approach: extraction of $\{\Pi_H^S, \Pi_F^S\}$ using A_i from any frame (universal)

2nd approach: extraction of $\{\Pi_H, \Pi_F\}$ from a purely asymmetric frame; GPDs differ in functional form from $\{\Pi_H^S, \Pi_E^S\}$

Definition of Lorentz invariant $\Pi_H \& \Pi_E$

$$\Pi_{H}^{\text{impr}} = A_{1}$$

$$\Pi_{E}^{\text{impr}} = -A_{1} + 2A_{5} + 2zP_{3}A_{6}$$

Mapping of $\{\Pi_H, \Pi_E\}$ to A_i using $F^{[\gamma^0]} \sim \left[\gamma^0 H_{Q(0)}(x, \xi, t; P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M}E_{Q(0)}(x, \xi, t; P^3)\right]$ in each frame leading to frame dependent relations:

$$\Pi_H^s = A_1 + \frac{zQ_1^2}{2P_3}A_6$$

$$\Pi_E^s = -A_1 - \frac{m^2 z}{P_3} A_4 + 2A_5 - \frac{z \left(4E^2 + Qx^2 + Qy^2\right)}{2P_3} A_6$$

$$\Pi_{H}^{a} = A_{1} + \frac{Q_{0}}{P_{0}}A_{3} + \frac{m^{2}zQ_{0}}{2P_{0}P_{3}}A_{4} + \frac{z(Q_{0}^{2} + Q_{\perp}^{2})}{2P_{3}}A_{6} + \frac{z(Q_{0}^{3} + Q_{0}Q_{\perp}^{2})}{2P_{0}P_{3}}A_{8}$$

$$\begin{split} \Pi_E^a &= -A_1 - \frac{Q_0}{P_0} A_3 - \frac{m^2 z (Q_0 + 2P_0)}{2P_0 P_3} A_4 + 2A_5 \\ &- \frac{z \left(Q_0^2 + 2P_0 Q_0 + 4P_0^2 + Q_\perp^2\right)}{2P_2} A_6 - \frac{z Q_0 \left(Q_0^2 + 2Q_0 P_0 + 4P_0^2 + Q_\perp^2\right)}{2P_0 P_2} A_8 \end{split}$$

1st approach: extraction of $\{\Pi_H^s, \Pi_E^s\}$ using A_i from any frame (universal)

2nd approach: extraction of $\{\Pi_H, \Pi_E\}$ from a purely asymmetric frame; GPDs differ in functional form from $\{\Pi_H^s, \Pi_E^s\}$

\star Definition of Lorentz invariant $\Pi_H \& \Pi_E$

$$\Pi_{H}^{\text{impr}} = A_{1}$$

$$\Pi_{E}^{\text{impr}} = -A_{1} + 2A_{5} + 2zP_{3}A_{6}$$

 $\mathbf{3}^{\mathrm{rd}}$ approach: use redefined Lorentz covariant $\{\Pi_H,\Pi_E\}$ in desired frame

Results: H - GPD

Similar results for H and \mathcal{H} for both frames (agreement not by construction)

Differences between E and \mathscr{E} for both frames (agreement not by construction)

Results: H - GPD

★ Tomographic imaging of proton has central role in the science program of JLab

- ★ Tomographic imaging of proton has central role in the science program of JLab
- ★ JLab Upgrade an important topic in the Hot & Cold QCD Town Hall Meeting

- ★ Tomographic imaging of proton has central role in the science program of JLab
- JLab Upgrade an important topic in the Hot & Cold QCD Town Hall Meeting

★ JLab Upgrade included in the survey for the Town Hall Meeting recommendations

- ★ Lattice QCD data on GPDs will play an important role in the pre-EIC era and can complement experimental efforts of JLab@12GeV
- ★ New proposal for Lorentz invariant decomposition has great advantages:
 - significant reduction of computational cost
 - access to a broad range of $\,t\,$ and $\,\xi\,$
- ★ Future calculations have the potential to transform the field of GPDs
- ★ Essential to continue support the field and have access to state-of-the-art computational resources
- * Synergy with phenomenology is an exciting prospect!

- ★ Lattice QCD data on GPDs will play an important role in the pre-EIC era and can complement experimental efforts of JLab@12GeV
- ★ New proposal for Lorentz invariant decomposition has great advantages:
 - significant reduction of computational cost
 - access to a broad range of $\,t\,$ and $\,\xi\,$
- ★ Future calculations have the potential to transform the field of GPDs
- ★ Essential to continue support the field and have access to state-of-the-art computational resources
- * Synergy with phenomenology is an exciting prospect!

DOE Early Career Award (NP) Grant No. DE-SC0020405

BACKUP

 \star Statistical noise increases with P_3 , t

 \star Statistical noise increases with P_3 , t

 \star Statistical noise increases with P_3 , t

- ♦ Implementation in GPDs nontrivial due to momentum transfer
- Standard definition of GPDs in Breit (symmetric) frame separate calculations at each t
- ↑ Matrix elements decompose into more than one GPDs
 at least 2 parity projectors are needed to disentangle GPDs
- Nonzero skewness nontrivial matching
- P₃ must be chosen carefully due to UV cutoff ($a^{-1} \sim 2 \, \text{GeV}$)

 \star Statistical noise increases with P_3 , t

- ♦ Implementation in GPDs nontrivial due to momentum transfer
- Standard definition of GPDs in Breit (symmetric) frame separate calculations at each t
- ◆ Matrix elements decompose into more than one GPDs at least 2 parity projectors are needed to disentangle GPDs
- Nonzero skewness nontrivial matching
- P₃ must be chosen carefully due to UV cutoff $(a^{-1} \sim 2 \, \text{GeV})$

 \star Statistical noise increases with P_3 , t

use of momentum smearing method

- Implementation in GPDs nontrivial due to momentum transfer
- ◆ Standard definition of GPDs in Breit (symmetric) frame separate calculations at each t
- ♦ Matrix elements decompose into more than one GPDs at least 2 parity projectors are needed to disentangle GPDs
- Nonzero skewness nontrivial matching
- P₃ must be chosen carefully due to UV cutoff ($a^{-1} \sim 2 \, \text{GeV}$)

Ref.	$m_{\pi}(\mathrm{MeV})$	$P_3({ m GeV})$	$\left. \frac{n}{s} \right _{z=0}$
quasi/pseudo [59,95]	130	1.38	6%
pseudo [92]	172	2.10	8%
current-current [98]	278	1.65	19% *
quasi [72]	300	1.72	6% †
quasi/pseudo [77]	300	2.45	8% †
quasi/pseudo [70]	310	1.84	3% †
twist-3 [148]	260	1.67	15%
s-quark quasi [113]	260	1.24	31%
s-quark quasi [112]	310	1.30	43% **
gluon pseudo [134]	310	1.73	39%
quasi-GPDs [170] -t=0.69GeV ²	260	1.67	23%

quasi-GPDs [169] -t=0.92GeV²

[M. Constantinou, EPJA 57 (2021) 77]

310

1.74

59%

[†] At $T_{\rm sink} < 1$ fm.

 $[\]star$ At smallest z value used, z=2.

^{**} At maximum value of imaginary part, z = 4.

 \star Statistical noise increases with P_3 , t

use of momentum smearing method

- ◆ Implementation in GPDs nontrivial due to momentum transfer
- Standard definition of GPDs in Breit (symmetric) frame separate calculations at each t
- ♦ Matrix elements decompose into more than one GPDs at least 2 parity projectors are needed to disentangle GPDs
- Nonzero skewness nontrivial matching
- P₃ must be chosen carefully due to UV cutoff ($a^{-1} \sim 2 \, \text{GeV}$)

Ref.	$m_{\pi}({ m MeV})$	$P_3(\mathrm{GeV})$	$\left. \frac{n}{s} \right _{z=0}$
quasi/pseudo [59,95]	130	1.38	6%
pseudo [92]	172	2.10	8%
current-current [98]	278	1.65	19% *
quasi [72]	300	1.72	6% †
quasi/pseudo [77]	300	2.45	8% †
quasi/pseudo [70]	310	1.84	$3\%^{\dagger}$
twist-3 [148]	260	1.67	15%
s-quark quasi [113]	260	1.24	31%
s-quark quasi [112]	310	1.30	43% **
gluon pseudo [134]	310	1.73	39%
quasi-GPDs [170] -t=0.69GeV ²	260	1.67	23%
quasi-GPDs [169] -t=0.92GeV ²	310	1.74	59%

[†] At $T_{\rm sink} < 1$ fm.

[M. Constantinou, EPJA 57 (2021) 77]

Further increase of momentum at the cost of credibility

 $[\]star$ At smallest z value used, z=2.

^{**} At maximum value of imaginary part, z = 4.

Twist-classification of GPDs

$$f_i = f_i^{(0)} + \frac{f_i^{(1)}}{Q} + \frac{f_i^{(2)}}{Q^2} \cdots$$

Twist-classification of GPDs

$$f_i = f_i^{(0)} + \frac{f_i^{(1)}}{Q} + \frac{f_i^{(2)}}{Q^2} \cdots$$

Twist-2 $(f_i^{(0)})$

		ιι	
Quark Nucleon	U (γ ⁺)	L (γ ⁺ γ ⁵)	Τ (σ ^{+j})
U	$H(x, \xi, t)$ $E(x, \xi, t)$ unpolarized		
L		$\widetilde{E}(x,\xi,t)$ $\widetilde{E}(x,\xi,t)$ helicity	
Т			$ \begin{array}{c} H_T, E_T \\ \widetilde{H}_T, \widetilde{E}_T \\ \text{transversity} \end{array} $

Probabilistic interpretation

IJ

Nucleon spin

L

T

Twist-classification of GPDs

$$f_i = f_i^{(0)} + \frac{f_i^{(1)}}{Q} + \frac{f_i^{(2)}}{Q^2} \cdots$$

Twist-2 $(f_i^{(0)})$

Twist-3	$(f_i^{(1)})$
---------	---------------

Quark Nucleon	U (γ ⁺)	L (γ ⁺ γ ⁵)	Τ (σ ^{+j})			
U	$H(x, \xi, t)$ $E(x, \xi, t)$ unpolarized					
L		$\widetilde{E}(x,\xi,t)$ $\widetilde{E}(x,\xi,t)$ helicity				
Т			$ \begin{array}{c} H_T, E_T \\ \widetilde{H}_T, \widetilde{E}_T \\ \text{transversity} \end{array} $			

Nucleon	γ^j	$\gamma^j \gamma^5$	σ^{jk}	(Selected)
U	G_1, G_2 G_3, G_4			
L		$\widetilde{G}_1, \widetilde{G}_2 \ \widetilde{G}_3, \widetilde{G}_4$		
Т			$H_2'(x,\xi,t)$ $E_2'(x,\xi,t)$	

Probabilistic interpretation

U

L

- Lack density interpretation, but not-negligible
- ★ Contain info on quark-gluon-quark correlators
- ★ Physical interpretation, e.g., transverse force
- ★ Kinematically suppressed Difficult to isolate experimentally
- **\star** Theoretically: contain $\delta(x)$ singularities

Results: matrix elements

Imag

- \bigstar Lattice data confirm symmetries where applicable (e.g., $\Pi_0^s(\Gamma_0)$ in $\pm P_3$, $\pm Q$, $\pm z$)
- \bigstar ME decompose to different A_i
- ★ Multiple ME contribute to the same quantity

Results: matrix elements

Imag

- ★ Matrix elements depend on frame (comparison pedagogical)
- \bigstar ME in asymmetric frame do not have definite symmetries in $\pm P_3$, $\pm Q$, $\pm z$

Frame comparison and symmetries applied on Lorentz-invariant amplitudes

Results: matrix elements

Real

Imag

- \bigstar $\Pi_1(\Gamma_2)$ theoretically nonzero
- \bigstar Noisy contributions lead to challenges in extracting A_i of sub-leading magnitude

Results: H - GPD

 $Re[\Pi_{H}^{s,impr}]$

 $Re[\Pi_H^{a,impr}]$

 $Im[\Pi_{H}^{s,impr}]$

 $Im[\Pi_H^{a,impr}]$

17.5

15.0

 Π_H agree with Π_H^{impr} for both frames despite different definitions (agreement not by construction)

Agreement between Π_H^s and Π_H^a also not required theoretically $\Pi_H^s \& \Pi_H^a \text{ agreement}$

 Π_H^s & Π_H^a agreement achieved for improved definition, as expected from Lorentz invariance

5.0

7.5

10.0

z/a

12.5

 $r_3 = 1.25 \text{ GeV}$

0

0.0

2.5

Results: $\Pi_E - \text{GPD}$

Both frames: $\operatorname{Im}[\Pi_E^{impr}]$ enhanced compared to $\operatorname{Im}[\Pi_F]$.

A comment on Lorentz covariant definitions

Example: symmetric frame

Lorentz covariant definition leads to more precise results for Π_E

Same effect of improvement also for asymmetric frame

Numerical indications that using Π_E leads to better converge to lightcone GPDs with respect to P_3

Signal quality in Π_H same across all cases (not shown)

