Prospects on GPDs from lattice QCD

Martha Constantinou

Th Temple University

Opportunities with JLab Energy and Luminosity Upgrade

September 28, 2022

Generalized Parton Distributions

* Crucial in understanding hadron tomography

[H. Abramowicz et al., whitepaper for NSAC LRP, 2007]
$1_{\text {mom }}+2_{\text {coord }}$ tomographic images of quark distribution in nucleon at fixed longitudinal momentum

3-D image from FT with respect to longitudinal momentum transfer
\star GPDs may be accessed via exclusive reactions (DVCS, DVMP)
\star exclusive pion-nucleon diffractive production of a γ pair of high p_{\perp}

DVCS

[X.-D. Ji, PRD 55, 7114 (1997)]

DVIMP

[J. Qiu et al, arXiv:2205.07846]

Generalized Parton Distributions

* GPDs are not well-constrained experimentally:
- x-dependence extraction is not direct. DVCS amplitude: $\mathscr{H}=\int_{-1}^{+1} \frac{H(x, \xi, t)}{x-\xi+i \epsilon} d x$ (SDHEP [J. Qiu et al, arXiv:2205.07846] gives access to x)
- independent measurements to disentangle GPDs
- GPDs phenomenology more complicated than PDFs (multi-dimensionality)
- and more challenges ...

Generalized Parton Distributions

* GPDs are not well-constrained experimentally:
- x-dependence extraction is not direct. DVCS amplitude: $\mathscr{H}=\int_{-1}^{+1} \frac{H(x, \xi, t)}{x-\xi+i \epsilon} d x$ (SDHEP [J. Qiu et al, arXiv:2205.07846] gives access to x)
- independent measurements to disentangle GPDs
- GPDs phenomenology more complicated than PDFs (multi-dimensionality)
- and more challenges ...
* Essential to complement the knowledge on GPD from lattice QCD
* Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

Accessing information on GPDs

Mellin moments (local OPE expansion)

$$
\bar{q}\left(-\frac{1}{2} z\right) \gamma^{\sigma} W\left[-\frac{1}{2} z, \frac{1}{2} z\right] q\left(\frac{1}{2} z\right)=\sum_{n=0}^{\infty} \frac{1}{n} z_{\alpha_{1}} \ldots z_{\alpha_{n}}\left[\bar{q}^{\sigma} \overleftrightarrow{D}^{\alpha_{1}} \ldots \overleftrightarrow{D}^{\alpha_{n}} q\right]
$$

$\left.\left.\left\langle N\left(P^{\prime}\right)\right| \mathcal{O}_{V}^{\mu \mu_{1} \cdots \mu_{n-1}}|N(P)\rangle \sim \sum_{\substack{i=0 \\ \text { even }}}^{n-1}\left\{\gamma^{\{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}} A_{n, i}(t)-i \frac{\Delta_{\alpha} \sigma^{\alpha\{\mu}}{2 m_{N}} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}} B_{n, i}(t)\right\}+\left.\frac{\Delta^{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{n-1}}}{m_{N}} C_{n, 0}\left(\Delta^{2}\right)\right|_{n \text { even }}\right)\right\}$

Accessing information on GPDs

Mellin moments (local OPE expansion)

$$
\bar{q}\left(-\frac{1}{2} z\right) \gamma^{\sigma} W\left[-\frac{1}{2} z, \frac{1}{2} z\right] q\left(\frac{1}{2} z\right)=\sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \ldots z_{\alpha_{n}} \frac{\left[\bar{q} \gamma^{\sigma} \stackrel{\leftrightarrow}{D^{\alpha_{1}}} \ldots \stackrel{\leftrightarrow}{D}^{\alpha_{n}} q\right]}{\downarrow}
$$

$\left.\left.\left\langle N\left(P^{\prime}\right)\right| \mathcal{O}_{V}^{\mu \mu_{1} \cdots \mu_{n-1}}|N(P)\rangle \sim \sum_{\substack{i=0 \\ \text { even }}}^{n-1}\left\{\gamma^{\{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}} A_{n, i}(t)-i \frac{\Delta_{\alpha} \sigma^{\alpha \alpha \mu}}{2 m_{N}} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}} B_{n_{n, i}(t)}\right\}+\left.\frac{\Delta^{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{n-1}}}{m_{N}} C_{n, 0}\left(\Delta^{2}\right)\right|_{n \text { even }}\right)\right\}$

Accessing information on GPDs

Mellin moments (local OPE expansion)

$$
\bar{q}\left(-\frac{1}{2} z\right) \gamma^{\sigma} W\left[-\frac{1}{2} z, \frac{1}{2} z\right] q\left(\frac{1}{2} z\right)=\sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \ldots z_{\alpha_{n}} \frac{\left[\bar{q} \gamma^{\sigma} \stackrel{\leftrightarrow}{D}^{\alpha_{1}} \ldots \stackrel{\leftrightarrow}{D}^{\alpha_{n}} q\right]}{\downarrow}
$$

$\left.\left.\left\langle N\left(P^{\prime}\right)\right| \mathcal{O}_{V}^{\mu \mu_{1} \cdots \mu_{n-1}}|N(P)\rangle \sim \sum_{\substack{i=0 \\ \text { even }}}^{n-1}\left\{\gamma^{\{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}} A_{n, i}(t)-i \frac{\Delta_{\alpha} \sigma^{\alpha \alpha \mu}}{2 m_{N}} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}} B_{n_{n, i}(t)}\right\}+\left.\frac{\Delta^{\mu} \Delta^{\mu_{1}} \ldots \Delta^{\mu_{n-1}}}{m_{N}} C_{n, 0}\left(\Delta^{2}\right)\right|_{n \text { even }}\right)\right\}$

Matrix elements of non-local operators (quasi-GPDs, pseudo-GPDs, ...)

$$
\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \Gamma \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

$$
\begin{aligned}
& \left\langle N\left(P^{\prime}\right)\right| O_{V}^{\mu}(x)|N(P)\rangle=\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} H(x, \xi, t)+\frac{i \sigma^{\mu \nu} \Delta_{\nu}}{2 m_{N}} E(x, \xi, t)\right\} U(P)+\mathrm{ht}, \\
& \left\langle N\left(P^{\prime}\right)\right| O_{A}^{\mu}(x)|N(P)\rangle=\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} \gamma_{5} \widetilde{H}(x, \xi, t)+\frac{\gamma_{5} \Delta^{\mu}}{2 m_{N}} \widetilde{E}(x, \xi, t)\right\} U(P)+\mathrm{ht}, \\
& \left\langle N\left(P^{\prime}\right)\right| O_{T}^{\mu \nu}(x)|N(P)\rangle=\bar{U}\left(P^{\prime}\right)\left\{i \sigma^{\mu \nu} H_{T}(x, \xi, t)+\frac{\gamma^{\mu \mu} \Delta^{\nu]}}{2 m_{N}} E_{T}(x, \xi, t)+\frac{\bar{P}^{[\mu} \Delta^{\nu]}}{m_{N}^{2}} \widetilde{H}_{T}(x, \xi, t)+\frac{\gamma^{[\mu} \bar{P}^{\nu]}}{m_{N}} \widetilde{E}_{T}(x, \xi, t)\right\} U(P)+\mathrm{ht}
\end{aligned}
$$

Accessing information on GPDs

Mellin moments (local OPE expansion)

$$
\bar{q}\left(-\frac{1}{2} z\right) \gamma^{\sigma} W\left[-\frac{1}{2} z, \frac{1}{2} z\right] q\left(\frac{1}{2} z\right)=\sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \ldots z_{\alpha_{n}} \frac{\left[\bar{q} \gamma^{\sigma} \stackrel{\leftrightarrow}{D}^{\alpha_{1}} \ldots \stackrel{\leftrightarrow}{D}^{\alpha_{n}} q\right]}{\downarrow}
$$

$\left.\left.\left\langle N\left(P^{\prime}\right)\right| \mathcal{O}_{V}^{\mu \mu_{1} \cdots \mu_{n-1}}|N(P)\rangle \sim \sum_{\substack{i=0 \\ \text { even }}}^{n-1}\left\{\gamma^{\{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}} A_{n, i}(t)-i \frac{\Delta_{\alpha} \sigma^{\alpha \alpha \mu}}{2 m_{N}} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}} B_{B_{n, i}(t)}\right\}+\left.\frac{\Delta^{\mu} \Delta^{\mu_{1}} \ldots \Delta^{\mu_{n-1}}}{m_{N}} C_{n, 0}\left(\Delta^{2}\right)\right|_{n \text { even }}\right)\right\}$

Matrix elements of non-local operators (quasi-GPDs, pseudo-GPDs, ...)

$$
\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \frac{\Gamma \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}}{\downarrow}
$$

Wilson line

$$
\begin{aligned}
\left\langle N\left(P^{\prime}\right)\right| O_{V}^{\mu}(x)|N(P)\rangle & =\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} H(x, \xi, t)+\frac{i \sigma^{\mu \nu} \Delta_{\nu}}{2 m_{N}} E(x, \xi, t)\right\} U(P)+\mathrm{ht} \\
\left\langle N\left(P^{\prime}\right)\right| O_{A}^{\mu}(x)|N(P)\rangle & =\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} \gamma_{5} \widetilde{H}(x, \xi, t)+\frac{\gamma_{5} \Delta^{\mu}}{2 m_{N}} \widetilde{E}(x, \xi, t)\right\} U(P)+\mathrm{ht} \\
\left\langle N\left(P^{\prime}\right)\right| O_{T}^{\mu \nu}(x)|N(P)\rangle & =\bar{U}\left(P^{\prime}\right)\left\{i \sigma^{\mu \nu} H_{T}(x, \xi, t)+\frac{\gamma^{[\mu} \Delta^{\nu]}}{2 m_{N}} E_{T}(x, \xi, t)+\frac{\bar{P}^{[\mu} \Delta^{\nu]}}{m_{N}^{2}} \widetilde{H}_{T}(x, \xi, t)+\frac{\gamma^{[\mu} \bar{P}^{\nu]}}{m_{N}} \widetilde{E}_{T}(x, \xi, t)\right\} U(P)+\mathrm{ht}
\end{aligned}
$$

Generalized Form Factors

Generalized Form Factors

Advantages

- Frame independence
- Several values of momentum transfer with same computational cost
- Form factors extracted with controlled statistical uncertainties

Generalized Form Factors

\star Advantages

- Frame independence
- Several values of momentum transfer with same computational cost
- Form factors extracted with controlled statistical uncertainties
\star Disadvantages
- x dependence is integrated out
- GFFs are skewness independence
- Geometrical twist classification (coincides with dynamical twist of scattering processes only at leading order)
- Signal-to-noise ratio decays with the addition of covariant derivatives
- Power-divergent mixing for high Mellin moments (derivatives > 3)
- Number of GFFs increases with order of Mellin moment

Generalized Form Factors

Advantages

- Frame independence
- Several values of momentum transfer with same computational cost
- Form factors extracted with controlled statistical uncertainties

Disadvantages

- x dependence is integrated out
- GFFs are skewness independence
- Geometrical twist classification (coincides with dynamical twist of scattering processes only at leading order)
- Signal-to-noise ratio decays with the addition of covariant derivatives
- Power-divergent mixing for high Mellin moments (derivatives > 3)
- Number of GFFs increases with order of Mellin moment

Form Factors \& Generalizations

\star Ultra-local operators (FFS)

$$
\begin{aligned}
\left\langle N\left(P^{\prime}\right)\right| \bar{q}(0) \gamma^{\mu} q(0)|N(P)\rangle & =\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} F_{1}(t)+\frac{i \sigma^{\mu \nu} \Delta_{\nu}}{2 m_{N}} F_{2}(t)\right\} U(P), \\
\left\langle N\left(P^{\prime}\right)\right| \bar{q}(0) \gamma^{\mu} \gamma_{5} q(0)|N(P)\rangle & =\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} \gamma_{5} G_{A}(t)+\frac{\gamma_{5} \Delta^{\mu}}{2 m_{N}} G_{P}(t)\right\} U(P)
\end{aligned}
$$

Form Factors \& Generalizations

\star Ultra-local operators (FFS)

$$
\begin{aligned}
\left\langle N\left(P^{\prime}\right)\right| \bar{q}(0) \gamma^{\mu} q(0)|N(P)\rangle & =\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} F_{1}(t)+\frac{i \sigma^{\mu \nu} \Delta_{\nu}}{2 m_{N}} F_{2}(t)\right\} U(P), \\
\left\langle N\left(P^{\prime}\right)\right| \bar{q}(0) \gamma^{\mu} \gamma_{5} q(0)|N(P)\rangle & =\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} \gamma_{5} G_{A}(t)+\frac{\gamma_{5} \Delta^{\mu}}{2 m_{N}} G_{P}(t)\right\} U(P)
\end{aligned}
$$

- Simulations at physical point available by multiple groups
- Precision data era
- Towards control of systematic uncertainties

Form Factors \& Generalizations

* Ultra-local operators (FFS)

$$
\begin{aligned}
\left\langle N\left(P^{\prime}\right)\right| \bar{q}(0) \gamma^{\mu} q(0)|N(P)\rangle & =\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} F_{1}(t)+\frac{i \sigma^{\mu \nu} \Delta_{\nu}}{2 m_{N}} F_{2}(t)\right\} U(P) \\
\left\langle N\left(P^{\prime}\right)\right| \bar{q}(0) \gamma^{\mu} \gamma_{5} q(0)|N(P)\rangle & =\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} \gamma_{5} G_{A}(t)+\frac{\gamma_{5} \Delta^{\mu}}{2 m_{N}} G_{P}(t)\right\} U(P)
\end{aligned}
$$

- Simulations at physical point available by multiple groups
- Precision data era
- Towards control of systematic uncertainties

[M. Constantinou et al. (2020 PDFLattice Report), Prog.Part.Nucl.Phys. 121 (2021) 103908]

Form Factors \& Generalizations

* Ultra-local operators (FFS)

$$
\begin{aligned}
\left\langle N\left(P^{\prime}\right)\right| \bar{q}(0) \gamma^{\mu} q(0)|N(P)\rangle & =\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} F_{1}(t)+\frac{i \sigma^{\mu \nu} \Delta_{\nu}}{2 m_{N}} F_{2}(t)\right\} U(P), \\
\left\langle N\left(P^{\prime}\right)\right| \bar{q}(0) \gamma^{\mu} \gamma_{5} q(0)|N(P)\rangle & =\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} \gamma_{5} G_{A}(t)+\frac{\gamma_{5} \Delta^{\mu}}{2 m_{N}} G_{P}(t)\right\} U(P)
\end{aligned}
$$

- Simulations at physical point available by multiple groups
- Precision data era
- Towards control of systematic uncertainties

Lesser studied compared to FFs at physical point

Decay of signal-to-noise ratio
[M. Constantinou et al. (2020 PDFLattice Report), Prog.Part.Nucl.Phys. 121 (2021) 103908]

GPDs

Through non-local matrix elements of fast-moving hadrons

Access of GPDs on a Euclidean Lattice

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002]

Matrix elements of nonlocal (equal-time) operators with fast moving hadrons

$$
\tilde{q}_{\Gamma}^{\operatorname{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \Gamma \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

$$
\begin{gathered}
\Delta=P_{f}-P_{i} \\
t=\Delta^{2}=-Q^{2} \\
\xi=\frac{Q_{3}}{2 P_{3}}
\end{gathered}
$$

Access of GPDs on a Euclidean Lattice

$$
\text { [X. Ji, Phys. Rev. Lett. } 110 \text { (2013) 262002] }
$$

Matrix elements of nonlocal (equal-time) operators with fast moving hadrons

$$
\tilde{q}_{\Gamma}^{\mathrm{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \Gamma \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

Access of GPDs on a Euclidean Lattice

$$
\text { [X. Ji, Phys. Rev. Lett. } 110 \text { (2013) 262002] }
$$

Matrix elements of nonlocal (equal-time) operators with fast moving hadrons

$$
\tilde{q}_{\Gamma}^{\mathrm{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \Gamma \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

Variables of the calculation:

- length of the Wilson line (z)
- nucleon momentum boost (P_{3})
- momentum transfer (t)
- skewness (ξ)

Access of GPDs on a Euclidean Lattice

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002]
Matrix elements of nonlocal (equal-time) operators with fast moving hadrons

$$
\tilde{q}_{\Gamma}^{\mathrm{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \Gamma \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

Variables of the calculation:

- length of the Wilson line (z)
- nucleon momentum boost (P_{3})
- momentum transfer (t)
- skewness (ξ)

Such matrix elements may be analyzed through LaMET formalism (quasi-GPDs) or coordinate space factorization (pseudo-ITD)

Complementarity is important!

What can we currently do in lattice QCD?

What can we currently do in lattice QCD?

[C. Alexandrou et al., PRL 125, 262001 (2020)]

What can we currently do in lattice QCD?

[C. Alexandrou et al., PRL 125, 262001 (2020)]

* ERBL/DGLAP: Qualitative differences
$\xi= \pm x$ inaccessible (formalism breaks down)
$\star \quad x \rightarrow 1$ region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288]

What can we currently do in lattice QCD?

[C. Alexandrou et al., PRL 125, 262001 (2020)]

* ERBL/DGLAP: Qualitative differences
$\xi= \pm x$ inaccessible (formalism breaks down)
$\star \quad x \rightarrow 1$ region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288]
$\downarrow t$-dependence vanishes at large- x
- $\quad H(x, 0)$ asymptotically equal to $f_{1}(x)$

What can we currently do in lattice QCD?

[C. Alexandrou et al., PRL 125, 262001 (2020)]

* ERBL/DGLAP: Qualitative differences
$\star \xi= \pm x$ inaccessible (formalism breaks down)
$\star \quad x \rightarrow 1$ region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288] $\downarrow t$-dependence vanishes at large- x
↔ $\quad H(x, 0)$ asymptotically equal to $f_{1}(x)$

What can we currently do in lattice QCD?

[C. Alexandrou et al., PRL 125, 262001 (2020)]

* ERBL/DGLAP: Qualitative differences
$\star \xi= \pm x$ inaccessible (formalism breaks down)
$\star \quad x \rightarrow 1$ region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288] $\downarrow t$-dependence vanishes at large- x
- $\quad H(x, 0)$ asymptotically equal to $f_{1}(x)$

$$
\int_{-1}^{+1} d x x^{2} H^{q}(x, \xi, t)=A_{20}^{q}(t)+4 \xi^{2} C_{20}^{q}(t), \quad \int_{-1}^{+1} d x x^{2} E^{q}(x, \xi, t)=B_{20}^{q}(t)-4 \xi^{2} C_{20}^{q}(t)
$$

What can we currently learn from lattice results?

What can we currently learn from lattice results?

\star Qualitative understanding of GPDs and their relations
\star Qualitative understanding of ERBL and DGLAP regions

* Relations can be identified for the t-dependence of GPDs
[C. Alexandrou et al., PRD 105, 034501 (2022)]

What can we currently check using lattice results?

M. Constantinou, ECT* JLab Upgrade Workshop 2022

What can we currently check using lattice results?

Understanding of systematic effects through sum rules

$$
\begin{array}{ll}
\int_{-1}^{1} d x H_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x H_{T q}\left(x, \xi, t, P_{3}\right)=A_{T 10}(t), & \\
\int_{-1}^{1} d x E_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x E_{T q}\left(x, \xi, t, P_{3}\right)=B_{T 10}(t), & \\
\int_{-1}^{1} d x x H_{T}(x, \xi, t)=A_{T 20}(t), \\
\int_{-1}^{1} d x \widetilde{H}_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x \widetilde{H}_{T q}\left(x, \xi, t, P_{3}\right)=\widetilde{A}_{T 10}(t), & \\
\int_{-1}^{1} d x x \widetilde{H}_{T}(x, \xi, t)=\widetilde{A}_{T 20}(t), \\
\int_{-1}^{1} d x \widetilde{E}_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x \widetilde{E}_{T q}\left(x, \xi, t, P_{3}\right)=0 . & \int_{-1}^{1} d x x \widetilde{E}_{T}(x, \xi, t)=2 \xi \widetilde{B}_{T 21}(t) .
\end{array}
$$

What can we currently check using lattice results?

Understanding of systematic effects through sum rules

Sum rules exist for quasi-GPDs
[S. Bhattacharya et al., PRD 102, 054021 (2020)]

$$
\begin{array}{ll}
\int_{-1}^{1} d x H_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x H_{T q}\left(x, \xi, t, P_{3}\right)=A_{T 10}(t), & \\
\int_{-1}^{1} d x E_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x E_{T q}\left(x, \xi, t, P_{3}\right)=B_{T 10}(t), & \\
\int_{-1}^{1} d x x E_{T}(x, \xi, t)=A_{T 20}(t) \\
\int_{-1}^{1} d x \widetilde{H}_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x \widetilde{H}_{T q}\left(x, \xi, t, P_{3}\right)=\widetilde{A}_{T 10}(t), & \\
\int_{-1}^{1} d x x \widetilde{H}_{T}(x, \xi, t)=\widetilde{A}_{T 20}(t) \\
\int_{-1}^{1} d x \widetilde{E}_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x \widetilde{E}_{T q}\left(x, \xi, t, P_{3}\right)=0 . & \int_{-1}^{1} d x x \widetilde{E}_{T}(x, \xi, t)=2 \xi \widetilde{B}_{T 21}(t) .
\end{array}
$$

What can we currently check using lattice results?

\star Understanding of systematic effects through sum rules

Sum rules exist for quasi-GPDs
[S. Bhattacharya et al., PRD 102, 054021 (2020)]
$\int_{-1}^{1} d x x H_{T}(x, \xi, t)=A_{T 20}(t)$,
$\int_{-1}^{1} d x E_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x E_{T q}\left(x, \xi, t, P_{3}\right)=B_{T 10}(t)$,
$\int_{-1}^{1} d x \widetilde{H}_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x \widetilde{H}_{T q}\left(x, \xi, t, P_{3}\right)=\widetilde{A}_{T 10}(t)$,
$\int_{-1}^{1} d x \widetilde{E}_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x \widetilde{E}_{T q}\left(x, \xi, t, P_{3}\right)=0$.
$\int_{-1}^{1} d x x E_{T}(x, \xi, t)=B_{T 20}(t)$,
$\int_{-1}^{1} d x x \widetilde{H}_{T}(x, \xi, t)=\widetilde{A}_{T 20}(t)$,
$\int_{-1}^{1} d x x \widetilde{E}_{T}(x, \xi, t)=2 \xi \widetilde{B}_{T 21}(t)$.

* Lattice data on transversity GPDs

$$
\begin{array}{ll}
\int_{-2}^{2} d x H_{T q}\left(x, 0,-0.69 \mathrm{GeV}^{2}, P_{3}\right)=\{0.65(4), 0.64(6), 0.81(10)\}, & \int_{-2}^{2} d x H_{T q}\left(x, \frac{1}{3},-1.02 \mathrm{GeV}^{2}, 1.25 \mathrm{GeV}\right)=0.49(5) \\
\int_{-1}^{1} d x H_{T}\left(x, 0,-0.69 \mathrm{GeV}^{2}\right)=\{0.69(4), 0.67(6), 0.84(10)\}, & \int_{-1}^{1} d x H_{T}\left(x, \frac{1}{3},-1.02 \mathrm{GeV}^{2}\right)=0.45(4) \\
\int_{-1}^{1} d x x H_{T}\left(x, 0,-0.69 \mathrm{GeV}^{2}\right)=\{0.20(2), 0.21(2), 0.24(3)\}, & \int_{-1}^{1} d x x H_{T}\left(x, \frac{1}{3},-1.02 \mathrm{GeV}^{2}\right)=0.15(2) \\
A_{T 10}\left(-0.69 \mathrm{GeV}^{2}\right)=\{0.65(4), 0.65(6), 0.82(10)\}, & A_{T 10}\left(-1.02 \mathrm{GeV}^{2}\right)=0.49(5)
\end{array}
$$

What can we currently check using lattice results?

Understanding of systematic effects through sum rules

Sum rules exist for quasi-GPDs
[S. Bhattacharya et al., PRD 102, 054021 (2020)]
$\int_{-1}^{1} d x x H_{T}(x, \xi, t)=A_{T 20}(t)$,
$\int_{-1}^{1} d x E_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x E_{T q}\left(x, \xi, t, P_{3}\right)=B_{T 10}(t)$,
$\int_{-1}^{1} d x x E_{T}(x, \xi, t)=B_{T 20}(t)$,
$\int_{-1}^{1} d x \widetilde{H}_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x \widetilde{H}_{T q}\left(x, \xi, t, P_{3}\right)=\widetilde{A}_{T 10}(t)$,
$\int_{-1}^{1} d x x \widetilde{H}_{T}(x, \xi, t)=\widetilde{A}_{T 20}(t)$,
$\int_{-1}^{1} d x \widetilde{E}_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x \widetilde{E}_{T q}\left(x, \xi, t, P_{3}\right)=0$.
$\int_{-1}^{1} d x x \widetilde{E}_{T}(x, \xi, t)=2 \xi \widetilde{B}_{T 21}(t)$.

* Lattice data on transversity GPDs

$$
\begin{array}{ll}
\int_{-2}^{2} d x H_{T q}\left(x, 0,-0.69 \mathrm{GeV}^{2}, P_{3}\right)=\{0.65(4), 0.64(6), 0.81(10)\}, & \int_{-2}^{2} d x H_{T q}\left(x, \frac{1}{3},-1.02 \mathrm{GeV}^{2}, 1.25 \mathrm{GeV}\right)=0.49(5), \\
\int_{-1}^{1} d x H_{T}\left(x, 0,-0.69 \mathrm{GeV}^{2}\right)=\{0.69(4), 0.67(6), 0.84(10)\}, & \int_{-1}^{1} d x H_{T}\left(x, \frac{1}{3},-1.02 \mathrm{GeV}^{2}\right)=0.45(4) \\
\int_{-1}^{1} d x x H_{T}\left(x, 0,-0.69 \mathrm{GeV}^{2}\right)=\{0.20(2), 0.21(2), 0.24(3)\}, & \int_{-1}^{1} d x x H_{T}\left(x, \frac{1}{3},-1.02 \mathrm{GeV}^{2}\right)=0.15(2) \\
A_{T 10}\left(-0.69 \mathrm{GeV}^{2}\right)=\{0.65(4), 0.65(6), 0.82(10)\}, & A_{T 10}\left(-1.02 \mathrm{GeV}^{2}\right)=0.49(5)
\end{array}
$$

- lowest moments the same between quasi-GPDs and GPDs
- Values of moments decrease as t increases
- Higher moments suppressed compared to the lowest

What possible extensions can we achieve?

What possible extensions can we achieve?

* Twist-3 GPDs

PRELIMINARY

[S. Bhattacharya et al., PoS LATTICE2021 (2022) 054 arXiv:2112.05538]

$g_{T}(x)$: dominant distribution
$\star \quad \widetilde{H}+\widetilde{G}_{2}$ similar in magnitude to \widetilde{H}
$\star \widetilde{G}_{2}$ is expected to be small

Definition of GPDs in Euclidean lattice

Calculation expected to be performed in symmetric frame to extract the "standard" GPDs

Symmetric frame requires separate calculations at each t

Definition of GPDs in Euclidean lattice

* Calculation expected to be performed in symmetric frame to extract the "standard" GPDs

Symmetric frame requires separate calculations at each t

Let's rethink calculation of GPDs !
M. Constantinou, ECT* JLab Upgrade Workshop 2022

Definition of GPDs in Euclidean lattice

* Calculation expected to be performed in symmetric frame to extract the "standard" GPDs
\star Symmetric frame requires separate calculations at each t

Let's rethink calculation of GPDs !
$1^{\text {st }}$ goal:
Extraction of GPDs in the symmetric frame using lattice correlators calculated in non-symmetric frames

Definition of GPDs in Euclidean lattice

* Calculation expected to be performed in symmetric frame to extract the "standard" GPDs
* Symmetric frame requires separate calculations at each t

Let's rethink calculation of GPDs !
$1^{\text {st }}$ goal:
Extraction of GPDs in the symmetric frame using lattice correlators calculated in non-symmetric frames
$2^{\text {nd }}$ goal:
New definition of Lorentz covariant quasi-GPDs that may have faster convergence to light-cone GPDs (elimination of kinematic corrections)

Theoretical setup

[S. Bhattacharya et al., arXiv:2209.05373]

* Parametrization of matrix elements in Lorentz invariant amplitudes
$F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+z^{\mu} M A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+i \sigma^{\mu z} M A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M} A_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M} A_{8}\right] u(p, \lambda)$

Advantages

- Applicable to any kinematic frame and have definite symmetries
- Lorentz invariant amplitudes A_{i} can be related to the standard H, E GPDs
- Quasi H, E may be redefined (Lorentz covariant) to eliminate $1 / P_{3}$ contributions:

Theoretical setup

[S. Bhattacharya et al., arXiv:2209.05373]
Parametrization of matrix elements in Lorentz invariant amplitudes
$F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+z^{\mu} M A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+i \sigma^{\mu z} M A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M} A_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M} A_{8}\right] u(p, \lambda)$

Advantages

- Applicable to any kinematic frame and have definite symmetries
- Lorentz invariant amplitudes A_{i} can be related to the standard H, E GPDs
- Quasi H, E may be redefined (Lorentz covariant) to eliminate $1 / P_{3}$ contributions:

$$
\begin{aligned}
& H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{\text {avg }, s / a} \cdot z} A_{3} \\
& E\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=-A_{1}-\frac{\Delta_{s / a} \cdot z}{P_{\text {avg }, s / a} \cdot z} A_{3}+2 A_{5}+2 P_{\text {avg }, s / a} \cdot z A_{6}+2 \Delta_{s / a} \cdot z A_{8}
\end{aligned}
$$

Theoretical setup

[S. Bhattacharya et al., arXiv:2209.05373]
Parametrization of matrix elements in Lorentz invariant amplitudes
$F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+z^{\mu} M A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+i \sigma^{\mu z} M A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M} A_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M} A_{8}\right] u(p, \lambda)$

Advantages

- Applicable to any kinematic frame and have definite symmetries
- Lorentz invariant amplitudes A_{i} can be related to the standard H, E GPDs
- Quasi H, E may be redefined (Lorentz covariant) to eliminate $1 / P_{3}$ contributions:

$$
\begin{aligned}
& H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{\text {avg }, s / a} \cdot z} A_{3} \\
& E\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=-A_{1}-\frac{\Delta_{s / a} \cdot z}{P_{\text {avg,s/a }} \cdot z} A_{3}+2 A_{5}+2 P_{\text {avg }, s / a} \cdot z A_{6}+2 \Delta_{s / a} \cdot z A_{8}
\end{aligned}
$$

Proof-of-concept calculation (zero quasi-skewness):

- symmetric frame:

$$
\begin{aligned}
& \vec{p}_{f}^{s}=\vec{P}+\frac{\vec{Q}}{2} \\
& \vec{p}_{f}^{a}=\vec{P}
\end{aligned}
$$

$$
\vec{p}_{i}^{s}=\vec{P}-\frac{\vec{Q}}{2}
$$

$$
t^{s}=-\vec{Q}^{2}
$$

- asymmetric frame:

$$
\vec{p}_{i}^{a}=\vec{P}-\vec{Q}
$$

$$
t^{a}=-\vec{Q}^{2}+\left(E_{f}-E_{i}\right)^{2}
$$

Matrix element decomposition

Symmetric

$$
\begin{aligned}
& C_{s}=\frac{2 m^{2}}{E(E+m)} \\
& \Gamma_{0}=\frac{1}{2}\left(1+\gamma^{0}\right) \\
& \Gamma_{j}=\frac{i}{4}\left(1+\gamma^{0}\right) \gamma^{5} \gamma^{j} \\
&(j=1,2,3)
\end{aligned}
$$

$$
\begin{aligned}
& \Pi_{s}^{0}\left(\Gamma_{0}\right)=C_{s}\left(\frac{E\left(E(E+m)-P_{3}^{2}\right)}{2 m^{3}} A_{1}+\frac{(E+m)\left(-E^{2}+m^{2}+P_{3}^{2}\right)}{m^{3}} A_{5}+\frac{E P_{3}\left(-E^{2}+m^{2}+P_{3}^{2}\right) z}{m^{3}} A_{6}\right) \\
& \Pi_{s}^{0}\left(\Gamma_{1}\right)=i C_{s}\left(\frac{E P_{3} Q_{2}}{4 m^{3}} A_{1}-\frac{(E+m) P_{3} Q_{2}}{2 m^{3}} A_{5}-\frac{E\left(P_{3}^{2}+m(E+m)\right) z Q_{2}}{2 m^{3}} A_{6}\right) \\
& \Pi_{s}^{0}\left(\Gamma_{2}\right)=i C_{s}\left(-\frac{E P_{3} Q_{1}}{4 m^{3}} A_{1}+\frac{(E+m) P_{3} Q_{1}}{2 m^{3}} A_{5}+\frac{E\left(P_{3}^{2}+m(E+m)\right) z Q_{1}}{2 m^{3}} A_{6}\right)
\end{aligned}
$$

Asymmetric

$$
C_{a}=\frac{2 m^{2}}{\sqrt{E_{i} E_{f}\left(E_{i}+m\right)\left(E_{f}+m\right)}}
$$

$$
\begin{aligned}
\Pi_{0}^{a}\left(\Gamma_{0}\right)=C_{a}(& -\frac{\left(E_{f}+E_{i}\right)\left(E_{f}-E_{i}-2 m\right)\left(E_{f}+m\right)}{8 m^{3}} A_{1}-\frac{\left(E_{f}-E_{i}-2 m\right)\left(E_{f}+m\right)\left(E_{f}-E_{i}\right)}{4 m^{3}} A_{3} \\
& +\frac{\left(E_{i}-E_{f}\right) P_{3} z}{4 m} A_{4}+\frac{\left(E_{f}+E_{i}\right)\left(E_{f}+m\right)\left(E_{f}-E_{i}\right)}{4 m^{3}} A_{5}+\frac{E_{f}\left(E_{f}+E_{i}\right) P_{3}\left(E_{f}-E_{i}\right) z}{4 m^{3}} A_{6} \\
& \left.+\frac{E_{f} P_{3}\left(E_{f}-E_{i}\right)^{2} z}{2 m^{3}} A_{8}\right) \\
\Pi_{0}^{a}\left(\Gamma_{1}\right)= & i C_{a}\left(\frac{\left(E_{f}+E_{i}\right) P_{3} Q_{2}}{8 m^{3}} A_{1}+\frac{\left(E_{f}-E_{i}\right) P_{3} Q_{2}}{4 m^{3}} A_{3}+\frac{\left(E_{f}+m\right) Q_{2} z}{4 m} A_{4}-\frac{\left(E_{f}+E_{i}+2 m\right) P_{3} Q_{2}}{4 m^{3}} A_{5}\right. \\
& \left.-\frac{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right) Q_{2} z}{4 m^{3}} A_{6}-\frac{E_{f}\left(E_{f}-E_{i}\right)\left(E_{f}+m\right) Q_{2} z}{2 m^{3}} A_{8}\right) \\
\Pi_{0}^{a}\left(\Gamma_{2}\right)= & i C_{a}\left(-\frac{\left(E_{f}+E_{i}\right) P_{3} Q_{1}}{8 m^{3}} A_{1}-\frac{\left(E_{f}-E_{i}\right) P_{3} Q_{1}}{4 m^{3}} A_{3}-\frac{\left(E_{f}+m\right) Q_{1} z}{4 m} A_{4}+\frac{\left(E_{f}+E_{i}+2 m\right) P_{3} Q_{1}}{4 m^{3}} A_{5}\right. \\
& \left.+\frac{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right) Q_{1} z}{4 m^{3}} A_{6}+\frac{E_{f}\left(E_{f}-E_{i}\right)\left(E_{f}+m\right) Q_{1} z}{2 m^{3}} A_{8}\right)
\end{aligned}
$$

Matrix element decomposition

Symmetric

$$
\begin{aligned}
& C_{s}=\frac{2 m^{2}}{E(E+m)} \\
& \Gamma_{0}=\frac{1}{2}\left(1+\gamma^{0}\right) \\
& \Gamma_{j}=\frac{i}{4}\left(1+\gamma^{0}\right) \gamma^{5} \gamma^{j} \\
&(j=1,2,3)
\end{aligned}
$$

$$
\begin{aligned}
& \Pi_{s}^{0}\left(\Gamma_{0}\right)=C_{s}\left(\frac{E\left(E(E+m)-P_{3}^{2}\right)}{2 m^{3}} A_{1}+\frac{(E+m)\left(-E^{2}+m^{2}+P_{3}^{2}\right)}{m^{3}} A_{5}+\frac{E P_{3}\left(-E^{2}+m^{2}+P_{3}^{2}\right) z}{m^{3}} A_{6}\right) \\
& \Pi_{s}^{0}\left(\Gamma_{1}\right)=i C_{s}\left(\frac{E P_{3} Q_{2}}{4 m^{3}} A_{1}-\frac{(E+m) P_{3} Q_{2}}{2 m^{3}} A_{5}-\frac{E\left(P_{3}^{2}+m(E+m)\right) z Q_{2}}{2 m^{3}} A_{6}\right)
\end{aligned}
$$

$$
\Pi_{s}^{0}\left(\Gamma_{2}\right)=i C_{s}\left(-\frac{E P_{3} Q_{1}}{4 m^{3}} A_{1}+\frac{(E+m) P_{3} Q_{1}}{2 m^{3}} A_{5}+\frac{E\left(P_{3}^{2}+m(E+m)\right) z Q_{1}}{2 m^{3}} A_{6}\right)
$$

Novel feature: z-dependence

Asymmetric

$$
C_{a}=\frac{2 m^{2}}{\sqrt{E_{i} E_{f}\left(E_{i}+m\right)\left(E_{f}+m\right)}}
$$

$$
\begin{aligned}
& \Pi_{0}^{a}\left(\Gamma_{0}\right)=C_{a}(-\frac{\left(E_{f}+E_{i}\right)\left(E_{f}-E_{i}-2 m\right)\left(E_{f}+m\right)}{8 m^{3}} A_{1}-\frac{\left(E_{f}-E_{i}-2 m\right)\left(E_{f}+m\right)\left(E_{f}-E_{i}\right)}{4 m^{3}} A_{3} \\
&+\frac{\left(E_{i}-E_{f}\right) P_{3} z}{4 m} A_{4}+\frac{\left(E_{f}+E_{i}\right)\left(E_{f}+m\right)\left(E_{f}-E_{i}\right)}{4 m^{3}} A_{5}+\frac{E_{f}\left(E_{f}+E_{i}\right) P_{3}\left(E_{f}-E_{i}\right) z}{4 m^{3}} A_{6} \\
&\left.+\frac{E_{f} P_{3}\left(E_{f}-E_{i}\right)^{2} z}{2 m^{3}} A_{8}\right) \\
& \Pi_{0}^{a}\left(\Gamma_{1}\right)=i C_{a}\left(\frac{\left(E_{f}+E_{i}\right) P_{3} Q_{2}}{8 m^{3}} A_{1}+\frac{\left(E_{f}-E_{i}\right) P_{3} Q_{2}}{4 m^{3}} A_{3}+\frac{\left(E_{f}+m\right) Q_{2} z}{4 m} A_{4}-\frac{\left(E_{f}+E_{i}+2 m\right) P_{3} Q_{2}}{4 m^{3}} A_{5}\right. \\
&\left.-\frac{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right) Q_{2} z}{4 m^{3}} A_{6}-\frac{E_{f}\left(E_{f}-E_{i}\right)\left(E_{f}+m\right) Q_{2} z}{2 m^{3}} A_{8}\right) \\
& \Pi_{0}^{a}\left(\Gamma_{2}\right)=i C_{a}(-\frac{\left(E_{f}+E_{i}\right) P_{3} Q_{1}}{8 m^{3}} A_{1}-\frac{\left(E_{f}-E_{i}\right) P_{3} Q_{1}}{4 m^{3}} A_{3}-\frac{\left(E_{f}+m\right) Q_{1} z}{4 m} A_{4}+\frac{\left(E_{f}+E_{i}+2 m\right) P_{3} Q_{1}}{4 m^{3}} A_{5} \\
&\left.+\frac{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right) Q_{1} z}{4 m^{3}} A_{6}+\frac{E_{f}\left(E_{f}-E_{i}\right)\left(E_{f}+m\right) Q_{1} z}{2 m^{3}} A_{8}\right)
\end{aligned}
$$

Matrix element decomposition

Symmetric

$$
C_{s}=\frac{2 m^{2}}{E(E+m)}
$$

$$
\Gamma_{0}=\frac{1}{2}\left(1+\gamma^{0}\right)
$$

$$
\begin{aligned}
& \Pi_{s}^{0}\left(\Gamma_{0}\right)=C_{s}\left(\frac{E\left(E(E+m)-P_{3}^{2}\right)}{2 m^{3}} A_{1}+\frac{(E+m)\left(-E^{2}+m^{2}+P_{3}^{2}\right)}{m^{3}} A_{5}+\frac{E P_{3}\left(-E^{2}+m^{2}+P_{3}^{2}\right) z}{m^{3}} A_{6}\right) \\
& \Pi_{s}^{0}\left(\Gamma_{1}\right)=i C_{s}\left(\frac{E P_{3} Q_{2}}{4 m^{3}} A_{1}-\frac{(E+m) P_{3} Q_{2}}{2 m^{3}} A_{5}-\frac{E\left(P_{3}^{2}+m(E+m)\right) z Q_{2}}{2 m^{3}} A_{6}\right)
\end{aligned}
$$

$$
\Gamma_{j}=\frac{i}{4}\left(1+\gamma^{0}\right) \gamma^{5} \gamma^{j}
$$

$$
\Pi_{s}^{0}\left(\Gamma_{2}\right)=i C_{s}\left(-\frac{E P_{3} Q_{1}}{4 m^{3}} A_{1}+\frac{(E+m) P_{3} Q_{1}}{2 m^{3}} A_{5}+\frac{E\left(P_{3}^{2}+m(E+m)\right) z Q_{1}}{2 m^{3}} A_{6}\right)
$$

Novel feature: z-dependence

$$
(j=1,2,3)
$$

Asymmetric

$$
C_{a}=\frac{2 m^{2}}{\sqrt{E_{i} E_{f}\left(E_{i}+m\right)\left(E_{f}+m\right)}}
$$

$$
\begin{aligned}
\Pi_{0}^{a}\left(\Gamma_{0}\right)=C_{a} & \left(-\frac{\left(E_{f}+E_{i}\right)\left(E_{f}-E_{i}-2 m\right)\left(E_{f}+m\right)}{8 m^{3}} A_{1}-\frac{\left(E_{f}-E_{i}-2 m\right)\left(E_{f}+m\right)\left(E_{f}-E_{i}\right)}{4 m^{3}} A_{3}\right. \\
& +\frac{\left(E_{i}-E_{f}\right) P_{3} z}{4 m} A_{4}+\frac{\left(E_{f}+E_{i}\right)\left(E_{f}+m\right)\left(E_{f}-E_{i}\right)}{4 m^{3}} A_{5}+\frac{E_{f}\left(E_{f}+E_{i}\right) P_{3}\left(E_{f}-E_{i}\right) z}{4 m^{3}} A_{6} \\
& \left.+\frac{E_{f} P_{3}\left(E_{f}-E_{i}\right)^{2} z}{2 m^{3}} A_{8}\right)
\end{aligned}
$$

$$
\Pi_{0}^{a}\left(\Gamma_{1}\right)=i C_{a}\left(\frac{\left(E_{f}+E_{i}\right) P_{3} Q_{2}}{8 m^{3}} A_{1}+\frac{\left(E_{f}-E_{i}\right) P_{3} Q_{2}}{4 m^{3}} A_{3}+\frac{\left(E_{f}+m\right) Q_{2} z}{4 m} A_{4}-\frac{\left(E_{f}+E_{i}+2 m\right) P_{3} Q_{2}}{4 m^{3}} A_{5}\right.
$$

$$
\left.-\frac{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right) Q_{2} z}{4 m^{3}} A_{6}-\frac{E_{f}\left(E_{f}-E_{i}\right)\left(E_{f}+m\right) Q_{2} z}{2 m^{3}} A_{8}\right)
$$

$$
\begin{aligned}
\Pi_{0}^{a}\left(\Gamma_{2}\right)=i C_{a} & \left(-\frac{\left(E_{f}+E_{i}\right) P_{3} Q_{1}}{8 m^{3}} A_{1}-\frac{\left(E_{f}-E_{i}\right) P_{3} Q_{1}}{4 m^{3}} A_{3}-\frac{\left(E_{f}+m\right) Q_{1} z}{4 m} A_{4}+\frac{\left(E_{f}+E_{i}+2 m\right) P_{3} Q_{1}}{4 m^{3}} A_{5}\right. \\
& \left.+\frac{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right) Q_{1} z}{4 m^{3}} A_{6}+\frac{E_{f}\left(E_{f}-E_{i}\right)\left(E_{f}+m\right) Q_{1} z}{2 m^{3}} A_{8}\right)
\end{aligned}
$$

Lorentz-Invariant amplitudes

Symmetric

$$
\begin{aligned}
& A_{1}=\frac{\left(m(E+m)+P_{3}^{2}\right)}{E(E+m)} \Pi_{0}^{s}\left(\Gamma_{0}\right)-i \frac{P_{3} Q_{1}}{2 E(E+m)} \Pi_{0}^{s}\left(\Gamma_{2}\right)-\frac{Q_{1}}{2 E} \Pi_{2}^{s}\left(\Gamma_{3}\right) \\
& A_{5}=-\frac{E}{Q_{1}} \Pi_{2}^{s}\left(\Gamma_{3}\right) \\
& A_{6}=\frac{P_{3}}{2 E z(E+m)} \Pi_{0}^{s}\left(\Gamma_{0}\right)+i \frac{\left(P_{3}^{2}-E(E+m)\right)}{E Q_{1} z(E+m)} \Pi_{0}^{s}\left(\Gamma_{2}\right)+\frac{P_{3}}{E Q_{1} z} \Pi_{2}^{s}\left(\Gamma_{3}\right)
\end{aligned}
$$

Asymmetric $\quad A_{1}=\frac{2 m^{2}}{E_{f}\left(E_{i}+m\right)} \frac{\Pi_{0}^{a}\left(\Gamma_{0}\right)}{C_{a}}+i \frac{2\left(E_{f}-E_{i}\right) P_{3} m^{2}}{E_{f}\left(E_{f}+m\right)\left(E_{i}+m\right) Q_{1}} \frac{\Pi_{0}^{a}\left(\Gamma_{2}\right)}{C_{a}}+\frac{2\left(E_{i}-E_{f}\right) P_{3} m^{2}}{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right)\left(E_{i}+m\right)} \frac{\Pi_{1}^{a}\left(\Gamma_{2}\right)}{C_{a}}$

$$
+i \frac{2\left(E_{i}-E_{f}\right) m^{2}}{E_{f}\left(E_{i}+m\right) Q_{1}} \frac{\Pi_{1}^{a}\left(\Gamma_{0}\right)}{C_{a}}+\frac{2\left(E_{i}-E_{f}\right) P_{3} m^{2}}{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right)\left(E_{i}+m\right)} \frac{\Pi_{2}^{a}\left(\Gamma_{1}\right)}{C_{a}}+\frac{2\left(E_{f}-E_{i}\right) m^{2}}{E_{f}\left(E_{i}+m\right) Q_{1}} \frac{\Pi_{2}^{a}\left(\Gamma_{3}\right)}{C_{a}}
$$

$$
A_{5}=\frac{m^{2} P_{3}}{E_{f}\left(E_{f}+m\right)\left(E_{i}+m\right)} \frac{\Pi_{2}^{a}\left(\Gamma_{1}\right)}{C_{a}}-\frac{\left(E_{f}+E_{i}\right) m^{2}}{E_{f}\left(E_{i}+m\right) Q_{1}} \frac{\Pi_{2}^{a}\left(\Gamma_{3}\right)}{C_{a}}
$$

$$
A_{6}=\frac{P_{3} m^{2}}{E_{f}^{2}\left(E_{f}+m\right)\left(E_{i}+m\right) z} \frac{\Pi_{0}^{a}\left(\Gamma_{0}\right)}{C_{a}}+i \frac{\left(E_{f}-E_{i}-2 m\right) m^{2}}{E_{f}^{2}\left(E_{i}+m\right) Q_{1} z} \frac{\Pi_{0}^{a}\left(\Gamma_{2}\right)}{C_{a}}+i \frac{\left(E_{i}-E_{f}\right) P_{3} m^{2}}{E_{f}^{2}\left(E_{f}+m\right)\left(E_{i}+m\right) Q_{1} z} \frac{\Pi_{1}^{a}\left(\Gamma_{0}\right)}{C_{a}}
$$

$$
+\frac{\left(-E_{f}+E_{i}+2 m\right) m^{2}}{E_{f}^{2}\left(E_{f}+E_{i}\right)\left(E_{i}+m\right) z} \frac{\Pi_{1}^{a}\left(\Gamma_{2}\right)}{C_{a}}+\frac{2\left(m-E_{f}\right) m^{2}}{E_{f}^{2}\left(E_{f}+E_{i}\right)\left(E_{i}+m\right) z} \frac{\Pi_{2}^{a}\left(\Gamma_{1}\right)}{C_{a}}+\frac{2 P_{3} m^{2}}{E_{f}^{2}\left(E_{i}+m\right) Q_{1} z} \frac{\Pi_{2}^{a}\left(\Gamma_{3}\right)}{C_{a}}
$$

* Asymmetric frame equations more complex

$\star A_{i}$ have definite symmetries

Lorentz-Invariant amplitudes

Symmetric

$$
\begin{aligned}
A_{1}= & \frac{\left(m(E+m)+P_{3}^{2}\right)}{E(E+m)} \Pi_{0}^{s}\left(\Gamma_{0}\right)-i \frac{P_{3} Q_{1}}{2 E(E+m)} \Pi_{0}^{s}\left(\Gamma_{2}\right)-\frac{Q_{1}}{2 E} \Pi_{2}^{s}\left(\Gamma_{3}\right) \\
A_{5}= & -\frac{E}{Q_{1}} \Pi_{2}^{s}\left(\Gamma_{3}\right) \\
A_{6}= & \frac{P_{3}}{2 E z(E+m)} \Pi_{0}^{s}\left(\Gamma_{0}\right)+i \frac{\left(P_{3}^{2}-E(E+m)\right)}{E Q_{1} z(E+m)} \Pi_{0}^{s}\left(\Gamma_{2}\right)+\frac{P_{3}}{E Q_{1} z} \Pi_{2}^{s}\left(\Gamma_{3}\right) \\
A_{1}= & \frac{2 m^{2}}{E_{f}\left(E_{i}+m\right)} \frac{\Pi_{0}^{a}\left(\Gamma_{0}\right)}{C_{a}}+i \frac{2\left(E_{f}-E_{i}\right) P_{3} m^{2}}{E_{f}\left(E_{f}+m\right)\left(E_{i}+m\right) Q_{1}} \frac{\Pi_{0}^{a}\left(\Gamma_{2}\right)}{C_{a}}+\frac{2\left(E_{i}-E_{f}\right) P_{3} m^{2}}{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right)\left(E_{i}+m\right)} \frac{\Pi_{1}^{a}\left(\Gamma_{2}\right)}{C_{a}} \\
& +i \frac{2\left(E_{i}-E_{f}\right) m^{2}}{E_{f}\left(E_{i}+m\right) Q_{1}} \frac{\Pi_{1}^{a}\left(\Gamma_{0}\right)}{C_{a}}+\frac{2\left(E_{i}-E_{f}\right) P_{3} m^{2}}{E_{f}\left(E_{f}+E_{i}\right)\left(E_{f}+m\right)\left(E_{i}+m\right)} \frac{\Pi_{2}^{a}\left(\Gamma_{1}\right)}{C_{a}}+\frac{2\left(E_{f}-E_{i}\right) m^{2}}{E_{f}\left(E_{i}+m\right) Q_{1}} \frac{\Pi_{2}^{a}\left(\Gamma_{3}\right)}{C_{a}} \\
A_{5}= & \frac{m^{2} P_{3}}{E_{f}\left(E_{f}+m\right)\left(E_{i}+m\right)} \frac{\Pi_{2}^{a}\left(\Gamma_{1}\right)}{C_{a}}-\frac{\left(E_{f}+E_{i}\right) m^{2}}{E_{f}\left(E_{i}+m\right) Q_{1}} \frac{\Pi_{2}^{a}\left(\Gamma_{3}\right)}{C_{a}} \\
A_{6}= & \frac{P_{3} m^{2}}{E_{f}^{2}\left(E_{f}+m\right)\left(E_{i}+m\right) z} \frac{\Pi_{0}^{a}\left(\Gamma_{0}\right)}{C_{a}}+i \frac{\left(E_{f}-E_{i}-2 m\right) m^{2}}{E_{f}^{2}\left(E_{i}+m\right) Q_{1} z} \frac{\Pi_{0}^{a}\left(\Gamma_{2}\right)}{C_{a}}+i \frac{\left(E_{i}-E_{f}\right) P_{3} m^{2}}{E_{f}^{2}\left(E_{f}+m\right)\left(E_{i}+m\right) Q_{1} z} \frac{\Pi_{1}^{a}\left(\Gamma_{0}\right)}{C_{a}} \\
& +\frac{\left(-E_{f}+E_{i}+2 m\right) m^{2}}{E_{f}^{2}\left(E_{f}+E_{i}\right)\left(E_{i}+m\right) z} \frac{\Pi_{1}^{a}\left(\Gamma_{2}\right)}{C_{a}}+\frac{2\left(m-E_{f}\right) m^{2}}{E_{f}^{2}\left(E_{f}+E_{i}\right)\left(E_{i}+m\right) z} \frac{\Pi_{2}^{a}\left(\Gamma_{1}\right)}{C_{a}}+\frac{2 P_{3} m^{2}}{E_{f}^{2}\left(E_{i}+m\right) Q_{1} z} \frac{\Pi_{2}^{a}\left(\Gamma_{3}\right)}{C_{a}}
\end{aligned}
$$

Asymmetric frame equations more complex
A_{i} have definite symmetries
System of 8 independent matrix elements to disentangle the A_{i}

Parameters of calculation

$\mathrm{Nf}=2+1+1$ twisted mass (TM) fermions \& clover improvement

Calculation:

- isovector combination
- zero skewness
- $\mathrm{T}_{\text {sink }}=1 \mathrm{fm}$

Pion mass:	260 MeV
Lattice spacing:	0.093 fm
Volume:	$32^{3} \times 64$
Spatial extent:	3 fm

frame	$P_{3}[\mathrm{GeV}]$	$\mathbf{Q}\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	ξ	N_{ME}	$N_{\text {confs }}$	$N_{\text {src }}$	$N_{\text {tot }}$
symm	1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	249	8	15936
non-symm	1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.64	0	8	269	8	17216

\star Computational cost:

- symmetric frame 4 times more expensive than asymmetric frame for same set of \vec{Q} (requires separate calculations at each t)

Parameters of calculation

$\mathrm{Nf}=2+1+1$ twisted mass (TM) fermions \& clover improvement

Calculation:

- isovector combination
- zero skewness
- $\mathrm{T}_{\text {sink }}=1 \mathrm{fm}$

frame	$P_{3}[\mathrm{GeV}]$	$\mathbf{Q}\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	ξ	N_{ME}	$N_{\text {confs }}$	$N_{\text {src }}$	$N_{\text {tot }}$
symm	1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	249	8	15936
non-symm	1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.64	0	8	269	8	17216

Small difference: $\quad t^{s}=-\vec{Q}^{2} \quad t^{a}=-\vec{Q}^{2}+\left(E_{f}-E_{i}\right)^{2}$

$$
A\left(-0.64 \mathrm{GeV}^{2}\right) \sim A\left(-0.69 \mathrm{GeV}^{2}\right)
$$

\star Computational cost:

- symmetric frame 4 times more expensive than asymmetric frame for same set of \vec{Q} (requires separate calculations at each t)

Results: A_{i}

A_{1}, A_{5} dominant contributions
Full agreement in two frames for both Re and Im parts of A_{1}, A_{5}
Remaining A_{i} suppressed (at least for this kinematic setup and $\xi=0$)

Π_{H}, Π_{E} in terms of A_{i}

 in each frame leading to frame dependent relations:

Π_{H}, Π_{E} in terms of A_{i}

Mapping of $\left\{\Pi_{H}, \Pi_{E}\right\}$ to A_{i} using $F^{\left[\gamma^{0}\right]} \sim\left[\gamma^{0} H_{Q(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0, \mu} \Delta_{\mu}}{2 M} E_{Q(0)}\left(x, \xi, t ; P^{3}\right)\right]$ in each frame leading to frame dependent relations:

$$
\begin{aligned}
\Pi_{H}^{s}= & A_{1}+\frac{z Q_{1}^{2}}{2 P_{3}} A_{6} \\
\Pi_{E}^{s}= & -A_{1}-\frac{m^{2} z}{P_{3}} A_{4}+2 A_{5}-\frac{z\left(4 E^{2}+Q x^{2}+Q y^{2}\right)}{2 P_{3}} A_{6} \\
\Pi_{H}^{a}= & A_{1}+\frac{Q_{0}}{P_{0}} A_{3}+\frac{m^{2} z Q_{0}}{2 P_{0} P_{3}} A_{4}+\frac{z\left(Q_{0}^{2}+Q_{\perp}^{2}\right.}{2 P_{3}} A_{6}+\frac{z\left(Q_{0}^{3}+Q_{0} Q_{\perp}^{2}\right)}{2 P_{0} P_{3}} A_{8} \\
\Pi_{E}^{a}= & -A_{1}-\frac{Q_{0}}{P_{0}} A_{3}-\frac{m^{2} z\left(Q_{0}+2 P_{0}\right)}{2 P_{0} P_{3}} A_{4}+2 A_{5} \\
& -\frac{z\left(Q_{0}^{2}+2 P_{0} Q_{0}+4 P_{0}^{2}+Q_{\perp}^{2}\right)}{2 P_{3}} A_{6}-\frac{z Q_{0}\left(Q_{0}^{2}+2 Q_{0} P_{0}+4 P_{0}^{2}+Q_{\perp}^{2}\right)}{2 P_{0} P_{3}} A_{8}
\end{aligned}
$$

Π_{H}, Π_{E} in terms of A_{i}

 in each frame leading to frame dependent relations:
$(\xi=0)$

$$
\begin{aligned}
\Pi_{H}^{s}= & A_{1}+\frac{z Q_{1}^{2}}{2 P_{3}} A_{6} \\
\Pi_{E}^{s}= & -A_{1}-\frac{m^{2} z}{P_{3}} A_{4}+2 A_{5}-\frac{z\left(4 E^{2}+Q x^{2}+Q y^{2}\right)}{2 P_{3}} A_{6} \\
\Pi_{H}^{a}= & A_{1}+\frac{Q_{0}}{P_{0}} A_{3}+\frac{m^{2} z Q_{0}}{2 P_{0} P_{3}} A_{4}+\frac{z\left(Q_{0}^{2}+Q_{\perp}^{2}\right.}{2 P_{3}} A_{6}+\frac{z\left(Q_{0}^{3}+Q_{0} Q_{\perp}^{2}\right)}{2 P_{0} P_{3}} A_{8} \\
\Pi_{E}^{a}= & -A_{1}-\frac{Q_{0}}{P_{0}} A_{3}-\frac{m^{2} z\left(Q_{0}+2 P_{0}\right)}{2 P_{0} P_{3}} A_{4}+2 A_{5} \\
& -\frac{z\left(Q_{0}^{2}+2 P_{0} Q_{0}+4 P_{0}^{2}+Q_{\perp}^{2}\right)}{2 P_{3}} A_{6}-\frac{z Q_{0}\left(Q_{0}^{2}+2 Q_{0} P_{0}+4 P_{0}^{2}+Q_{\perp}^{2}\right)}{2 P_{0} P_{3}} A_{8}
\end{aligned}
$$

Definition of Lorentz invariant $\Pi_{H} \& \Pi_{E}$
$\Pi_{H}^{\mathrm{impr}}=A_{1}$
$\Pi_{E}^{\mathrm{impr}}=-A_{1}+2 A_{5}+2 z P_{3} A_{6}$

Π_{H}, Π_{E} in terms of A_{i}

\star Mapping of $\left\{\Pi_{H}, \Pi_{E}\right\}$ to A_{i} using $F^{\left[\gamma^{0}\right]} \sim\left[\gamma^{0} H_{Q(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{Q(0)}\left(x, \xi, t ; P^{3}\right)\right]$ in each frame leading to frame dependent relations:

$$
\begin{align*}
& \Pi_{H}^{s}=A_{1}+\frac{z Q_{1}^{2}}{2 P_{3}} A_{6} \\
& \Pi_{E}^{s}=-A_{1}-\frac{m^{2} z}{P_{3}} A_{4}+2 A_{5}-\frac{z\left(4 E^{2}+Q x^{2}+Q y^{2}\right)}{2 P_{3}} A_{6}
\end{align*}
$$

$1^{\text {st }}$ approach: extraction of $\left\{\Pi_{H}^{s}, \Pi_{E}^{s}\right\}$ using A_{i} from any frame (universal)

$$
\begin{aligned}
\Pi_{H}^{a}= & A_{1}+\frac{Q_{0}}{P_{0}} A_{3}+\frac{m^{2} z Q_{0}}{2 P_{0} P_{3}} A_{4}+\frac{z\left(Q_{0}^{2}+Q_{\perp}^{2}\right.}{2 P_{3}} A_{6}+\frac{z\left(Q_{0}^{3}+Q_{0} Q_{\perp}^{2}\right)}{2 P_{0} P_{3}} A_{8} \\
\Pi_{E}^{a}= & -A_{1}-\frac{Q_{0}}{P_{0}} A_{3}-\frac{m^{2} z\left(Q_{0}+2 P_{0}\right)}{2 P_{0} P_{3}} A_{4}+2 A_{5} \\
& -\frac{z\left(Q_{0}^{2}+2 P_{0} Q_{0}+4 P_{0}^{2}+Q_{\perp}^{2}\right)}{2 P_{3}} A_{6}-\frac{z Q_{0}\left(Q_{0}^{2}+2 Q_{0} P_{0}+4 P_{0}^{2}+Q_{\perp}^{2}\right)}{2 P_{0} P_{3}} A_{8}
\end{aligned}
$$

Definition of Lorentz invariant $\Pi_{H} \& \Pi_{E}$

$$
\begin{array}{ll}
(\xi=0) & \Pi_{H}^{\mathrm{impr}}=A_{1} \\
& \Pi_{E}^{\mathrm{impr}}=-A_{1}+2 A_{5}+2 z P_{3} A_{6}
\end{array}
$$

Π_{H}, Π_{E} in terms of A_{i}

\star Mapping of $\left\{\Pi_{H}, \Pi_{E}\right\}$ to A_{i} using $F^{\left[\gamma^{0}\right]} \sim\left[\gamma^{0} H_{Q(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{Q(0)}\left(x, \xi, t ; P^{3}\right)\right]$
in each frame leading to frame dependent relations:
$(\xi=0)$
$\Pi_{H}^{s}=A_{1}+\frac{z Q_{1}^{2}}{2 P_{3}} A_{6}$
$\Pi_{E}^{s}=-A_{1}-\frac{m^{2} z}{P_{3}} A_{4}+2 A_{5}-\frac{z\left(4 E^{2}+Q x^{2}+Q y^{2}\right)}{2 P_{3}} A_{6}$
$\Pi_{H}^{a}=A_{1}+\frac{Q_{0}}{P_{0}} A_{3}+\frac{m^{2} z Q_{0}}{2 P_{0} P_{3}} A_{4}+\frac{z\left(Q_{0}^{2}+Q_{\perp}^{2}\right.}{2 P_{3}} A_{6}+\frac{z\left(Q_{0}^{3}+Q_{0} Q_{\perp}^{2}\right)}{2 P_{0} P_{3}} A_{8}$
$\Pi_{E}^{a}=-A_{1}-\frac{Q_{0}}{P_{0}} A_{3}-\frac{m^{2} z\left(Q_{0}+2 P_{0}\right)}{2 P_{0} P_{3}} A_{4}+2 A_{5}$

$$
-\frac{z\left(Q_{0}^{2}+2 P_{0} Q_{0}+4 P_{0}^{2}+Q_{\perp}^{2}\right)}{2 P_{3}} A_{6}-\frac{z Q_{0}\left(Q_{0}^{2}+2 Q_{0} P_{0}+4 P_{0}^{2}+Q_{\perp}^{2}\right)}{2 P_{0} P_{3}} A_{8}
$$

$1^{\text {st }}$ approach: extraction of $\left\{\Pi_{H}^{s}, \Pi_{E}^{s}\right\}$ using A_{i} from any frame (universal)
$2^{\text {nd }}$ approach: extraction of $\left\{\Pi_{H}, \Pi_{E}\right\}$ from a purely asymmetric frame; GPDs differ in functional form from $\left\{\Pi_{H}^{s}, \Pi_{E}^{s}\right\}$

Definition of Lorentz invariant $\Pi_{H} \& \Pi_{E}$

$$
\begin{array}{ll}
(\xi=0) & \Pi_{H}^{\mathrm{impr}}=A_{1} \\
& \Pi_{E}^{\mathrm{impr}}=-A_{1}+2 A_{5}+2 z P_{3} A_{6}
\end{array}
$$

Π_{H}, Π_{E} in terms of A_{i}

* Mapping of $\left\{\Pi_{H}, \Pi_{E}\right\}$ to A_{i} using $F^{\left[\gamma^{0}\right]} \sim\left[\gamma^{0} H_{Q(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu \mu} \Delta_{\mu}}{2 M} E_{Q(0)}\left(x, \xi, t ; P^{3}\right)\right]$
in each frame leading to frame dependent relations:
$(\xi=0)$

$$
\begin{aligned}
\Pi_{H}^{s}= & A_{1}+\frac{z Q_{1}^{2}}{2 P_{3}} A_{6} \\
\Pi_{E}^{s}= & -A_{1}-\frac{m^{2} z}{P_{3}} A_{4}+2 A_{5}-\frac{z\left(4 E^{2}+Q x^{2}+Q y^{2}\right)}{2 P_{3}} A_{6} \\
\Pi_{H}^{a}= & A_{1}+\frac{Q_{0}}{P_{0}} A_{3}+\frac{m^{2} z Q_{0}}{2 P_{0} P_{3}} A_{4}+\frac{z\left(Q_{0}^{2}+Q_{\perp}^{2}\right.}{2 P_{3}} A_{6}+\frac{z\left(Q_{0}^{3}+Q_{0} Q_{\perp}^{2}\right)}{2 P_{0} P_{3}} A_{8} \\
\Pi_{E}^{a}= & -A_{1}-\frac{Q_{0}}{P_{0}} A_{3}-\frac{m^{2} z\left(Q_{0}+2 P_{0}\right)}{2 P_{0} P_{3}} A_{4}+2 A_{5} \\
& -\frac{z\left(Q_{0}^{2}+2 P_{0} Q_{0}+4 P_{0}^{2}+Q_{\perp}^{2}\right)}{2 P_{3}} A_{6}-\frac{z Q_{0}\left(Q_{0}^{2}+2 Q_{0} P_{0}+4 P_{0}^{2}+Q_{\perp}^{2}\right)}{2 P_{0} P_{3}} A_{8}
\end{aligned}
$$

$1^{\text {st }}$ approach: extraction of $\left\{\Pi_{H}^{S}, \Pi_{E}^{s}\right\}$ using A_{i} from any frame (universal)
$2^{\text {nd }}$ approach: extraction of $\left\{\Pi_{H}, \Pi_{E}\right\}$ from a purely asymmetric frame; GPDs differ in functional form from $\left\{\Pi_{H}^{s}, \Pi_{E}^{s}\right\}$

Definition of Lorentz invariant $\Pi_{H} \& \Pi_{E}$

$$
\begin{array}{ll}
(\xi=0) & \Pi_{H}^{\mathrm{impr}}=A_{1} \\
& \Pi_{E}^{\mathrm{impr}}=-A_{1}+2 A_{5}+2 z P_{3} A_{6}
\end{array}
$$

3rd approach: use redefined Lorentz covariant $\left\{\Pi_{H}, \Pi_{E}\right\}$ in desired frame

Results: H - GPD

Symmetric frame: H vs \mathscr{H}

Symmetric frame: E vs \mathscr{E}

Asymmetric frame: H vs \mathscr{H}

Asymmetric frame: E vs \mathscr{E}

Similar results for H and \mathscr{H} for both frames (agreement not by construction)

Differences between E and \mathscr{E} for both frames (agreement not by construction)

Results: H - GPD

Similar results for H and \mathscr{H} for both frames (agreement not by construction)

Differences between E and \mathscr{E} for both frames (agreement not by construction)

Agreement between frames for \mathscr{H} and \mathscr{E} (agreement by construction)

Summary

* Tomographic imaging of proton has central role in the science program of JLab

Summary

* Tomographic imaging of proton has central role in the science program of JLab

JLab Upgrade an important topic in the Hot \& Cold QCD Town Hall Meeting

Summary

* Tomographic imaging of proton has central role in the science program of JLab
* JLab Upgrade an important topic in the Hot \& Cold QCD Town Hall Meeting

* JLab Upgrade included in the survey for the Town Hall Meeting recommendations

Summary

* Lattice QCD data on GPDs will play an important role in the pre-EIC era and can complement experimental efforts of JLab@12GeV
* New proposal for Lorentz invariant decomposition has great advantages: - significant reduction of computational cost
- access to a broad range of t and ξ
* Future calculations have the potential to transform the field of GPDs
* Essential to continue support the field and have access to state-of-the-art computational resources
* Synergy with phenomenology is an exciting prospect!

Summary

* Lattice QCD data on GPDs will play an important role in the pre-EIC era and can complement experimental efforts of JLab@12GeV
* New proposal for Lorentz invariant decomposition has great advantages: - significant reduction of computational cost
- access to a broad range of t and ξ
* Future calculations have the potential to transform the field of GPDs
* Essential to continue support the field and have access to state-of-the-art computational resources
* Synergy with phenomenology is an exciting prospect!

Thank you

BACKUP

M. Constantinou, ECT* JLab Upgrade Workshop 2022

Challenges of lattice calculation

\star Statistical noise increases with P_{3}, t
use of momentum smearing method

Challenges of lattice calculation

\star Statistical noise increases with P_{3}, t
use of momentum smearing method

Challenges of lattice calculation

\star Statistical noise increases with P_{3}, t
use of momentum smearing method

- Implementation in GPDs nontrivial due to momentum transfer

Standard definition of GPDs in Breit (symmetric) frame separate calculations at each t

* Matrix elements decompose into more than one GPDs at least 2 parity projectors are needed to disentangle GPDs
- Nonzero skewness
nontrivial matching
- P_{3} must be chosen carefully due to UV cutoff ($a^{-1} \sim 2 \mathrm{GeV}$)

Challenges of lattice calculation

\star Statistical noise increases with P_{3}, t
use of momentum smearing method

- Implementation in GPDs nontrivial due to momentum transfer

Standard definition of GPDs in Breit (symmetric) frame separate calculations at each t

- Matrix elements decompose into more than one GPDs at least 2 parity projectors are needed to disentangle GPDs
- Nonzero skewness
nontrivial matching
- P_{3} must be chosen carefully due to UV cutoff ($a^{-1} \sim 2 \mathrm{GeV}$)

Challenges of lattice calculation

\star Statistical noise increases with P_{3}, t
use of momentum smearing method

* Implementation in GPDs nontrivial due to momentum transfer

Standard definition of GPDs in Breit (symmetric) frame separate calculations at each t

Matrix elements decompose into more than one GPDs at least 2 parity projectors are needed to disentangle GPDs

Ref.	$m_{\pi}(\mathrm{MeV})$	$P_{3}(\mathrm{GeV})$	$\left.\frac{n}{s}\right\|_{z=0}$
quasi/pseudo [59,95]	130	1.38	6%
pseudo [92]	172	2.10	8\%
current-current [98]	278	1.65	19% *
quasi [72]	300	1.72	$6 \%^{\dagger}$
quasi/pseudo [77]	300	2.45	$8 \%{ }^{\dagger}$
quasi/pseudo [70]	310	1.84	$3 \%^{\dagger}$
twist-3 [148]	260	1.67	15\%
s-quark quasi [113]	260	1.24	31%
s-quark quasi [112]	310	1.30	43\%**
gluon pseudo [134]	310	1.73	39%
$\begin{aligned} & \text { quasi-GPDs [170] } \\ & -t=0.69 \mathrm{GeV}^{2} \end{aligned}$	260	1.67	23\%
$\begin{aligned} & \text { quasi-GPDs [169] } \\ & -t=0.92 \mathrm{GeV}^{2} \end{aligned}$	310	1.74	59\%

\dagger At $T_{\text {sink }}<1 \mathrm{fm}$.
\star At smallest z value used, $z=2$.
$\star \star$ At maximum value of imaginary part, $z=4$.
[M. Constantinou, EPJA 57 (2021) 77]

* Nonzero skewness
nontrivial matching
↔ $\quad \mathrm{P}_{3}$ must be chosen carefully due to UV cutoff $\left(a^{-1} \sim 2 \mathrm{GeV}\right)$

Challenges of lattice calculation

\star Statistical noise increases with P_{3}, t
use of momentum smearing method

* Implementation in GPDs nontrivial due to momentum transfer

Standard definition of GPDs in Breit (symmetric) frame separate calculations at each t

Matrix elements decompose into more than one GPDs at least 2 parity projectors are needed to disentangle GPDs

Ref.	$m_{\pi}(\mathrm{MeV})$	$P_{3}(\mathrm{GeV})$	$\left.\frac{n}{s}\right\|_{z=0}$
quasi/pseudo [59,95]	130	1.38	6%
pseudo [92]	172	2.10	8%
current-current [98]	278	1.65	$19 \%^{\star}$
quasi [72]	300	1.72	$6 \%^{\dagger}$
quasi/pseudo [77]	300	2.45	$8 \%^{\dagger}$
quasi/pseudo [70]	310	1.84	$3 \%^{\dagger}$
twist-3 [148]	260	1.67	15%
s-quark quasi [113]	260	1.24	31%
s-quark quasi [112]	310	1.30	$43 \%^{\star \star}$
gluon pseudo [134]	310	1.73	39%
quasi-GPDs [170] $-t=0.69 \mathrm{GeV}^{2}$	260	1.67	23%
quasi-GPDs [169] $-t=0.92 G \mathrm{GV}^{2}$	310	1.74	59%

\dagger At $T_{\text {sink }}<1 \mathrm{fm}$.
\star At smallest z value used, $z=2$.
$\star \star$ At maximum value of imaginary part, $z=4$.
[M. Constantinou, EPJA 57 (2021) 77]

Further increase of momentum at the cost of credibility

- P_{3} must be chosen carefully due to UV cutoff ($a^{-1} \sim 2 \mathrm{GeV}$)

Nonzero skewness
nontrivial matching

Twist-classification of GPDs

$$
f_{i}=f_{i}^{(0)}+\frac{f_{i}^{(1)}}{Q}+\frac{f_{i}^{(2)}}{Q^{2}} \cdots
$$

Twist-classification of GPDs

$$
f_{i}=f_{i}^{(0)}+\frac{f_{i}^{(1)}}{Q}+\frac{f_{i}^{(2)}}{Q^{2}} \cdots
$$

Twist-2 $\left(f_{i}^{(0)}\right)$

Quark	$\mathbf{U}\left(\gamma^{+}\right)$	$L\left(\gamma^{+} \gamma^{5}\right)$	$\mathbf{T}\left(\sigma^{+j}\right)$
Nucleon	$H(x, \xi, t)$ $E(x, \xi, t)$ unpolarized		
\mathbf{L}		$\widetilde{H}(x, \xi, t)$ $\widetilde{E}(x, \xi, t)$ helicity	
\mathbf{T}			H_{T}, E_{T} $\widetilde{H}_{T}, \widetilde{E}_{T}$ transversity

Probabilistic interpretation

U

L

Twist-classification of GPDs

$$
f_{i}=f_{i}^{(0)}+\frac{f_{i}^{(1)}}{Q}+\frac{f_{i}^{(2)}}{Q^{2}} \cdots
$$

Twist-2 ($f_{i}^{(0)}$)

	$\mathrm{U}\left(\gamma^{+}\right)$	$L\left(\gamma^{+} \gamma^{5}\right)$	T (σ^{+j})
U	$\begin{gathered} H(x, \xi, t) \\ E(x, \xi, t) \\ \text { unpolarized } \end{gathered}$		
L			
T			$\begin{aligned} & H_{T}, E_{T} \\ & \widetilde{H}_{T}, \widetilde{E}_{T} \\ & \text { transversity } \end{aligned}$

0	γ^{j}	$\gamma^{j} \gamma^{5}$	$\sigma^{j k}$	(Selected)
U	$\begin{aligned} & G_{1}, G_{2} \\ & G_{3}, G_{4} \end{aligned}$			
L		$\begin{aligned} & \widetilde{G}_{1}, \widetilde{G}_{2} \\ & \widetilde{G}_{3}, \widetilde{G}_{4} \end{aligned}$		
T			$\begin{aligned} & H_{2}^{\prime}(x, \xi, t) \\ & E_{2}^{\prime}(x, \xi, t) \end{aligned}$	

Probabilistic interpretation

U

L

4

* Lack density interpretation, but not-negligible Contain info on quark-gluon-quark correlators

Physical interpretation, e.g., transverse force

* Kinematically suppressed

Difficult to isolate experimentally

* Theoretically: contain $\delta(x)$ singularities

Results: matrix elements

Real

Imag

asymmetric

\star Lattice data confirm symmetries where applicable (e.g., $\Pi_{0}^{s}\left(\Gamma_{0}\right)$ in $\left.\pm P_{3}, \pm Q, \pm z\right)$
\star ME decompose to different A_{i}

* Multiple ME contribute to the same quantity

Results: matrix elements

Real

Imag

* Matrix elements depend on frame (comparison pedagogical)
* ME in asymmetric frame do not have definite symmetries in $\pm P_{3}, \pm Q, \pm z$

Frame comparison and symmetries applied on Lorentz-invariant amplitudes

Results: matrix elements

$\star \quad \Pi_{1}\left(\Gamma_{2}\right)$ theoretically nonzero
\star Noisy contributions lead to challenges in extracting A_{i} of sub-leading magnitude

Results: H - GPD

Π_{H}^{a} vs $\Pi_{H}^{a, i m p r}$

$$
\Pi_{H}^{s, i m p r} \text { vs } \Pi_{H}^{a, i m p r}
$$

Π_{H} agree with $\Pi_{H}^{i m p r}$ for both frames despite different definitions (agreement not by construction)

Agreement between Π_{H}^{s} and Π_{H}^{a} also not required theoretically
$\Pi_{H}^{s} \& \Pi_{H}^{a}$ agreement achieved for improved definition, as expected from Lorentz invariance

Results: $\Pi_{E}-$ GPD

Both frames:
$\operatorname{Im}\left[\prod_{E}^{i m p r}\right]$ enhanced compared to $\operatorname{Im}\left[\Pi_{E}\right]$.
$\operatorname{Re}\left[\Pi_{E}^{s, \text { impr }}\right]$ larger than other $\operatorname{Re}\left[\Pi_{E}^{s}\right], \operatorname{Re}\left[\Pi_{E}^{a}\right]$ and $\operatorname{Re}\left[\Pi_{E}^{a, i m p r}\right]$

Agreement reached between frames for improved definition (expected theoretically)

A comment on Lorentz covariant definitions

Example: symmetric frame

Lorentz covariant definition leads to more precise results for Π_{E}

Same effect of improvement also for asymmetric frame

Numerical indications that using Π_{E} leads to better converge to lightcone GPDs with respect to P_{3}

Signal quality in Π_{H} same across all cases (not shown)

