TMD extraction framework and validation tests

\&

 the role of large kT

 the role of large kT}
J. Osvaldo Gonzalez-Hernandez

University if Turin \& INFN Turin

```
Based on:
J.O. Gonzalez-Hernandez(Turin U.), T.C. Rogers(Old Dominion U. and Jefferson Lab), N. Sato(Jefferson Lab) (May 11, 2022)
Phys.Rev.D 106 (2022) 3, 034002 • e-Print: 2205.05750 [hep-ph]
\& ongoing work with
Tommaso Rainaldi and T. C. Rogers
```


New opportunities with JLab upgrade

High luminosity (precision)

New opportunities with JLab upgrade

New opportunities with JLab upgrade

New opportunities with JLab upgrade

Possible issues/sources of error in determining TMDs

J.O. Gonzalez-Hernandez(Turin U.), T.C. Rogers(Old Dominion U. and Jefferson Lab), N. Sato(Jefferson Lab) (May 11, 2022) Phys.Rev.D 106 (2022) 3, 034002 • e-Print: 2205.05750 [hep-ph]

1. The choices of models, assumptions, or approximations used to describe nonperturbative contributions,
2. The neglect of power suppressed corrections to factorization, like the last term in Eq.
3. Truncation of high powers of α_{s} in perturbative parts of the calculation and,
4. In phenomenological applications involving fits, whatever assumptions and approximations are used at the level of fit extractions.

$$
\begin{aligned}
& Q^{2} \frac{\mathrm{~d} \sigma}{\mathrm{~d} z_{A} \mathrm{~d} z_{B} \mathrm{~d} q_{\mathrm{T}}^{2}} \\
& \quad=H\left(\mu_{Q} ; C_{2}\right) \int \mathrm{d}^{2} \boldsymbol{k}_{A \mathrm{~T}} \mathrm{~d}^{2} \boldsymbol{k}_{B \mathrm{~T}} D_{A}\left(z_{A}, z_{A} \boldsymbol{k}_{A \mathrm{~T}} ; \mu_{Q}, Q^{2}\right) D_{B}\left(z_{B}, z_{B} \boldsymbol{k}_{B \mathrm{~T}} ; \mu_{Q}, Q^{2}\right) \delta^{(2)}\left(\boldsymbol{q}_{\mathrm{T}}-\boldsymbol{k}_{A \mathrm{~T}}-\boldsymbol{k}_{B \mathrm{~T}}\right) \\
& \quad \quad+Y \quad\left(q_{\mathrm{T}}, Q ; \mu_{Q}\right)+O(m / Q) .
\end{aligned}
$$

Possible issues/sources of error in determining TMDs

1. The choices of models, assumptions, or approximations used to describe nonperturbative contri-

are models consistent with pQCD? butions,
2. The neglect of power suppressed corrections to factorization, like the last term in Eq.
3. Truncation of high powers of α_{s} in perturbative parts of the calculation and,
4. In phenomenological applications involving fits, whatever assumptions and approximations are used at the level of fit extractions.

$$
\begin{aligned}
& Q^{2} \frac{\mathrm{~d} \sigma}{\mathrm{~d} z_{A} \mathrm{~d} z_{B} \mathrm{~d} q_{\mathrm{T}}^{2}} \\
& \quad=H\left(\mu_{Q} ; C_{2}\right) \int \mathrm{d}^{2} \boldsymbol{k}_{A \mathrm{~T}} \mathrm{~d}^{2} \boldsymbol{k}_{B \mathrm{~T}} D_{A}\left(z_{A}, z_{A} \boldsymbol{k}_{A \mathrm{~T}} ; \mu_{Q}, Q^{2}\right) D_{B}\left(z_{B}, z_{B} \boldsymbol{k}_{B \mathrm{~T}} ; \mu_{Q}, Q^{2}\right) \delta^{(2)}\left(\boldsymbol{q}_{\mathrm{T}}-\boldsymbol{k}_{A \mathrm{~T}}-\boldsymbol{k}_{B \mathrm{~T}}\right) \\
& \quad \quad+Y \quad\left(q_{\mathrm{T}}, Q ; \mu_{Q}\right)+O(m / Q) .
\end{aligned}
$$

Possible issues/sources of error in determining TMDs

1. The choices of models, assumptions, or approximations used to describe nonperturbative contributions,
2. The neglect of power suppressed corrections to factorization, like the last term in Eq.
3. Truncation of high powers of α_{s} in perturbative parts of the calculation and,
4. In phenomenological applications involving fits, whatever assumptions and approximations are used at the level of fit extractions.

$$
\begin{aligned}
& Q^{2} \frac{\mathrm{~d} \sigma}{\mathrm{~d} z_{A} \mathrm{~d} z_{B} \mathrm{~d} q_{\mathrm{T}}^{2}} \\
& \quad=H\left(\mu_{Q} ; C_{2}\right) \int \mathrm{d}^{2} \boldsymbol{k}_{A \mathrm{~T}} \mathrm{~d}^{2} \boldsymbol{k}_{B \mathrm{~T}} D_{A}\left(z_{A}, z_{A} \boldsymbol{k}_{A \mathrm{~T}} ; \mu_{Q}, Q^{2}\right) D_{B}\left(z_{B}, z_{B} \boldsymbol{k}_{B \mathrm{~T}} ; \mu_{Q}, Q^{2}\right) \delta^{(2)}\left(\boldsymbol{q}_{\mathrm{T}}-\boldsymbol{k}_{A \mathrm{~T}}-\boldsymbol{k}_{B \mathrm{~T}}\right) \\
& \quad \quad+Y \quad\left(q_{\mathrm{T}}, Q ; \mu_{Q}\right)+O(m / Q) .
\end{aligned}
$$

Possible issues/sources of error in determining TMDs

1. The choices of models, assumptions, or approximations used to describe nonperturbative contributions,
2. The neglect of power suppressed corrections to factorization, like the last term in Eq.
3. Truncation of high powers of α_{s} in perturbative parts of the calculation and,

Large kT behaviour of TMDs is important

4. In phenomenological applications involving fits, whatever assumptions and approximations are used at the level of fit extractions.
```
\(Q^{2} \frac{\mathrm{~d} \sigma}{\mathrm{~d} z_{A} \mathrm{~d} z_{B} \mathrm{~d} q_{\mathrm{T}}^{2}}\)
    \(=H\left(\mu_{Q} ; C_{2}\right) \int \mathrm{d}^{2} \boldsymbol{k}_{A \mathrm{~T}} \mathrm{~d}^{2} \boldsymbol{k}_{B \mathrm{~T}} D_{A}\left(z_{A}, z_{A} \boldsymbol{k}_{A \mathrm{~T}} ; \mu_{Q}, Q^{2}\right) D_{B}\left(z_{B}, z_{B} \boldsymbol{k}_{B \mathrm{~T}} ; \mu_{Q}, Q^{2}\right) \delta^{(2)}\left(\boldsymbol{q}_{\mathrm{T}}-\boldsymbol{k}_{A \mathrm{~T}}-\boldsymbol{k}_{B \mathrm{~T}}\right)\)
        \(+Y \quad\left(q_{\mathrm{T}}, Q ; \mu_{Q}\right)+O(m / Q)\).
```


5. Neglecting the Y term

"W-term" usually written as

WOPE (pQCD)

$$
\begin{aligned}
W\left(q_{\mathrm{T}}, Q\right) & =H\left(\mu_{Q} ; C_{2}\right) \int \frac{\mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{-i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}^{\prime}} \tilde{D}_{A}\left(z_{A}, \boldsymbol{b}_{*} ; \mu_{b_{*}}, \mu_{b_{*}}^{2}\right) \tilde{D}_{B}\left(z_{B}, \boldsymbol{b}_{*} ; \mu_{b_{*}}, \mu_{b_{*}}^{2}\right) \\
& \times \exp \left\{2 \int_{\mu_{b_{*}}}^{\mu_{Q}} \frac{d \mu^{\prime}}{\mu^{\prime}}\left[\gamma\left(\alpha_{s}\left(\mu^{\prime}\right) ; 1\right)-\ln \frac{Q}{\mu^{\prime}} \gamma_{K}\left(\alpha_{s}\left(\mu^{\prime}\right)\right)\right]+\ln \frac{Q^{2}}{\mu_{b_{*}}^{2}} \tilde{K}\left(b_{*} ; \mu_{b_{*}}\right)\right\} \\
& \times \exp \left\{-g_{A}\left(z_{A}, b_{\mathrm{T}}\right)-g_{B}\left(z_{B}, b_{\mathrm{T}}\right)-g_{K}\left(b_{\mathrm{T}}\right) \ln \left(\frac{Q^{2}}{Q_{0}^{2}}\right)\right\}
\end{aligned}
$$

"W-term" usually written as

$$
\begin{aligned}
W\left(q_{\mathrm{T}}, Q\right) & =H\left(\mu_{Q} ; C_{2}\right) \int \frac{\mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{-i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}} \tilde{D}_{A}\left(z_{A}, \boldsymbol{b}_{*} ; \mu_{b_{*}}, \mu_{b_{*}}^{2}\right) \tilde{D}_{B}\left(z_{B}, \boldsymbol{b}_{*} ; \mu_{b_{*}}, \mu_{b_{*}}^{2}\right) \\
& \times \exp \left\{2 \int_{\mu_{b_{*}}}^{\mu_{Q}} \frac{d \mu^{\prime}}{\mu^{\prime}}\left[\gamma\left(\alpha_{s}\left(\mu^{\prime}\right) ; 1\right)-\ln \frac{Q}{\mu^{\prime}} \gamma_{K}\left(\alpha_{s}\left(\mu^{\prime}\right)\right)\right]+\ln \frac{Q^{2}}{\mu_{b_{*}}^{2}} \tilde{K}\left(b_{*} ; \mu_{b_{*}}\right)\right\} \\
& \times \exp \left\{-g_{A}\left(z_{A}, b_{\mathrm{T}}\right)-g_{B}\left(z_{B}, b_{\mathrm{T}}\right)-g_{K}\left(b_{\mathrm{T}}\right) \ln \left(\frac{Q^{2}}{Q_{0}^{2}}\right)\right\} .
\end{aligned}
$$

Models characterizing

nonperturbative behaviour

"W-term" usually written as

$$
\begin{aligned}
W\left(q_{\mathrm{T}}, Q\right) & =H\left(\mu_{Q} ; C_{2}\right) \int \frac{\mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{-i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}}\left\{\tilde { D } _ { A } \left(z_{A}, \boldsymbol{b}_{*} ; \mu_{b_{*}}, \mu_{b_{*}}^{2} \tilde{D}_{B}\left(z_{B}, \boldsymbol{b}_{*} ; \mu_{b_{*}}, \mu_{b_{*}}^{2}\right)\right.\right. \\
& \times \exp \left\{2 \int_{\mu_{b_{*}}}^{\mu_{Q}} \frac{d \mu^{\prime}}{\mu^{\prime}}\left[\gamma\left(\alpha_{s}\left(\mu^{\prime}\right) ; 1\right)-\ln \frac{Q}{\mu^{\prime}} \gamma_{K}\left(\alpha_{s}\left(\mu^{\prime}\right)\right)\right]+\ln \frac{Q^{2}}{\mu_{b_{*}}^{2}} \tilde{K}\left(b_{*} ; \mu_{b_{*}}\right)\right\} \\
& \left.\times \exp -g_{A}\left(z_{A}, b_{\mathrm{T}}\right)-g_{B}\left(z_{B}, b_{\mathrm{T}}\right)-g_{K}\left(b_{\mathrm{T}}\right) \ln \left(\frac{Q^{2}}{Q_{0}^{2}}\right)\right\} .
\end{aligned}
$$

Models characterizing

 nonperturbative behaviourTransition from small to large bT

$$
\boldsymbol{b}_{*}\left(b_{\mathrm{T}}\right)=\frac{\boldsymbol{b}_{\mathrm{T}}}{\sqrt{1+b_{\mathrm{T}}^{2} / b_{\max }^{2}}}
$$

Scale setting in the OPE

$$
\mu_{b_{*}} \equiv C_{1} / b_{*}
$$

Exact definition of \mathbf{W} does not depend on the shape of b^{*} nor on the value of bmax

$$
g_{K}\left(b_{\mathrm{T}}\right) \equiv \tilde{K}\left(b_{*}, \mu\right)-\tilde{K}\left(b_{\mathrm{T}}, \mu\right) \quad-g_{A}\left(z, \boldsymbol{b}_{\mathrm{T}}\right) \equiv \ln \left(\frac{\tilde{D}_{A}\left(z, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right)}{\tilde{D}_{A}\left(z, \boldsymbol{b}_{*} ; \mu_{Q_{0}}, Q_{0}^{2}\right)}\right)
$$

When modelling g-functions, should only allow for mild dependence on b* and bmax

Exact definition of W does not depend on the shape of b^{*} nor on

g-functions must be constrained explicitly at small bT (large kT)

 the value of bmax$$
g_{K}\left(b_{\mathrm{T}}\right) \equiv \tilde{K}\left(b_{*}, \mu\right)-\tilde{K}\left(b_{\mathrm{T}}, \mu\right) \quad-g_{A}\left(z, \boldsymbol{b}_{\mathrm{T}}\right) \equiv \ln \left(\frac{\tilde{D}_{A}\left(z, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right)}{\tilde{D}_{A}\left(z, \boldsymbol{b}_{*} ; \mu_{Q_{0}}, Q_{0}^{2}\right)}\right)
$$

When modelling g-functions, should only allow for mild dependence on b* and bmax

In both cases, using WOPE

Example: e+e- -> h h

Explicitly constraining g-functions

Unconstrained g-functions

Relative variation of W w.r.t mass parameters TMDs parametrized
at Q0, then evolved.

Important test: What is Qo?

an idea:
 (good old) predictions, the ultimate test.

J.O. Gonzalez-Hernandez(Turin U.), T.C. Rogers(Old Dominion
U. and Jefferson Lab), N. Sato(Jefferson Lab) (May 11, 2022)

Phys.Rev.D 106 (2022) 3, 034002 • e-Print: 2205.05750 [hep-ph]
A) Constrain models
B) Extract TMDs \& CS kernel at $Q \approx Q_{0}$

C) Evolve to higher energies and test extraction.
an idea:
(good old) predictions, the ultimate test.
J.O. Gonzalez-Hernandez(Turin U.), T.C. Rogers(Old Dominion
U. and Jefferson Lab), N. Sato(Jefferson Lab) (May 11, 2022)

Phys.Rev.D 106 (2022) 3, 034002 • e-Print: 2205.05750 [hep-ph]
A) Constrain models
B) Extract TMDs \& CS kernel at $Q \approx Q_{0}$
C) Evolve to higher energies and test extraction.

High luminosity (precision) $+$

Access to sufficiently small Q (accuracy)

How small can zh be?

Why should we care about collinear factorization? (large qT)

- important test of pQCD (e. g. what is Qo?)
- Small qT limit should match the large qT behaviour of W-term (TMDs)

This last one is not only a
formal issue, it has consequences in phenomenology

SIDIS example

Ignoring large kT constraints

With large kT constraints

How small can zh be?

Summarizing some of these ideas:

- Binning in qT is most useful.
- Different cuts at small zh may help.
- More nonperturbative information at smaller
- scales. How low can we go? (What is Q0?)
- Should not disregard large qT data.
- A good alternative to global fits: extract at $Q \approx \boldsymbol{Q}_{\mathbf{0}}$
- and test at higher energies.

Summarizing some of these ideas:

- Binning in qT is most useful.
- Different cuts at small zh may help.
- More nonperturbative information at smaller scales. How low can we go? (What is Q0?).
- Should not disregard large qT data.
- A good alternative to global fits: extract at $Q \approx Q_{0}$ and test at higher energies.

JLab 24-GeV upgrade

- Ideal for both precision and accuracy

Thanks

Backup (recent work on CS kernel)

TMDs from e+e--> h X

Formalism

$$
\begin{align*}
& \widetilde{D}_{1, h / f}\left(z_{h}, b_{\mathrm{T}} ; Q, \tau Q^{2}\right)= \\
& \quad \frac{1}{z_{h}^{2}}\left(d_{h / f}\left(z_{h}, \mu_{b_{*}}\right)+\frac{\alpha_{S}\left(\mu_{b_{*}}\right)}{4 \pi} \int_{z_{h}}^{1} \frac{d z}{z}\left[d_{h / f}\left(z_{h} / z, \mu_{b_{*}}\right) z^{2} \mathcal{C}_{q / q}^{[1]}\left(z, b_{*} ; \mu_{b_{*}}, \mu_{b_{*}}^{2}\right)+d_{h / g}\left(z_{h} / z, \mu_{b_{*}}\right) z^{2} \mathcal{C}_{g / q}^{[1]}\left(z, b_{*} ; \mu_{b_{*}}, \mu_{b_{*}}^{2}\right)\right]\right) \\
& \quad \times \exp \left\{\log \frac{Q}{\mu_{b_{*}}} g_{1}(\lambda)+g_{2}(\lambda)+\frac{1}{4} \log \tau\left[g_{2}^{K}(\lambda)+\frac{1}{\log \frac{Q}{\mu_{b_{*}}}} g_{3}^{K}(\lambda)\right]\right\} \\
& \quad \times M_{\mathrm{D}}\left(z, b_{\mathrm{T}}\right) \exp \left\{-\frac{1}{4} g_{\mathrm{K}}\left(b_{\mathrm{T}}\right) \log \left(\frac{Q^{2}}{M_{H}^{2}} \tau\right)\right\} \tag{3}
\end{align*}
$$

$$
\begin{aligned}
M_{\mathrm{D}}^{\mathrm{sqrt}}\left(z, b_{\mathrm{T}}\right) & =M_{\mathrm{D}}\left(z, b_{\mathrm{T}}\right) \sqrt{M_{\mathrm{S}}\left(b_{\mathrm{T}}\right)}, \\
g_{\mathrm{K}}^{\mathrm{sqrt}}\left(b_{\mathrm{T}}\right) & =\frac{1}{2} g_{\mathrm{K}}\left(b_{\mathrm{T}}\right),
\end{aligned}
$$

TMDs from e+e- -> h X

models

$M_{\mathrm{D}}=\frac{2^{2-p}\left(b_{\mathrm{T}} M_{0}\right)^{p-1}}{\Gamma(p-1)} K_{p-1}\left(b_{\mathrm{T}} M_{0}\right) \times F\left(b_{\mathrm{T}}, z_{h}\right)$		
ID	$M_{\text {D }}$ model	parameters
I	$\begin{aligned} & F=\left(\frac{1+\log \left(1+\left(b_{\mathrm{T}} M_{z}\right)^{2}\right)}{1+\left(b_{\mathrm{T}} M_{z}\right)^{2}}\right)^{q} \\ & M_{z}=-M_{1} \log \left(z_{h}\right) \end{aligned}$	$\begin{gathered} M_{0}, M_{1} \\ p=1.51, q=8 \end{gathered}$
II	$\begin{aligned} & F=1 \\ & M_{z}=M_{\pi} \frac{1}{z f(z)^{2}} \sqrt{\frac{3}{1-f(z)}} \\ & p_{z}=1+\frac{3}{2} \frac{f(z)}{1-f(z)} \\ & f(z)=1-(1-z)^{\beta}, \quad \beta=\frac{1-z_{0}}{z_{0}} \end{aligned}$	z_{0}
g_{K} model		
A	$g_{\mathrm{K}}=\log \left(1+\left(b_{\mathrm{T}} M_{\mathrm{K}}\right)^{p_{\mathrm{K}}}\right)$	$M_{\mathrm{K}}, p_{\mathrm{K}}$
B	$g_{\mathrm{K}}=M_{\mathrm{K}} b_{\mathrm{T}}^{\left(1-2 p_{\mathrm{K}}\right)}$	$M_{\mathrm{K}}, p_{\mathrm{K}}$

TMDs from e+e--> h X

Fit results

$q_{\mathrm{T}} / Q<0.15(\mathrm{pts}=168)$		
	IA	IB
$\chi_{\text {d.o.f. }}^{2}$	1.25	1.19
$M_{0}(\mathrm{GeV})$	$0.300_{-0.062}^{+0.075}$	$0.003_{-0.003}^{+0.089}$
$M_{1}(\mathrm{GeV})$	$0.522_{-0.041}^{+0.037}$	$0.520_{-0.040}^{+0.027}$
p^{*}	1.51	1.51
q^{*}	8	8
$M_{\mathrm{K}}(\mathrm{GeV})$	$1.305_{-0.146}^{+0.139}$	$0.904_{-0.086}^{+0.037}$
p_{K}^{*}	0.609	0.229

$q_{\mathrm{T}} / Q<0.15(\mathrm{pts}=168)$		
IIA		
$\chi_{\text {d.o.f. }}^{2}$	1.35	1.33
z_{0}	$0.574_{-0.041}^{+0.039}$	$0.556_{-0.051}^{+0.047}$
$M_{\mathrm{K}}(\mathrm{GeV})$	$1.633_{-0.105}^{+0.103}$	$0.687_{-0.171}^{+0.114}$
p_{k}	$0.588_{-0.141}^{+0.127}$	$0.293_{-0.038}^{+0.047}$

TMDs from e+e-->h X

CS kernel

