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We could express the same evolved W with TMD ↵s
in transverse momentum space, and in some cases that
might help with intuition since it more closely matches
the TMD parton model. But then the Fourier transforms
of simple factors become transverse momentum convolu-

tion integrals of several functions. For the purposes of
implementing evolution, we will continue to work with
Eq. (20) in coordinate space, as is normally done.
When Q = Q0, Eq. (20) exactly reproduces the TMD

parton model form of the factorization,
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So far, Eq. (20) and Eq. (21) still involve no approxi-
mations at all on the W -term. However, approximations
are ultimately necessary, of course, for getting practical
results.

Rather di↵erent kinds of approximations to Eq. (20)
can enter in a number of di↵erent ways, so the language
can become confusing. We will be as precise as possible
with our wording here. There are at least four di↵erent
types of approximation that generally take place simul-
taneously, including

1. The choices of models, assumptions, or approxi-
mations used to describe nonperturbative contri-
butions,

2. The neglect of power suppressed corrections to fac-
torization, like the last term in Eq. (14),

3. Truncation of high powers of ↵s in perturbative
parts of the calculation and,

4. In phenomenological applications involving fits,
whatever assumptions and approximations are used
at the level of fit extractions.

When we discuss an “nth-order” perturbative treatment,
we will mean by this that all parts that are calcula-
ble in fixed order perturbative QCD have been included
through order n, and they are optimized using the renor-
malization group and Collins-Soper evolution (Eq. (17)).
These “perturbative parts” include the right sides of
Eqs. (17)–(19), which in Eq. (20) appear as �K(↵s(µ0)),
�(↵s(µ0); 1) and K̃(bT;µQ0) when bT (or kT) is small

(large) enough that its bT-dependence is perturbative. In
Eq. (20) it also includesH(µQ;C2) and the D̃A, D̃B func-
tions in regions of small bT (or large kT). An “(n)” super-
script on a function means that it has been replaced by
its truncated, fixed order perturbation theory calculation
through order n. When we discuss nonperturbative parts
in later sections, it should be understood to be in the con-
text of phenomenological extractions. We will assume for
the sake of our discussion here that all nonperturbative
parametrizations have been made flexible enough that
the significant errors come only from the limitations of
factorization and truncated perturbation theory, and not
from a poor choice of nonperturbative parametrizations
or artifacts of the fitting procedure. Thus, a function like

D̃(n)
A should be read as “a D̃A parametrization including

nonperturbative parts extracted from measurements and
using an nth-order perturbation theory treatment for its
perturbative ingredients.”

Also, when we use the phrase “nonperturbative part,”
(e.g., the g-functions of the CSS formalism) it should gen-
erally be understood that we are not necessarily referring
to parts of a calculation that cannot ever be improved
with small coupling techniques. It only refers to contri-
butions that we choose to exclude from those factors that
we explicitly identify as perturbative.

Now consider how one might use Eq. (20) to do phe-
nomenology in a Type I scenario and from a bottom-up
perspective. Near the input scale, Q ⇡ Q0, the evolu-
tion factor on the second line is nearly unity and we can,
to a good approximation, just work with Eq. (21). If
Q0 is only of order ⇠ 1 � 2 GeV, then a phenomenolog-
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tum fractions are

zA =
pA · pB
q · pB

⇡
p+A,h

q+h
, zB =

pA · pB
q · pA

⇡
p�B,h

q�h
(8)

where the “⇡” means we drop terms that are power sup-
pressed in the current fragmentation region (by which we

mean zA and zB are fixed and not too small relative to
1). The “h” subscripts on lightcone momentum compo-
nents indicate that they are with respect to the hadron
frame.

In TMD factorization, the unpolarized cross section
di↵erential in zA, zB and q2

T
is written [3]

Q2
d�A,B

dzA dzB dq2
T

= Hjj̄(µQ;C2)

Z
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Y A,B(qT, Q;µQ) +O (m/Q) . (9)

The second line has the familiar form from the TMD
parton model, but with extra auxiliary arguments for
evolution. The capital Dj/A and Dj̄/B are the TMD ↵s
for a quark of flavor j (j̄) to fragment into hadron A (B).
A sum over flavors is implied.

In addition to the longitudinal and transverse parton
momentum arguments zA,B and kA,BT, the TMD ↵s also
depend on a renormalization group scale µ and a rapid-
ity evolution scale ⇣, which in Eq. (9) we have already
fixed equal to µ = µQ ⌘ C2Q and ⇣ = Q2 to optimize
perturbation theory. Here, C2 is an arbitrary numeri-
cal constant of order unity. (Throughout this paper, we
will assume C2 = 1.) H(µQ;C2) is a hard factor of the
form H = 1+O (↵s (µQ)), up to an uninteresting overall
constant. The Y (qT, Q)-term on the last line is an abbre-
viation for the correction needed for the qT ⇡ Q behav-
ior, and it is calculable entirely in fixed order collinear
factorization. The second line in Eq. (14) is exactly the
TMD parton model familiar from typical Type I appli-

cations if we drop the auxiliary µ and ⇣ arguments and
set H(µQ;C2) = 1.

We will focus on a very specific combination of phys-
ical observables in order to simplify later illustrative ex-
amples. Say that hadron A is h+ and hadron B is its
antiparticle h�. Then we can consider the combination

d�NS

dzA dzB dq2
T

=
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dzA dzB dq2
T
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d�h�,h+
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T

. (10)

We will also consider only the j = “up quark” contribu-
tion to Eq. (9). Then, summing the corresponding terms
on the right hand side of Eq. (9) gives
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Then we can define non-singlet TMD fragmentation functions,
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And, we can drop the j index for the rest of this paper and rewrite Eq. (9) in a more abbreviated way as

Q2
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= H(µQ;C2)
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Z
d2kAT d2kBT Dj/A

�
zA, zAkAT;µQ, Q

2
�
Dj̄/B

�
zB , zBkBT;µQ, Q

2
�
�(2) (qT � kAT � kBT)+

Y A,B(qT, Q;µQ) +O (m/Q) . (9)

The second line has the familiar form from the TMD
parton model, but with extra auxiliary arguments for
evolution. The capital Dj/A and Dj̄/B are the TMD ↵s
for a quark of flavor j (j̄) to fragment into hadron A (B).
A sum over flavors is implied.

In addition to the longitudinal and transverse parton
momentum arguments zA,B and kA,BT, the TMD ↵s also
depend on a renormalization group scale µ and a rapid-
ity evolution scale ⇣, which in Eq. (9) we have already
fixed equal to µ = µQ ⌘ C2Q and ⇣ = Q2 to optimize
perturbation theory. Here, C2 is an arbitrary numeri-
cal constant of order unity. (Throughout this paper, we
will assume C2 = 1.) H(µQ;C2) is a hard factor of the
form H = 1+O (↵s (µQ)), up to an uninteresting overall
constant. The Y (qT, Q)-term on the last line is an abbre-
viation for the correction needed for the qT ⇡ Q behav-
ior, and it is calculable entirely in fixed order collinear
factorization. The second line in Eq. (14) is exactly the
TMD parton model familiar from typical Type I appli-

cations if we drop the auxiliary µ and ⇣ arguments and
set H(µQ;C2) = 1.

We will focus on a very specific combination of phys-
ical observables in order to simplify later illustrative ex-
amples. Say that hadron A is h+ and hadron B is its
antiparticle h�. Then we can consider the combination

d�NS

dzA dzB dq2
T

=

d�h+,h�

dzA dzB dq2
T

+
d�h�,h+

dzA dzB dq2
T

� d�h+,h+

dzA dzB dq2
T

� d�h�,h�

dzA dzB dq2
T

. (10)

We will also consider only the j = “up quark” contribu-
tion to Eq. (9). Then, summing the corresponding terms
on the right hand side of Eq. (9) gives

Huū(µQ;C2)

Z
d2kAT d2kBT

⇥
Du/h+

�
zA, zAkAT;µQ, Q

2
�
�Du/h�

�
zA, zAkAT;µQ, Q

2
�⇤

⇥
⇥
Dū/h�

�
zB , zBkBT;µQ, Q

2
�
�Dū/h+

�
zB , zBkBT;µQ, Q

2
�⇤

�(2) (qT � kAT � kBT)

+ Y NS(qT, Q;µQ) +O (m/Q) . (11)

Then we can define non-singlet TMD fragmentation functions,

DA

�
zA, zAkAT;µQ, Q

2
�
⌘ Dj/h+

�
zA, zAkAT;µQ, Q

2
�
�Dj/h�

�
zA, zAkAT;µQ, Q

2
�

(12)

DB

�
zB , zBkBT;µQ, Q

2
�
⌘ Dj̄/h�

�
zB , zBkBT;µQ, Q

2
�
�Dj̄/h+

�
zB , zBkBT;µQ, Q

2
�
. (13)

And, we can drop the j index for the rest of this paper and rewrite Eq. (9) in a more abbreviated way as

Q2
d�NS

dzA dzB dq2
T

= H(µQ;C2)

Z
d2kAT d2kBT DA

�
zA, zAkAT;µQ, Q

2
�
DB

�
zB , zBkBT;µQ, Q

2
�
�(2) (qT � kAT � kBT)

+ Y NS(qT, Q;µQ) +O (m/Q) . (14)

How well can we 

access nonperturbative 


effects?


Possible issues/sources of error in determining TMDs



9

W (qT, Q) = H(↵s(µQ);C2)

Z
d2bT
(2⇡)2

e�iqT·bT D̃A(zA, bT;µQ0 , Q
2

0
) D̃B(zB , bT;µQ0 , Q

2

0
)

⇥ exp

(
K̃(bT;µQ0) ln

✓
Q2

Q2
0

◆
+

Z µQ

µQ0

dµ0

µ0


2�(↵s(µ

0); 1)� ln
Q2

µ02 �K(↵s(µ
0))

�)
. (20)

We could express the same evolved W with TMD ↵s
in transverse momentum space, and in some cases that
might help with intuition since it more closely matches
the TMD parton model. But then the Fourier transforms
of simple factors become transverse momentum convolu-

tion integrals of several functions. For the purposes of
implementing evolution, we will continue to work with
Eq. (20) in coordinate space, as is normally done.
When Q = Q0, Eq. (20) exactly reproduces the TMD

parton model form of the factorization,

W (qT, Q0) = H(µQ0 ;C2)

Z
d2bT
(2⇡)2

e�iqT·bT D̃A(zA, bT;µQ0 , Q
2

0
) D̃B(zB , bT;µQ0 , Q

2

0
)

= H(µQ0 ;C2)

Z
d2kAT d2kBT DA

�
zA, zAkAT;µQ0 , Q

2

0

�
DB

�
zB , zBkBT;µQ0 , Q

2

0

�
�(2) (qT � kAT � kBT) .

(21)

So far, Eq. (20) and Eq. (21) still involve no approxi-
mations at all on the W -term. However, approximations
are ultimately necessary, of course, for getting practical
results.

Rather di↵erent kinds of approximations to Eq. (20)
can enter in a number of di↵erent ways, so the language
can become confusing. We will be as precise as possible
with our wording here. There are at least four di↵erent
types of approximation that generally take place simul-
taneously, including

1. The choices of models, assumptions, or approxi-
mations used to describe nonperturbative contri-
butions,

2. The neglect of power suppressed corrections to fac-
torization, like the last term in Eq. (14),

3. Truncation of high powers of ↵s in perturbative
parts of the calculation and,

4. In phenomenological applications involving fits,
whatever assumptions and approximations are used
at the level of fit extractions.

When we discuss an “nth-order” perturbative treatment,
we will mean by this that all parts that are calcula-
ble in fixed order perturbative QCD have been included
through order n, and they are optimized using the renor-
malization group and Collins-Soper evolution (Eq. (17)).
These “perturbative parts” include the right sides of
Eqs. (17)–(19), which in Eq. (20) appear as �K(↵s(µ0)),
�(↵s(µ0); 1) and K̃(bT;µQ0) when bT (or kT) is small

(large) enough that its bT-dependence is perturbative. In
Eq. (20) it also includesH(µQ;C2) and the D̃A, D̃B func-
tions in regions of small bT (or large kT). An “(n)” super-
script on a function means that it has been replaced by
its truncated, fixed order perturbation theory calculation
through order n. When we discuss nonperturbative parts
in later sections, it should be understood to be in the con-
text of phenomenological extractions. We will assume for
the sake of our discussion here that all nonperturbative
parametrizations have been made flexible enough that
the significant errors come only from the limitations of
factorization and truncated perturbation theory, and not
from a poor choice of nonperturbative parametrizations
or artifacts of the fitting procedure. Thus, a function like

D̃(n)
A should be read as “a D̃A parametrization including

nonperturbative parts extracted from measurements and
using an nth-order perturbation theory treatment for its
perturbative ingredients.”

Also, when we use the phrase “nonperturbative part,”
(e.g., the g-functions of the CSS formalism) it should gen-
erally be understood that we are not necessarily referring
to parts of a calculation that cannot ever be improved
with small coupling techniques. It only refers to contri-
butions that we choose to exclude from those factors that
we explicitly identify as perturbative.

Now consider how one might use Eq. (20) to do phe-
nomenology in a Type I scenario and from a bottom-up
perspective. Near the input scale, Q ⇡ Q0, the evolu-
tion factor on the second line is nearly unity and we can,
to a good approximation, just work with Eq. (21). If
Q0 is only of order ⇠ 1 � 2 GeV, then a phenomenolog-

7

tum fractions are

zA =
pA · pB
q · pB

⇡
p+A,h

q+h
, zB =

pA · pB
q · pA

⇡
p�B,h

q�h
(8)

where the “⇡” means we drop terms that are power sup-
pressed in the current fragmentation region (by which we

mean zA and zB are fixed and not too small relative to
1). The “h” subscripts on lightcone momentum compo-
nents indicate that they are with respect to the hadron
frame.

In TMD factorization, the unpolarized cross section
di↵erential in zA, zB and q2

T
is written [3]

Q2
d�A,B

dzA dzB dq2
T

= Hjj̄(µQ;C2)

Z
d2kAT d2kBT Dj/A

�
zA, zAkAT;µQ, Q

2
�
Dj̄/B

�
zB , zBkBT;µQ, Q

2
�
�(2) (qT � kAT � kBT)+

Y A,B(qT, Q;µQ) +O (m/Q) . (9)

The second line has the familiar form from the TMD
parton model, but with extra auxiliary arguments for
evolution. The capital Dj/A and Dj̄/B are the TMD ↵s
for a quark of flavor j (j̄) to fragment into hadron A (B).
A sum over flavors is implied.

In addition to the longitudinal and transverse parton
momentum arguments zA,B and kA,BT, the TMD ↵s also
depend on a renormalization group scale µ and a rapid-
ity evolution scale ⇣, which in Eq. (9) we have already
fixed equal to µ = µQ ⌘ C2Q and ⇣ = Q2 to optimize
perturbation theory. Here, C2 is an arbitrary numeri-
cal constant of order unity. (Throughout this paper, we
will assume C2 = 1.) H(µQ;C2) is a hard factor of the
form H = 1+O (↵s (µQ)), up to an uninteresting overall
constant. The Y (qT, Q)-term on the last line is an abbre-
viation for the correction needed for the qT ⇡ Q behav-
ior, and it is calculable entirely in fixed order collinear
factorization. The second line in Eq. (14) is exactly the
TMD parton model familiar from typical Type I appli-

cations if we drop the auxiliary µ and ⇣ arguments and
set H(µQ;C2) = 1.

We will focus on a very specific combination of phys-
ical observables in order to simplify later illustrative ex-
amples. Say that hadron A is h+ and hadron B is its
antiparticle h�. Then we can consider the combination

d�NS

dzA dzB dq2
T

=

d�h+,h�

dzA dzB dq2
T

+
d�h�,h+

dzA dzB dq2
T

� d�h+,h+

dzA dzB dq2
T

� d�h�,h�

dzA dzB dq2
T

. (10)

We will also consider only the j = “up quark” contribu-
tion to Eq. (9). Then, summing the corresponding terms
on the right hand side of Eq. (9) gives

Huū(µQ;C2)

Z
d2kAT d2kBT

⇥
Du/h+

�
zA, zAkAT;µQ, Q

2
�
�Du/h�

�
zA, zAkAT;µQ, Q

2
�⇤

⇥
⇥
Dū/h�

�
zB , zBkBT;µQ, Q

2
�
�Dū/h+

�
zB , zBkBT;µQ, Q

2
�⇤

�(2) (qT � kAT � kBT)

+ Y NS(qT, Q;µQ) +O (m/Q) . (11)

Then we can define non-singlet TMD fragmentation functions,

DA

�
zA, zAkAT;µQ, Q

2
�
⌘ Dj/h+

�
zA, zAkAT;µQ, Q

2
�
�Dj/h�

�
zA, zAkAT;µQ, Q

2
�

(12)

DB

�
zB , zBkBT;µQ, Q

2
�
⌘ Dj̄/h�

�
zB , zBkBT;µQ, Q

2
�
�Dj̄/h+

�
zB , zBkBT;µQ, Q

2
�
. (13)

And, we can drop the j index for the rest of this paper and rewrite Eq. (9) in a more abbreviated way as

Q2
d�NS

dzA dzB dq2
T

= H(µQ;C2)

Z
d2kAT d2kBT DA

�
zA, zAkAT;µQ, Q

2
�
DB

�
zB , zBkBT;µQ, Q

2
�
�(2) (qT � kAT � kBT)

+ Y NS(qT, Q;µQ) +O (m/Q) . (14)

5. Neglecting the Y term


Possible issues/sources of error in determining TMDs

Large kT behaviour

of TMDs


is

important
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W (qT, Q) = H(↵s(µQ);C2)

Z
d2bT
(2⇡)2

e�iqT·bT D̃A(zA, bT;µQ0 , Q
2

0
) D̃B(zB , bT;µQ0 , Q

2

0
)

⇥ exp

(
K̃(bT;µQ0) ln

✓
Q2

Q2
0

◆
+

Z µQ

µQ0

dµ0

µ0


2�(↵s(µ

0); 1)� ln
Q2

µ02 �K(↵s(µ
0))

�)
. (20)

We could express the same evolved W with TMD ↵s
in transverse momentum space, and in some cases that
might help with intuition since it more closely matches
the TMD parton model. But then the Fourier transforms
of simple factors become transverse momentum convolu-

tion integrals of several functions. For the purposes of
implementing evolution, we will continue to work with
Eq. (20) in coordinate space, as is normally done.
When Q = Q0, Eq. (20) exactly reproduces the TMD

parton model form of the factorization,

W (qT, Q0) = H(µQ0 ;C2)

Z
d2bT
(2⇡)2

e�iqT·bT D̃A(zA, bT;µQ0 , Q
2

0
) D̃B(zB , bT;µQ0 , Q

2

0
)

= H(µQ0 ;C2)

Z
d2kAT d2kBT DA

�
zA, zAkAT;µQ0 , Q

2

0

�
DB

�
zB , zBkBT;µQ0 , Q

2

0

�
�(2) (qT � kAT � kBT) .

(21)

So far, Eq. (20) and Eq. (21) still involve no approxi-
mations at all on the W -term. However, approximations
are ultimately necessary, of course, for getting practical
results.

Rather di↵erent kinds of approximations to Eq. (20)
can enter in a number of di↵erent ways, so the language
can become confusing. We will be as precise as possible
with our wording here. There are at least four di↵erent
types of approximation that generally take place simul-
taneously, including

1. The choices of models, assumptions, or approxi-
mations used to describe nonperturbative contri-
butions,

2. The neglect of power suppressed corrections to fac-
torization, like the last term in Eq. (14),

3. Truncation of high powers of ↵s in perturbative
parts of the calculation and,

4. In phenomenological applications involving fits,
whatever assumptions and approximations are used
at the level of fit extractions.

When we discuss an “nth-order” perturbative treatment,
we will mean by this that all parts that are calcula-
ble in fixed order perturbative QCD have been included
through order n, and they are optimized using the renor-
malization group and Collins-Soper evolution (Eq. (17)).
These “perturbative parts” include the right sides of
Eqs. (17)–(19), which in Eq. (20) appear as �K(↵s(µ0)),
�(↵s(µ0); 1) and K̃(bT;µQ0) when bT (or kT) is small

(large) enough that its bT-dependence is perturbative. In
Eq. (20) it also includesH(µQ;C2) and the D̃A, D̃B func-
tions in regions of small bT (or large kT). An “(n)” super-
script on a function means that it has been replaced by
its truncated, fixed order perturbation theory calculation
through order n. When we discuss nonperturbative parts
in later sections, it should be understood to be in the con-
text of phenomenological extractions. We will assume for
the sake of our discussion here that all nonperturbative
parametrizations have been made flexible enough that
the significant errors come only from the limitations of
factorization and truncated perturbation theory, and not
from a poor choice of nonperturbative parametrizations
or artifacts of the fitting procedure. Thus, a function like

D̃(n)
A should be read as “a D̃A parametrization including

nonperturbative parts extracted from measurements and
using an nth-order perturbation theory treatment for its
perturbative ingredients.”

Also, when we use the phrase “nonperturbative part,”
(e.g., the g-functions of the CSS formalism) it should gen-
erally be understood that we are not necessarily referring
to parts of a calculation that cannot ever be improved
with small coupling techniques. It only refers to contri-
butions that we choose to exclude from those factors that
we explicitly identify as perturbative.

Now consider how one might use Eq. (20) to do phe-
nomenology in a Type I scenario and from a bottom-up
perspective. Near the input scale, Q ⇡ Q0, the evolu-
tion factor on the second line is nearly unity and we can,
to a good approximation, just work with Eq. (21). If
Q0 is only of order ⇠ 1 � 2 GeV, then a phenomenolog-

31

D̃A(z, bT;µ, ⇣) = D̃A(z, b⇤;µ, ⇣) exp

⇢
�gA(z, bT)� gK(bT) ln

✓p
⇣

Q0

◆�

= D̃A(z, b⇤;µb⇤ , µ
2

b⇤) exp

(Z µ

µb⇤

dµ0

µ0


�(↵s(µ

0); 1)� ln

p
⇣

µ0 �K(↵s(µ
0))

�
+ ln

p
⇣

µb⇤

K̃(b⇤;µb⇤)

)

⇥ exp

⇢
�gA(z, bT)� gK(bT) ln

✓p
⇣

Q0

◆�
. (109)

Recall that µb⇤ is defined in Eq. (102). There is of course an exactly analogous equation for D̃B(z, b⇤;µb⇤ , µ
2

b⇤
).

Substituting the evolved versions of D̃A(z, b⇤;µb⇤ , µ
2

b⇤
) and D̃B(z, b⇤;µb⇤ , µ

2

b⇤
) into the W -term factorization formula

Eq. (15) and setting the final scales equal to µ = µQ and ⇣ = Q2 in Eq. (15) gives

W (qT, Q) = H(µQ;C2)

Z
d2bT
(2⇡)2

e�iqT·bTD̃A(zA, b⇤;µb⇤ , µ
2

b⇤)D̃B(zB , b⇤;µb⇤ , µ
2

b⇤)

⇥ exp

(
2

Z µQ

µb⇤

dµ0

µ0


�(↵s(µ

0); 1)� ln
Q

µ0 �K(↵s(µ
0))

�
+ ln

Q2

µ2

b⇤

K̃(b⇤;µb⇤)

)

⇥ exp

⇢
�gA(zA, bT)� gB(zB , bT)� gK(bT) ln

✓
Q2

Q2
0

◆�
. (110)

Equation (110) is very close to the standard way of ex-
pressing the CSS-evolved W -term.3 As we have writ-
ten it, there are still no approximations; the solutions
to the evolution equations are exact and the steps above
simply reorganize the original factorization formula in
Eq. (15). However, by writing W (qT, Q) as in Eq. (110),
we have isolated on the first two lines those factors that
can be confidently approximated in perturbation theory
using collinear factorization. The value of bT never rises
above bmax and the scale µb⇤ never drops below C1/bmax.
Therefore, one obtains well-behaved perturbative calcu-
lations by replacing H(µQ;C2), �(↵s(µ0); 1), �K(↵s(µ0))
and K̃(b⇤;µb⇤) by their nth-order perturbative calcula-
tions.

For the TMD ↵s themselves on the first line, the choice
of µ =

p
⇣ = µb⇤ implements RG improvement for the

limit of small bT. As long as bmax is small enough,
D̃A,B(zA,B , b⇤;µb⇤ , µ

2

b⇤
) can be expanded in an OPE:

D̃(n,dr)(z, b⇤;µb⇤ , µ
2

b⇤)

=

Z
1

z

dẑ

ẑ3�2✏
dr(ẑ;µb⇤)C̃

(n)
D (z/ẑ, bT;µ

2

b⇤ , µb⇤ ,↵s(µb⇤))

+O (mbT) , (111)

which is a more explicit version of Eq. (25) but in
bT-space. (Here, as usual, m represents any of the

3 There are, however, a large number of minor but not always
obvious variations in the form of the expression in the literature.
There are also many di↵erent systems of notation. See [38] for
some translation.

small intrinsic mass scales, including now 1/bmax.) Sub-
stituting Eq. (111) for both D̃A(zA, b⇤;µb⇤ , µ

2

b⇤
) and

D̃B(zB , b⇤;µb⇤ , µ
2

b⇤
), along with the other perturbative

approximations mentioned above, recovers the standard
CSS expression – compare, for example, with the Drell-
Yan version of TMD factorization in Eq. (22) of [65].
The b⇤ method, as it is explained here, has several de-

sirable properties. There is the elegant feature that, in
dealing with the nonperturbative region of large bT, one
never modifies or approximates the operator definitions
of the TMD ↵s themselves. Rather, on the first line of
Eq. (110) we have simply changed their arguments from
bT to b⇤. Along the same lines, the g-functions on the last
line have explicit definitions in terms of the underlying
QCD operators. The final result for the cross section,
Eq. (110), is exactly independent of the choice of the
b⇤(bT) function in Eq. (100) or of the value of parame-
ters like bmax. Since changing them simply amounts to
reshu✏ing contributions between the perturbative and
non-perturbative factors, the b⇤-independence is a ver-
sion of RG invariance that we can express as

d

dbmax

W (qT, Q) = 0 . (112)

Or, if we consider other more general b⇤(bT) functions
determined by a collection of possibly many parameters
{b-params}, we can express the same relation schemati-
cally as

d

d{b-params}W (qT, Q) = 0 . (113)

These relations are exact for Eq. (110). Therefore, it is le-
gitimate to say that perturbative calculations of the first

WOPE (pQCD)

  W term  (with pQCD constraints from WOPE)

“W-term” usually written as
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W (qT, Q) = H(↵s(µQ);C2)

Z
d2bT
(2⇡)2

e�iqT·bT D̃A(zA, bT;µQ0 , Q
2

0
) D̃B(zB , bT;µQ0 , Q

2

0
)

⇥ exp

(
K̃(bT;µQ0) ln

✓
Q2

Q2
0

◆
+

Z µQ

µQ0

dµ0

µ0


2�(↵s(µ

0); 1)� ln
Q2

µ02 �K(↵s(µ
0))

�)
. (20)

We could express the same evolved W with TMD ↵s
in transverse momentum space, and in some cases that
might help with intuition since it more closely matches
the TMD parton model. But then the Fourier transforms
of simple factors become transverse momentum convolu-

tion integrals of several functions. For the purposes of
implementing evolution, we will continue to work with
Eq. (20) in coordinate space, as is normally done.
When Q = Q0, Eq. (20) exactly reproduces the TMD

parton model form of the factorization,

W (qT, Q0) = H(µQ0 ;C2)

Z
d2bT
(2⇡)2

e�iqT·bT D̃A(zA, bT;µQ0 , Q
2

0
) D̃B(zB , bT;µQ0 , Q

2

0
)

= H(µQ0 ;C2)

Z
d2kAT d2kBT DA

�
zA, zAkAT;µQ0 , Q

2

0

�
DB

�
zB , zBkBT;µQ0 , Q

2

0

�
�(2) (qT � kAT � kBT) .

(21)

So far, Eq. (20) and Eq. (21) still involve no approxi-
mations at all on the W -term. However, approximations
are ultimately necessary, of course, for getting practical
results.

Rather di↵erent kinds of approximations to Eq. (20)
can enter in a number of di↵erent ways, so the language
can become confusing. We will be as precise as possible
with our wording here. There are at least four di↵erent
types of approximation that generally take place simul-
taneously, including

1. The choices of models, assumptions, or approxi-
mations used to describe nonperturbative contri-
butions,

2. The neglect of power suppressed corrections to fac-
torization, like the last term in Eq. (14),

3. Truncation of high powers of ↵s in perturbative
parts of the calculation and,

4. In phenomenological applications involving fits,
whatever assumptions and approximations are used
at the level of fit extractions.

When we discuss an “nth-order” perturbative treatment,
we will mean by this that all parts that are calcula-
ble in fixed order perturbative QCD have been included
through order n, and they are optimized using the renor-
malization group and Collins-Soper evolution (Eq. (17)).
These “perturbative parts” include the right sides of
Eqs. (17)–(19), which in Eq. (20) appear as �K(↵s(µ0)),
�(↵s(µ0); 1) and K̃(bT;µQ0) when bT (or kT) is small

(large) enough that its bT-dependence is perturbative. In
Eq. (20) it also includesH(µQ;C2) and the D̃A, D̃B func-
tions in regions of small bT (or large kT). An “(n)” super-
script on a function means that it has been replaced by
its truncated, fixed order perturbation theory calculation
through order n. When we discuss nonperturbative parts
in later sections, it should be understood to be in the con-
text of phenomenological extractions. We will assume for
the sake of our discussion here that all nonperturbative
parametrizations have been made flexible enough that
the significant errors come only from the limitations of
factorization and truncated perturbation theory, and not
from a poor choice of nonperturbative parametrizations
or artifacts of the fitting procedure. Thus, a function like

D̃(n)
A should be read as “a D̃A parametrization including

nonperturbative parts extracted from measurements and
using an nth-order perturbation theory treatment for its
perturbative ingredients.”

Also, when we use the phrase “nonperturbative part,”
(e.g., the g-functions of the CSS formalism) it should gen-
erally be understood that we are not necessarily referring
to parts of a calculation that cannot ever be improved
with small coupling techniques. It only refers to contri-
butions that we choose to exclude from those factors that
we explicitly identify as perturbative.

Now consider how one might use Eq. (20) to do phe-
nomenology in a Type I scenario and from a bottom-up
perspective. Near the input scale, Q ⇡ Q0, the evolu-
tion factor on the second line is nearly unity and we can,
to a good approximation, just work with Eq. (21). If
Q0 is only of order ⇠ 1 � 2 GeV, then a phenomenolog-
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D̃A(z, bT;µ, ⇣) = D̃A(z, b⇤;µ, ⇣) exp
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Recall that µb⇤ is defined in Eq. (102). There is of course an exactly analogous equation for D̃B(z, b⇤;µb⇤ , µ
2

b⇤
).

Substituting the evolved versions of D̃A(z, b⇤;µb⇤ , µ
2

b⇤
) and D̃B(z, b⇤;µb⇤ , µ

2

b⇤
) into the W -term factorization formula

Eq. (15) and setting the final scales equal to µ = µQ and ⇣ = Q2 in Eq. (15) gives

W (qT, Q) = H(µQ;C2)
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. (110)

Equation (110) is very close to the standard way of ex-
pressing the CSS-evolved W -term.3 As we have writ-
ten it, there are still no approximations; the solutions
to the evolution equations are exact and the steps above
simply reorganize the original factorization formula in
Eq. (15). However, by writing W (qT, Q) as in Eq. (110),
we have isolated on the first two lines those factors that
can be confidently approximated in perturbation theory
using collinear factorization. The value of bT never rises
above bmax and the scale µb⇤ never drops below C1/bmax.
Therefore, one obtains well-behaved perturbative calcu-
lations by replacing H(µQ;C2), �(↵s(µ0); 1), �K(↵s(µ0))
and K̃(b⇤;µb⇤) by their nth-order perturbative calcula-
tions.

For the TMD ↵s themselves on the first line, the choice
of µ =

p
⇣ = µb⇤ implements RG improvement for the

limit of small bT. As long as bmax is small enough,
D̃A,B(zA,B , b⇤;µb⇤ , µ

2

b⇤
) can be expanded in an OPE:

D̃(n,dr)(z, b⇤;µb⇤ , µ
2

b⇤)

=

Z
1

z

dẑ

ẑ3�2✏
dr(ẑ;µb⇤)C̃

(n)
D (z/ẑ, bT;µ

2

b⇤ , µb⇤ ,↵s(µb⇤))

+O (mbT) , (111)

which is a more explicit version of Eq. (25) but in
bT-space. (Here, as usual, m represents any of the

3 There are, however, a large number of minor but not always
obvious variations in the form of the expression in the literature.
There are also many di↵erent systems of notation. See [38] for
some translation.

small intrinsic mass scales, including now 1/bmax.) Sub-
stituting Eq. (111) for both D̃A(zA, b⇤;µb⇤ , µ

2

b⇤
) and

D̃B(zB , b⇤;µb⇤ , µ
2

b⇤
), along with the other perturbative

approximations mentioned above, recovers the standard
CSS expression – compare, for example, with the Drell-
Yan version of TMD factorization in Eq. (22) of [65].
The b⇤ method, as it is explained here, has several de-

sirable properties. There is the elegant feature that, in
dealing with the nonperturbative region of large bT, one
never modifies or approximates the operator definitions
of the TMD ↵s themselves. Rather, on the first line of
Eq. (110) we have simply changed their arguments from
bT to b⇤. Along the same lines, the g-functions on the last
line have explicit definitions in terms of the underlying
QCD operators. The final result for the cross section,
Eq. (110), is exactly independent of the choice of the
b⇤(bT) function in Eq. (100) or of the value of parame-
ters like bmax. Since changing them simply amounts to
reshu✏ing contributions between the perturbative and
non-perturbative factors, the b⇤-independence is a ver-
sion of RG invariance that we can express as

d

dbmax

W (qT, Q) = 0 . (112)

Or, if we consider other more general b⇤(bT) functions
determined by a collection of possibly many parameters
{b-params}, we can express the same relation schemati-
cally as

d

d{b-params}W (qT, Q) = 0 . (113)

These relations are exact for Eq. (110). Therefore, it is le-
gitimate to say that perturbative calculations of the first
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W (qT, Q) = H(↵s(µQ);C2)
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We could express the same evolved W with TMD ↵s
in transverse momentum space, and in some cases that
might help with intuition since it more closely matches
the TMD parton model. But then the Fourier transforms
of simple factors become transverse momentum convolu-

tion integrals of several functions. For the purposes of
implementing evolution, we will continue to work with
Eq. (20) in coordinate space, as is normally done.
When Q = Q0, Eq. (20) exactly reproduces the TMD

parton model form of the factorization,

W (qT, Q0) = H(µQ0 ;C2)

Z
d2bT
(2⇡)2

e�iqT·bT D̃A(zA, bT;µQ0 , Q
2

0
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2

0
)

= H(µQ0 ;C2)

Z
d2kAT d2kBT DA
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2

0
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0

�
�(2) (qT � kAT � kBT) .

(21)

So far, Eq. (20) and Eq. (21) still involve no approxi-
mations at all on the W -term. However, approximations
are ultimately necessary, of course, for getting practical
results.

Rather di↵erent kinds of approximations to Eq. (20)
can enter in a number of di↵erent ways, so the language
can become confusing. We will be as precise as possible
with our wording here. There are at least four di↵erent
types of approximation that generally take place simul-
taneously, including

1. The choices of models, assumptions, or approxi-
mations used to describe nonperturbative contri-
butions,

2. The neglect of power suppressed corrections to fac-
torization, like the last term in Eq. (14),

3. Truncation of high powers of ↵s in perturbative
parts of the calculation and,

4. In phenomenological applications involving fits,
whatever assumptions and approximations are used
at the level of fit extractions.

When we discuss an “nth-order” perturbative treatment,
we will mean by this that all parts that are calcula-
ble in fixed order perturbative QCD have been included
through order n, and they are optimized using the renor-
malization group and Collins-Soper evolution (Eq. (17)).
These “perturbative parts” include the right sides of
Eqs. (17)–(19), which in Eq. (20) appear as �K(↵s(µ0)),
�(↵s(µ0); 1) and K̃(bT;µQ0) when bT (or kT) is small

(large) enough that its bT-dependence is perturbative. In
Eq. (20) it also includesH(µQ;C2) and the D̃A, D̃B func-
tions in regions of small bT (or large kT). An “(n)” super-
script on a function means that it has been replaced by
its truncated, fixed order perturbation theory calculation
through order n. When we discuss nonperturbative parts
in later sections, it should be understood to be in the con-
text of phenomenological extractions. We will assume for
the sake of our discussion here that all nonperturbative
parametrizations have been made flexible enough that
the significant errors come only from the limitations of
factorization and truncated perturbation theory, and not
from a poor choice of nonperturbative parametrizations
or artifacts of the fitting procedure. Thus, a function like

D̃(n)
A should be read as “a D̃A parametrization including

nonperturbative parts extracted from measurements and
using an nth-order perturbation theory treatment for its
perturbative ingredients.”

Also, when we use the phrase “nonperturbative part,”
(e.g., the g-functions of the CSS formalism) it should gen-
erally be understood that we are not necessarily referring
to parts of a calculation that cannot ever be improved
with small coupling techniques. It only refers to contri-
butions that we choose to exclude from those factors that
we explicitly identify as perturbative.

Now consider how one might use Eq. (20) to do phe-
nomenology in a Type I scenario and from a bottom-up
perspective. Near the input scale, Q ⇡ Q0, the evolu-
tion factor on the second line is nearly unity and we can,
to a good approximation, just work with Eq. (21). If
Q0 is only of order ⇠ 1 � 2 GeV, then a phenomenolog-
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Recall that µb⇤ is defined in Eq. (102). There is of course an exactly analogous equation for D̃B(z, b⇤;µb⇤ , µ
2

b⇤
).

Substituting the evolved versions of D̃A(z, b⇤;µb⇤ , µ
2

b⇤
) and D̃B(z, b⇤;µb⇤ , µ

2

b⇤
) into the W -term factorization formula

Eq. (15) and setting the final scales equal to µ = µQ and ⇣ = Q2 in Eq. (15) gives

W (qT, Q) = H(µQ;C2)
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Equation (110) is very close to the standard way of ex-
pressing the CSS-evolved W -term.3 As we have writ-
ten it, there are still no approximations; the solutions
to the evolution equations are exact and the steps above
simply reorganize the original factorization formula in
Eq. (15). However, by writing W (qT, Q) as in Eq. (110),
we have isolated on the first two lines those factors that
can be confidently approximated in perturbation theory
using collinear factorization. The value of bT never rises
above bmax and the scale µb⇤ never drops below C1/bmax.
Therefore, one obtains well-behaved perturbative calcu-
lations by replacing H(µQ;C2), �(↵s(µ0); 1), �K(↵s(µ0))
and K̃(b⇤;µb⇤) by their nth-order perturbative calcula-
tions.

For the TMD ↵s themselves on the first line, the choice
of µ =

p
⇣ = µb⇤ implements RG improvement for the

limit of small bT. As long as bmax is small enough,
D̃A,B(zA,B , b⇤;µb⇤ , µ

2

b⇤
) can be expanded in an OPE:

D̃(n,dr)(z, b⇤;µb⇤ , µ
2

b⇤)

=

Z
1

z

dẑ

ẑ3�2✏
dr(ẑ;µb⇤)C̃

(n)
D (z/ẑ, bT;µ

2

b⇤ , µb⇤ ,↵s(µb⇤))

+O (mbT) , (111)

which is a more explicit version of Eq. (25) but in
bT-space. (Here, as usual, m represents any of the

3 There are, however, a large number of minor but not always
obvious variations in the form of the expression in the literature.
There are also many di↵erent systems of notation. See [38] for
some translation.

small intrinsic mass scales, including now 1/bmax.) Sub-
stituting Eq. (111) for both D̃A(zA, b⇤;µb⇤ , µ

2

b⇤
) and

D̃B(zB , b⇤;µb⇤ , µ
2

b⇤
), along with the other perturbative

approximations mentioned above, recovers the standard
CSS expression – compare, for example, with the Drell-
Yan version of TMD factorization in Eq. (22) of [65].
The b⇤ method, as it is explained here, has several de-

sirable properties. There is the elegant feature that, in
dealing with the nonperturbative region of large bT, one
never modifies or approximates the operator definitions
of the TMD ↵s themselves. Rather, on the first line of
Eq. (110) we have simply changed their arguments from
bT to b⇤. Along the same lines, the g-functions on the last
line have explicit definitions in terms of the underlying
QCD operators. The final result for the cross section,
Eq. (110), is exactly independent of the choice of the
b⇤(bT) function in Eq. (100) or of the value of parame-
ters like bmax. Since changing them simply amounts to
reshu✏ing contributions between the perturbative and
non-perturbative factors, the b⇤-independence is a ver-
sion of RG invariance that we can express as

d

dbmax

W (qT, Q) = 0 . (112)

Or, if we consider other more general b⇤(bT) functions
determined by a collection of possibly many parameters
{b-params}, we can express the same relation schemati-
cally as

d

d{b-params}W (qT, Q) = 0 . (113)

These relations are exact for Eq. (110). Therefore, it is le-
gitimate to say that perturbative calculations of the first

WOPE (pQCD)
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W (qT, Q) = H(↵s(µQ);C2)
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We could express the same evolved W with TMD ↵s
in transverse momentum space, and in some cases that
might help with intuition since it more closely matches
the TMD parton model. But then the Fourier transforms
of simple factors become transverse momentum convolu-

tion integrals of several functions. For the purposes of
implementing evolution, we will continue to work with
Eq. (20) in coordinate space, as is normally done.
When Q = Q0, Eq. (20) exactly reproduces the TMD

parton model form of the factorization,

W (qT, Q0) = H(µQ0 ;C2)

Z
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(2⇡)2
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2
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0
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(21)

So far, Eq. (20) and Eq. (21) still involve no approxi-
mations at all on the W -term. However, approximations
are ultimately necessary, of course, for getting practical
results.

Rather di↵erent kinds of approximations to Eq. (20)
can enter in a number of di↵erent ways, so the language
can become confusing. We will be as precise as possible
with our wording here. There are at least four di↵erent
types of approximation that generally take place simul-
taneously, including

1. The choices of models, assumptions, or approxi-
mations used to describe nonperturbative contri-
butions,

2. The neglect of power suppressed corrections to fac-
torization, like the last term in Eq. (14),

3. Truncation of high powers of ↵s in perturbative
parts of the calculation and,

4. In phenomenological applications involving fits,
whatever assumptions and approximations are used
at the level of fit extractions.

When we discuss an “nth-order” perturbative treatment,
we will mean by this that all parts that are calcula-
ble in fixed order perturbative QCD have been included
through order n, and they are optimized using the renor-
malization group and Collins-Soper evolution (Eq. (17)).
These “perturbative parts” include the right sides of
Eqs. (17)–(19), which in Eq. (20) appear as �K(↵s(µ0)),
�(↵s(µ0); 1) and K̃(bT;µQ0) when bT (or kT) is small

(large) enough that its bT-dependence is perturbative. In
Eq. (20) it also includesH(µQ;C2) and the D̃A, D̃B func-
tions in regions of small bT (or large kT). An “(n)” super-
script on a function means that it has been replaced by
its truncated, fixed order perturbation theory calculation
through order n. When we discuss nonperturbative parts
in later sections, it should be understood to be in the con-
text of phenomenological extractions. We will assume for
the sake of our discussion here that all nonperturbative
parametrizations have been made flexible enough that
the significant errors come only from the limitations of
factorization and truncated perturbation theory, and not
from a poor choice of nonperturbative parametrizations
or artifacts of the fitting procedure. Thus, a function like

D̃(n)
A should be read as “a D̃A parametrization including

nonperturbative parts extracted from measurements and
using an nth-order perturbation theory treatment for its
perturbative ingredients.”

Also, when we use the phrase “nonperturbative part,”
(e.g., the g-functions of the CSS formalism) it should gen-
erally be understood that we are not necessarily referring
to parts of a calculation that cannot ever be improved
with small coupling techniques. It only refers to contri-
butions that we choose to exclude from those factors that
we explicitly identify as perturbative.

Now consider how one might use Eq. (20) to do phe-
nomenology in a Type I scenario and from a bottom-up
perspective. Near the input scale, Q ⇡ Q0, the evolu-
tion factor on the second line is nearly unity and we can,
to a good approximation, just work with Eq. (21). If
Q0 is only of order ⇠ 1 � 2 GeV, then a phenomenolog-

Further step: Constraints to small  bT behaviour
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Recall that µb⇤ is defined in Eq. (102). There is of course an exactly analogous equation for D̃B(z, b⇤;µb⇤ , µ
2

b⇤
).

Substituting the evolved versions of D̃A(z, b⇤;µb⇤ , µ
2

b⇤
) and D̃B(z, b⇤;µb⇤ , µ

2

b⇤
) into the W -term factorization formula

Eq. (15) and setting the final scales equal to µ = µQ and ⇣ = Q2 in Eq. (15) gives
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Equation (110) is very close to the standard way of ex-
pressing the CSS-evolved W -term.3 As we have writ-
ten it, there are still no approximations; the solutions
to the evolution equations are exact and the steps above
simply reorganize the original factorization formula in
Eq. (15). However, by writing W (qT, Q) as in Eq. (110),
we have isolated on the first two lines those factors that
can be confidently approximated in perturbation theory
using collinear factorization. The value of bT never rises
above bmax and the scale µb⇤ never drops below C1/bmax.
Therefore, one obtains well-behaved perturbative calcu-
lations by replacing H(µQ;C2), �(↵s(µ0); 1), �K(↵s(µ0))
and K̃(b⇤;µb⇤) by their nth-order perturbative calcula-
tions.

For the TMD ↵s themselves on the first line, the choice
of µ =

p
⇣ = µb⇤ implements RG improvement for the

limit of small bT. As long as bmax is small enough,
D̃A,B(zA,B , b⇤;µb⇤ , µ

2

b⇤
) can be expanded in an OPE:

D̃(n,dr)(z, b⇤;µb⇤ , µ
2
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=

Z
1

z

dẑ

ẑ3�2✏
dr(ẑ;µb⇤)C̃

(n)
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2

b⇤ , µb⇤ ,↵s(µb⇤))

+O (mbT) , (111)

which is a more explicit version of Eq. (25) but in
bT-space. (Here, as usual, m represents any of the

3 There are, however, a large number of minor but not always
obvious variations in the form of the expression in the literature.
There are also many di↵erent systems of notation. See [38] for
some translation.

small intrinsic mass scales, including now 1/bmax.) Sub-
stituting Eq. (111) for both D̃A(zA, b⇤;µb⇤ , µ

2

b⇤
) and

D̃B(zB , b⇤;µb⇤ , µ
2

b⇤
), along with the other perturbative

approximations mentioned above, recovers the standard
CSS expression – compare, for example, with the Drell-
Yan version of TMD factorization in Eq. (22) of [65].
The b⇤ method, as it is explained here, has several de-

sirable properties. There is the elegant feature that, in
dealing with the nonperturbative region of large bT, one
never modifies or approximates the operator definitions
of the TMD ↵s themselves. Rather, on the first line of
Eq. (110) we have simply changed their arguments from
bT to b⇤. Along the same lines, the g-functions on the last
line have explicit definitions in terms of the underlying
QCD operators. The final result for the cross section,
Eq. (110), is exactly independent of the choice of the
b⇤(bT) function in Eq. (100) or of the value of parame-
ters like bmax. Since changing them simply amounts to
reshu✏ing contributions between the perturbative and
non-perturbative factors, the b⇤-independence is a ver-
sion of RG invariance that we can express as

d

dbmax

W (qT, Q) = 0 . (112)

Or, if we consider other more general b⇤(bT) functions
determined by a collection of possibly many parameters
{b-params}, we can express the same relation schemati-
cally as

d

d{b-params}W (qT, Q) = 0 . (113)

These relations are exact for Eq. (110). Therefore, it is le-
gitimate to say that perturbative calculations of the first
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Eq. (92), and the corresponding g
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M = 0.2GeV, mD = 0.3GeV, and a = 2GeV as in Fig. 7.
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A. The b⇤ method

Readers who are familiar with standard implementa-
tions of the CSS formalism might find the surface ap-
pearance of our expressions for the evolved W (n)(qT, Q)
in sections Sec. IV-Sec. VII somewhat odd. Normally,
the cross section is written with nonperturbative TMD
e↵ects contained in separate exponential factors usually
notated

e�gA(zA,bT), e�gB(zB ,bT), and e
�gK(bT) ln

Q2

Q2
0 , (99)

where the nonperturbative transverse momentum depen-
dence is encoded in the (coordinate dependence of) the
lower-case g-functions in the exponents. (The gA and gB
functions are placed inside exponents so that they retain
the appearance of Sudakov form factor contributions.)

Then, in the usual presentation, the rest of the factors
in the cross section automatically get expressed in terms
of collinear functions by using the OPE to approximate
the small bT behavior. For a specific example of what we
mean here, consider Eq.(13.81) of [3].
In this subsection, we will review the steps for trans-

forming the low-qT cross section (or rather W (qT, Q)) in
Eq. (20) into the form that involves Eq. (99) g-functions.
Setting up the usual presentation of the cross section

begins with a partition of the coordinate space W̃ (bT, Q)
into regions considered large and small bT. One does
this by defining an arbitrary function of bT, traditionally
called b⇤(bT). The function should smoothly interpolate
between bT at small values of bT and a maximum trans-
verse size bmax as bT grows to bT � bmax. It is otherwise
arbitrary. In other words,

b⇤(bT) =

⇢
bT bT ⌧ bmax

bmax bT � bmax

. (100)

The value of bmax is also arbitrary, but it is usually in-
terpreted roughly as a value somewhere near the bound-
ary between nonperturbatively large and perturbatively
small regions of bT. The purpose of the “b⇤ method” [93]
is to sequester a purely perturbative calculation of trans-
verse coordinate dependence away from a part that in-
volves nonperturbative modeling or fitting. While any
reasonably well-behaved, smooth function of bT that
obeys the right side of Eq. (100) is a valid b⇤(bT), the
most often used choice is

b⇤(bT) =
bTp

1 + b2
T
/b2

max

. (101)

Later on, we will also need to define another hard scale
that approaches the RG improve value of µ = C1/bT
appropriate to the bT ! 0 limit but that levels o↵ at a
fixed scale at large bT. The simplest (and standard) way
to do this is to just use the inverse of b⇤ and define

µb⇤ ⌘ C1/b⇤ . (102)

The behavior of µb⇤ is similar to that of our Q0(bT), but
Q0(bT) approaches Q0 at large bT while µb⇤ approaches
C1/bmax. (Indeed, in our treatment below we could opt
to use Q0(bT) instead of µb⇤ , but we will continue with
µb⇤ to make the comparison with standard expressions
clear.)
Next, one solves Eq. (18) to relate a TMD ↵ (for hadron

A, for example) at an input scale Q0 to the TMD ↵ at
any other scale

p
⇣ by

D̃A(z, bT;µ, ⇣)

= D̃A(z, bT;µ,Q
2

0
) exp

⇢
K̃(bT;µ) ln

✓p
⇣

Q0

◆�
.

(103)

Exactly the same equation applies independently of the
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A. The b⇤ method

Readers who are familiar with standard implementa-
tions of the CSS formalism might find the surface ap-
pearance of our expressions for the evolved W (n)(qT, Q)
in sections Sec. IV-Sec. VII somewhat odd. Normally,
the cross section is written with nonperturbative TMD
e↵ects contained in separate exponential factors usually
notated

e�gA(zA,bT), e�gB(zB ,bT), and e
�gK(bT) ln

Q2

Q2
0 , (99)

where the nonperturbative transverse momentum depen-
dence is encoded in the (coordinate dependence of) the
lower-case g-functions in the exponents. (The gA and gB
functions are placed inside exponents so that they retain
the appearance of Sudakov form factor contributions.)

Then, in the usual presentation, the rest of the factors
in the cross section automatically get expressed in terms
of collinear functions by using the OPE to approximate
the small bT behavior. For a specific example of what we
mean here, consider Eq.(13.81) of [3].
In this subsection, we will review the steps for trans-

forming the low-qT cross section (or rather W (qT, Q)) in
Eq. (20) into the form that involves Eq. (99) g-functions.
Setting up the usual presentation of the cross section

begins with a partition of the coordinate space W̃ (bT, Q)
into regions considered large and small bT. One does
this by defining an arbitrary function of bT, traditionally
called b⇤(bT). The function should smoothly interpolate
between bT at small values of bT and a maximum trans-
verse size bmax as bT grows to bT � bmax. It is otherwise
arbitrary. In other words,

b⇤(bT) =

⇢
bT bT ⌧ bmax

bmax bT � bmax

. (100)

The value of bmax is also arbitrary, but it is usually in-
terpreted roughly as a value somewhere near the bound-
ary between nonperturbatively large and perturbatively
small regions of bT. The purpose of the “b⇤ method” [93]
is to sequester a purely perturbative calculation of trans-
verse coordinate dependence away from a part that in-
volves nonperturbative modeling or fitting. While any
reasonably well-behaved, smooth function of bT that
obeys the right side of Eq. (100) is a valid b⇤(bT), the
most often used choice is

b⇤(bT) =
bTp

1 + b2
T
/b2

max

. (101)

Later on, we will also need to define another hard scale
that approaches the RG improve value of µ = C1/bT
appropriate to the bT ! 0 limit but that levels o↵ at a
fixed scale at large bT. The simplest (and standard) way
to do this is to just use the inverse of b⇤ and define

µb⇤ ⌘ C1/b⇤ . (102)

The behavior of µb⇤ is similar to that of our Q0(bT), but
Q0(bT) approaches Q0 at large bT while µb⇤ approaches
C1/bmax. (Indeed, in our treatment below we could opt
to use Q0(bT) instead of µb⇤ , but we will continue with
µb⇤ to make the comparison with standard expressions
clear.)
Next, one solves Eq. (18) to relate a TMD ↵ (for hadron

A, for example) at an input scale Q0 to the TMD ↵ at
any other scale

p
⇣ by

D̃A(z, bT;µ, ⇣)

= D̃A(z, bT;µ,Q
2

0
) exp

⇢
K̃(bT;µ) ln

✓p
⇣

Q0

◆�
.

(103)

Exactly the same equation applies independently of the
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transverse coordinate bT, so we also have

D̃A(z, b⇤;µ, ⇣)

= D̃A(z, b⇤;µ,Q
2

0
) exp

⇢
K̃(b⇤;µ) ln

✓p
⇣

Q0

◆�
.

(104)

Then the ratio of Eq. (103) and Eq. (104) is

D̃A(z, bT;µ, ⇣)

D̃A(z, b⇤;µ, ⇣)
=

D̃A(z, bT;µ,Q2
0
)

D̃A(z, b⇤;µ,Q2
0
)
⇥

⇥ exp

⇢
�
h
K̃(b⇤, µ)� K̃(bT, µ)

i
ln

✓p
⇣

Q0

◆�

=
D̃A(z, bT;µ,Q2

0
)

D̃A(z, b⇤;µ,Q2
0
)
exp

⇢
�gK(bT) ln

✓p
⇣

Q0

◆�

=
D̃A(z, bT;µQ0 , Q

2
0
)

D̃A(z, b⇤;µQ0 , Q
2
0
)
exp

⇢
�gK(bT) ln

✓p
⇣

Q0

◆�
,

(105)

where on the second line we have defined

gK(bT) ⌘ K̃(b⇤, µ)� K̃(bT, µ) . (106)

Since the µ-dependence of K̃(bT, µ) is also bT-
independent, gK(bT) is µ-independent. That is, µ-
dependence cancels between the two terms, so gK(bT)
is µ-independent by definition. Also, on the last line
of Eq. (105) we have used that the µ-dependence of
D̃A(z, bT;µ,Q2

0
) is a bT-independent overall factor – re-

call the evolution equation in Eq. (19) – to specialize to
the case of µ = µQ0 .

Next, one defines the logarithm of the ratio on the last
line of Eq. (105) by the symbol �gA(z, bT):

�gA(z, bT) ⌘ ln

 
D̃A(z, bT;µQ0 , Q

2
0
)

D̃A(z, b⇤;µQ0 , Q
2
0
)

!
, (107)

with the A subscript reminding of potential sensitivity
to the identity of the final state hadron. Combining
Eq. (105) and Eq. (107) gives

D̃A(z, bT;µ, ⇣) = D̃A(z, b⇤;µ, ⇣)⇥

⇥ exp

⇢
�gA(z, bT)� gK(bT) ln

✓p
⇣

Q0

◆�
. (108)

The D̃A(z, b⇤;µ, ⇣) on the right-hand side is still the ex-
act operator definition, but it is only ever evaluated at
bT  bmax. The remaining exponential factor is sensitive
the large bT region. As of yet, there are no approxima-
tions. In particular, any sensitivity to bmax or the choice
of the b⇤ parametrization in Eq. (100) cancels exactly be-
tween the factors on the right-hand side of Eq. (108). We
have simply taken the original definition of D̃A(z, b⇤;µ, ⇣)
and partitioned it into two factors.

The logarithm on the right side of the definition in
Eq. (107) is cosmetic; expressing the nonperturbative ra-
tio as the exponential of a function �gA(z, bT) gives it
the appearance of a type of contribution to a Sudakov
exponent.

Despite the apparent arbitrariness of the above steps,
one can aniticipate the motivation for writing the TMD
↵ as in Eq. (108) by looking ahead. We obtain the full
cross section by substituting Eq. (108) into the evolved
W (qT, Q) in Eq. (20) with µ = µQ0 and

p
⇣ = Q0. In

the resulting cross section expression, D̃A(z, b⇤;µQ0 , Q
2
0
)

will be well-approximated by collinear factorization at
bT ⇡ 1/Q0 so long as bmax ⇡ 1/Q0 and Q0 is reasonably
large compared to nonperturbative scales. This would
be su�cient for calculations with Q ⇡ Q0, where the
1/Q0 . bT < 1 region is the only relevant contribution.
However, if we plan to evolve to very large Q, then we
also need an accurate treatment of D̃A(z, b⇤;µQ0 , Q

2
0
) in

the bT ⌧ 1/Q0 limit. But the fixed order calculations
of D̃A(z, b⇤;µQ0 , Q

2
0
) in collinear factorization are poorly

behaved as bTµQ0 ! 0, even though this is the limit
where perturbative QCD should be most reliable.

As usual, therefore, we need to apply the evolu-
tion equations (Eq. (59)) once again in order to evolve
D̃A(z, b⇤;µ, ⇣) from µ, ⇣ to the RG-improved µb⇤ , µ

2

b⇤
.

The evolution equations allow us to rewrite Eq. (108)
as

30

transverse coordinate bT, so we also have

D̃A(z, b⇤;µ, ⇣)

= D̃A(z, b⇤;µ,Q
2

0
) exp
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K̃(b⇤;µ) ln

✓p
⇣

Q0

◆�
.

(104)

Then the ratio of Eq. (103) and Eq. (104) is

D̃A(z, bT;µ, ⇣)

D̃A(z, b⇤;µ, ⇣)
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D̃A(z, bT;µ,Q2
0
)

D̃A(z, b⇤;µ,Q2
0
)
⇥

⇥ exp

⇢
�
h
K̃(b⇤, µ)� K̃(bT, µ)

i
ln

✓p
⇣

Q0

◆�

=
D̃A(z, bT;µ,Q2

0
)

D̃A(z, b⇤;µ,Q2
0
)
exp

⇢
�gK(bT) ln

✓p
⇣

Q0

◆�

=
D̃A(z, bT;µQ0 , Q

2
0
)

D̃A(z, b⇤;µQ0 , Q
2
0
)
exp
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where on the second line we have defined

gK(bT) ⌘ K̃(b⇤, µ)� K̃(bT, µ) . (106)

Since the µ-dependence of K̃(bT, µ) is also bT-
independent, gK(bT) is µ-independent. That is, µ-
dependence cancels between the two terms, so gK(bT)
is µ-independent by definition. Also, on the last line
of Eq. (105) we have used that the µ-dependence of
D̃A(z, bT;µ,Q2

0
) is a bT-independent overall factor – re-

call the evolution equation in Eq. (19) – to specialize to
the case of µ = µQ0 .

Next, one defines the logarithm of the ratio on the last
line of Eq. (105) by the symbol �gA(z, bT):

�gA(z, bT) ⌘ ln

 
D̃A(z, bT;µQ0 , Q

2
0
)

D̃A(z, b⇤;µQ0 , Q
2
0
)

!
, (107)

with the A subscript reminding of potential sensitivity
to the identity of the final state hadron. Combining
Eq. (105) and Eq. (107) gives

D̃A(z, bT;µ, ⇣) = D̃A(z, b⇤;µ, ⇣)⇥

⇥ exp

⇢
�gA(z, bT)� gK(bT) ln

✓p
⇣

Q0

◆�
. (108)

The D̃A(z, b⇤;µ, ⇣) on the right-hand side is still the ex-
act operator definition, but it is only ever evaluated at
bT  bmax. The remaining exponential factor is sensitive
the large bT region. As of yet, there are no approxima-
tions. In particular, any sensitivity to bmax or the choice
of the b⇤ parametrization in Eq. (100) cancels exactly be-
tween the factors on the right-hand side of Eq. (108). We
have simply taken the original definition of D̃A(z, b⇤;µ, ⇣)
and partitioned it into two factors.

The logarithm on the right side of the definition in
Eq. (107) is cosmetic; expressing the nonperturbative ra-
tio as the exponential of a function �gA(z, bT) gives it
the appearance of a type of contribution to a Sudakov
exponent.

Despite the apparent arbitrariness of the above steps,
one can aniticipate the motivation for writing the TMD
↵ as in Eq. (108) by looking ahead. We obtain the full
cross section by substituting Eq. (108) into the evolved
W (qT, Q) in Eq. (20) with µ = µQ0 and

p
⇣ = Q0. In

the resulting cross section expression, D̃A(z, b⇤;µQ0 , Q
2
0
)

will be well-approximated by collinear factorization at
bT ⇡ 1/Q0 so long as bmax ⇡ 1/Q0 and Q0 is reasonably
large compared to nonperturbative scales. This would
be su�cient for calculations with Q ⇡ Q0, where the
1/Q0 . bT < 1 region is the only relevant contribution.
However, if we plan to evolve to very large Q, then we
also need an accurate treatment of D̃A(z, b⇤;µQ0 , Q

2
0
) in

the bT ⌧ 1/Q0 limit. But the fixed order calculations
of D̃A(z, b⇤;µQ0 , Q

2
0
) in collinear factorization are poorly

behaved as bTµQ0 ! 0, even though this is the limit
where perturbative QCD should be most reliable.

As usual, therefore, we need to apply the evolu-
tion equations (Eq. (59)) once again in order to evolve
D̃A(z, b⇤;µ, ⇣) from µ, ⇣ to the RG-improved µb⇤ , µ

2

b⇤
.

The evolution equations allow us to rewrite Eq. (108)
as

When modelling g-functions, should only allow for mild dependence  
on b* and bmax 
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transverse coordinate bT, so we also have
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(104)

Then the ratio of Eq. (103) and Eq. (104) is
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where on the second line we have defined

gK(bT) ⌘ K̃(b⇤, µ)� K̃(bT, µ) . (106)

Since the µ-dependence of K̃(bT, µ) is also bT-
independent, gK(bT) is µ-independent. That is, µ-
dependence cancels between the two terms, so gK(bT)
is µ-independent by definition. Also, on the last line
of Eq. (105) we have used that the µ-dependence of
D̃A(z, bT;µ,Q2

0
) is a bT-independent overall factor – re-

call the evolution equation in Eq. (19) – to specialize to
the case of µ = µQ0 .

Next, one defines the logarithm of the ratio on the last
line of Eq. (105) by the symbol �gA(z, bT):
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with the A subscript reminding of potential sensitivity
to the identity of the final state hadron. Combining
Eq. (105) and Eq. (107) gives

D̃A(z, bT;µ, ⇣) = D̃A(z, b⇤;µ, ⇣)⇥
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✓p
⇣

Q0

◆�
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The D̃A(z, b⇤;µ, ⇣) on the right-hand side is still the ex-
act operator definition, but it is only ever evaluated at
bT  bmax. The remaining exponential factor is sensitive
the large bT region. As of yet, there are no approxima-
tions. In particular, any sensitivity to bmax or the choice
of the b⇤ parametrization in Eq. (100) cancels exactly be-
tween the factors on the right-hand side of Eq. (108). We
have simply taken the original definition of D̃A(z, b⇤;µ, ⇣)
and partitioned it into two factors.

The logarithm on the right side of the definition in
Eq. (107) is cosmetic; expressing the nonperturbative ra-
tio as the exponential of a function �gA(z, bT) gives it
the appearance of a type of contribution to a Sudakov
exponent.

Despite the apparent arbitrariness of the above steps,
one can aniticipate the motivation for writing the TMD
↵ as in Eq. (108) by looking ahead. We obtain the full
cross section by substituting Eq. (108) into the evolved
W (qT, Q) in Eq. (20) with µ = µQ0 and

p
⇣ = Q0. In

the resulting cross section expression, D̃A(z, b⇤;µQ0 , Q
2
0
)

will be well-approximated by collinear factorization at
bT ⇡ 1/Q0 so long as bmax ⇡ 1/Q0 and Q0 is reasonably
large compared to nonperturbative scales. This would
be su�cient for calculations with Q ⇡ Q0, where the
1/Q0 . bT < 1 region is the only relevant contribution.
However, if we plan to evolve to very large Q, then we
also need an accurate treatment of D̃A(z, b⇤;µQ0 , Q

2
0
) in

the bT ⌧ 1/Q0 limit. But the fixed order calculations
of D̃A(z, b⇤;µQ0 , Q

2
0
) in collinear factorization are poorly

behaved as bTµQ0 ! 0, even though this is the limit
where perturbative QCD should be most reliable.

As usual, therefore, we need to apply the evolu-
tion equations (Eq. (59)) once again in order to evolve
D̃A(z, b⇤;µ, ⇣) from µ, ⇣ to the RG-improved µb⇤ , µ

2

b⇤
.

The evolution equations allow us to rewrite Eq. (108)
as
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where on the second line we have defined

gK(bT) ⌘ K̃(b⇤, µ)� K̃(bT, µ) . (106)

Since the µ-dependence of K̃(bT, µ) is also bT-
independent, gK(bT) is µ-independent. That is, µ-
dependence cancels between the two terms, so gK(bT)
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0
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with the A subscript reminding of potential sensitivity
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The D̃A(z, b⇤;µ, ⇣) on the right-hand side is still the ex-
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be su�cient for calculations with Q ⇡ Q0, where the
1/Q0 . bT < 1 region is the only relevant contribution.
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the bT ⌧ 1/Q0 limit. But the fixed order calculations
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FIG. 9: Same as the top panel of Fig. 8, but with the
horizontal axes now restricted to qT < 4 GeV, linear verti-
cal axes, and with each W (1)(qT, Q) curve normalized to its
value at qT = 0. The upper panel shows the lower Q values,
Q = Q0 = 2 GeV and Q = 10 GeV while the lower panel
shows the large Q values Q = 100, 1000 GeV.

scales fixed to their previous values. Instead, the bands
are generated by varying the scale transformation func-
tion Q0(bT) between the two curves in the upper panel of
Fig. 2 corresponding to a = 2 GeV and a = 4 GeV. Com-
paring the upper and lower panels in Fig. 8 shows that,
within the range of parameters considered here, scale
sensitivity is far weaker than the sensitivity to intrinsic
transverse momentum parameters. On the logarithmic
scale, the scale sensitivity is only visible, even at large Q,
around the node where W (1)(qT, Q) crosses zero.

Nevertheless, sensitivity to intrinsic transverse mo-
mentum parameters does clearly diminish with increasing
Q, especially for qT & Q0. To get a sense of how rapidly
it decreases with our parametrizations, we have plotted
the top curves from Fig. 8 again in Fig. 9, but now with
linear axes and only for the region of qT < 4.0 GeV in
order to magnify sensitivity to variations in M , mD, and
mK . We have also normalized the curves by their values
at qT = 0. The upper panel in Fig. 9 shows the bands for
smaller Q = 2 GeV and Q = 10 GeV scales, and it shows
that the small transverse momentum region qT ⌧ Q is

very sensitive to nonperturbative intrinsic mass scales.
At qT = 0, the width of the band is about an order of
magnitude for Q ⇡ Q0. The lower panel of Fig. 9 shows
the bands for the larger Q = 100 GeV and Q = 1000 GeV
scales. There, the sensitivity to intrinsic mass parame-
ters at qT = 0 is much weaker than for the smaller Q, and
it becomes essentially invisible above about qT & 0.02Q.
This weak sensitivity to intrinsic nonperturbative trans-
verse momentum parameters at qT � m will be espe-
cially important if we need to consistently match to fixed
order asymptotic calculations [101].
In phenomenological applications such as fitting, non-

perturbative parameters like M , mD, and mK , along
with scale setting choices like the value of a, become bet-
ter constrained each time data from somewhat higher
Q are included in the fitting. As higher Q are incor-
porated into fits, and input parameters become better
constrained, it eventually becomes unambiguous how to
evolve to still higher Q. The steps that we have described
in this subsection, along with the plots used to illustrate
them, correspond to steps C1 and C2 in Sec. VI.
The illustrative examples in this subsection are to con-

firm that the setup in Sec. VI reproduces general expec-
tations. We emphasize once again, before closing the
discussion of examples, that our purpose here is not to
advocate for a particular choice of a model parametriza-
tion for small kT dependence, but rather to illustrate the
general steps from Sec. VI in concrete situations. Ulti-
mately, it is up to phenomenological tests to assess the
success of any particular model or calculation of nonper-
turbative transverse momentum dependence.

VIII. INTEGRAL RELATIONS II

It is worthwhile to return again to the integral relations
discussed in Sec. III in light of parametrizations like the
one we constructed above. Now recall how integral re-
lations often appear in phenomenological extractions of
TMD functions near the input scale. For Q ⇡ 1� 2 GeV
and kT ⌧ Q0, it is well-known that the shapes of trans-
verse momentum distributions are generally well approx-
imated by Gaussians, so one might reasonably adopt a
parametrization of the form

D(z, zkT;µQ0 , Q
2

0
)
??
=

d(z;µQ0)

⇡M2
e�z2k2

T/M2

, (94)

where we have dropped renormalization subscripts etc
to simplify expressions. The TMD and collinear ↵s
parametrized in this way automatically satisfy the parton
model integral relation

2⇡z2
Z

dkT kTD(z, zkT;µQ0 , Q
2

0
) = d(z;µQ0) . (95)

A parametrization like Eq. (94) imposes a strong suppres-
sion on large kT, cutting o↵ the large kT tail. Because
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shows the large Q values Q = 100, 1000 GeV.

scales fixed to their previous values. Instead, the bands
are generated by varying the scale transformation func-
tion Q0(bT) between the two curves in the upper panel of
Fig. 2 corresponding to a = 2 GeV and a = 4 GeV. Com-
paring the upper and lower panels in Fig. 8 shows that,
within the range of parameters considered here, scale
sensitivity is far weaker than the sensitivity to intrinsic
transverse momentum parameters. On the logarithmic
scale, the scale sensitivity is only visible, even at large Q,
around the node where W (1)(qT, Q) crosses zero.

Nevertheless, sensitivity to intrinsic transverse mo-
mentum parameters does clearly diminish with increasing
Q, especially for qT & Q0. To get a sense of how rapidly
it decreases with our parametrizations, we have plotted
the top curves from Fig. 8 again in Fig. 9, but now with
linear axes and only for the region of qT < 4.0 GeV in
order to magnify sensitivity to variations in M , mD, and
mK . We have also normalized the curves by their values
at qT = 0. The upper panel in Fig. 9 shows the bands for
smaller Q = 2 GeV and Q = 10 GeV scales, and it shows
that the small transverse momentum region qT ⌧ Q is

very sensitive to nonperturbative intrinsic mass scales.
At qT = 0, the width of the band is about an order of
magnitude for Q ⇡ Q0. The lower panel of Fig. 9 shows
the bands for the larger Q = 100 GeV and Q = 1000 GeV
scales. There, the sensitivity to intrinsic mass parame-
ters at qT = 0 is much weaker than for the smaller Q, and
it becomes essentially invisible above about qT & 0.02Q.
This weak sensitivity to intrinsic nonperturbative trans-
verse momentum parameters at qT � m will be espe-
cially important if we need to consistently match to fixed
order asymptotic calculations [101].
In phenomenological applications such as fitting, non-

perturbative parameters like M , mD, and mK , along
with scale setting choices like the value of a, become bet-
ter constrained each time data from somewhat higher
Q are included in the fitting. As higher Q are incor-
porated into fits, and input parameters become better
constrained, it eventually becomes unambiguous how to
evolve to still higher Q. The steps that we have described
in this subsection, along with the plots used to illustrate
them, correspond to steps C1 and C2 in Sec. VI.
The illustrative examples in this subsection are to con-

firm that the setup in Sec. VI reproduces general expec-
tations. We emphasize once again, before closing the
discussion of examples, that our purpose here is not to
advocate for a particular choice of a model parametriza-
tion for small kT dependence, but rather to illustrate the
general steps from Sec. VI in concrete situations. Ulti-
mately, it is up to phenomenological tests to assess the
success of any particular model or calculation of nonper-
turbative transverse momentum dependence.

VIII. INTEGRAL RELATIONS II

It is worthwhile to return again to the integral relations
discussed in Sec. III in light of parametrizations like the
one we constructed above. Now recall how integral re-
lations often appear in phenomenological extractions of
TMD functions near the input scale. For Q ⇡ 1� 2 GeV
and kT ⌧ Q0, it is well-known that the shapes of trans-
verse momentum distributions are generally well approx-
imated by Gaussians, so one might reasonably adopt a
parametrization of the form
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where we have dropped renormalization subscripts etc
to simplify expressions. The TMD and collinear ↵s
parametrized in this way automatically satisfy the parton
model integral relation
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A parametrization like Eq. (94) imposes a strong suppres-
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scales fixed to their previous values. Instead, the bands
are generated by varying the scale transformation func-
tion Q0(bT) between the two curves in the upper panel of
Fig. 2 corresponding to a = 2 GeV and a = 4 GeV. Com-
paring the upper and lower panels in Fig. 8 shows that,
within the range of parameters considered here, scale
sensitivity is far weaker than the sensitivity to intrinsic
transverse momentum parameters. On the logarithmic
scale, the scale sensitivity is only visible, even at large Q,
around the node where W (1)(qT, Q) crosses zero.

Nevertheless, sensitivity to intrinsic transverse mo-
mentum parameters does clearly diminish with increasing
Q, especially for qT & Q0. To get a sense of how rapidly
it decreases with our parametrizations, we have plotted
the top curves from Fig. 8 again in Fig. 9, but now with
linear axes and only for the region of qT < 4.0 GeV in
order to magnify sensitivity to variations in M , mD, and
mK . We have also normalized the curves by their values
at qT = 0. The upper panel in Fig. 9 shows the bands for
smaller Q = 2 GeV and Q = 10 GeV scales, and it shows
that the small transverse momentum region qT ⌧ Q is

very sensitive to nonperturbative intrinsic mass scales.
At qT = 0, the width of the band is about an order of
magnitude for Q ⇡ Q0. The lower panel of Fig. 9 shows
the bands for the larger Q = 100 GeV and Q = 1000 GeV
scales. There, the sensitivity to intrinsic mass parame-
ters at qT = 0 is much weaker than for the smaller Q, and
it becomes essentially invisible above about qT & 0.02Q.
This weak sensitivity to intrinsic nonperturbative trans-
verse momentum parameters at qT � m will be espe-
cially important if we need to consistently match to fixed
order asymptotic calculations [101].
In phenomenological applications such as fitting, non-

perturbative parameters like M , mD, and mK , along
with scale setting choices like the value of a, become bet-
ter constrained each time data from somewhat higher
Q are included in the fitting. As higher Q are incor-
porated into fits, and input parameters become better
constrained, it eventually becomes unambiguous how to
evolve to still higher Q. The steps that we have described
in this subsection, along with the plots used to illustrate
them, correspond to steps C1 and C2 in Sec. VI.
The illustrative examples in this subsection are to con-

firm that the setup in Sec. VI reproduces general expec-
tations. We emphasize once again, before closing the
discussion of examples, that our purpose here is not to
advocate for a particular choice of a model parametriza-
tion for small kT dependence, but rather to illustrate the
general steps from Sec. VI in concrete situations. Ulti-
mately, it is up to phenomenological tests to assess the
success of any particular model or calculation of nonper-
turbative transverse momentum dependence.
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It is worthwhile to return again to the integral relations
discussed in Sec. III in light of parametrizations like the
one we constructed above. Now recall how integral re-
lations often appear in phenomenological extractions of
TMD functions near the input scale. For Q ⇡ 1� 2 GeV
and kT ⌧ Q0, it is well-known that the shapes of trans-
verse momentum distributions are generally well approx-
imated by Gaussians, so one might reasonably adopt a
parametrization of the form
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The approximation, notated by the “(n)” superscript on
W (n)(qT, Q), is such that the scale dependence given
by the evolution equations in Eqs. (17)–(19) is accurate
point-by-point for Q � Q0 with errors at most of or-
der O

�
↵s(Q0)n+1

�
– see Eqs. (62)–(63). When Q = Q0

the W (n)(Q0, qT) defined in Eq. (65) reduces to the TMD
parton model up to the overall factor ofH(n)(↵s(µQ);C2)
and

W (qT, Q0)�W (n)(qT, Q0)

= O
�
↵s(µQ0)

n+1
�
+O

✓
m

Q0

◆
. (66)

While it might appear that we have only succeeded
at introducing an excessive amount of notation, the end
result is a fairly simple recipe for combining any arbi-
trary model of nonperturbative transverse momentum
dependence with full TMD factorization and evolution.
After some basic initial decisions like choosing a value
for Q0 and fixing renormalization schemes, the steps are
as follows:

A) Model Building

A1: Choose a nonperturbative model, or a non-
perturbative technique more generally, to phenomeno-
logically parametrize the small transverse momentum de-
pendence in the TMD ↵ D

�
zA, zAkAT;µQ0 , Q

2
0

�
and in

K(kT;µQ0) at the input scale. (See, for example, the list
of models in the introduction. These can likely be used
here.)

A2: For step A1, make any modifications to
the models that are necessary to ensure that they
satisfy Eq. (39), Eq. (41), Eq. (47), Eq. (52), and
Eqs. (54)–(57). This step mostly amounts to extrap-
olating existing models to low order perturbative de-
scriptions of kT ⇡ Q0 behavior. The result is a

set of parametrizations for D̃(n,dr)

input,A

�
zA, bT;µQ0 , Q

2
0

�
,

D̃(n,dr)

input,B

�
zB , bT;µQ0 , Q

2
0

�
, and K̃(n)

input
(bT;µQ0).

A3: Choose a functional form for the Q0(bT) in
Eq. (42) to implement the transition between scales.
Use the “input” functions from step A2 to construct

K̃
(n)

(bT;µQ0) and D̃
(n,dr)

(z, bT;µQ0 , Q
2
0
) via Eq. (45)

and Eq. (61).

B) Phenomenology at Q ⇡ Q0

B1: Apply factorization phenomenologically to Q =
Q0, Type I processes by taking

D̃
(n,dr)

(z, bT;µQ0 , Q
2

0
) ! D̃(n,dr)

input
(z, bT;µQ0 , Q

2

0
)

in Eq. (65). This corresponds to the TMD parton model
formula in Eq. (22) with the input function of step A2.
Fix any parameters in the nonperturbative model. This
step is essentially no di↵erent from traditional TMD par-
ton model motivated approaches to describing Type I
processes. Thus, prior existing phenomenological results
can likely be reused here.

B2: Consider the phenomenological behavior of cross
sections in a region of Q around Q ⇡ Q0. Take

D̃
(n,dr)

(z, bT;µQ0 , Q
2

0
) ! D̃(n,dr)

input
(z, bT;µQ0 , Q

2

0
)

K̃
(n)

(bT;µQ0) ! K̃(n)
input

(bT;µQ0)

in Eq. (65), and use the resulting formula in phenomeno-
logical fits to fix any nonperturbative parameters in

K̃(n)
input

(bT;µQ0) in the Q ⇡ Q0 region.

B3: Verify that the e↵ect of replacing K̃
(n)

(bT;µQ0)

and D̃
(n,dr)

(z, bT;µQ0 , Q
2
0
) by K̃(n)

input
(bT;µQ0) and

D̃(n,dr)

input

�
z, bT;µQ0 , Q

2
0

�
respectively is negligible for nu-

merical calculations around Q ⇡ Q0.

C) Phenomenology at large Q

C1: Use Eq. (65) to evolve to significantly larger Q
and make predictions for Type II observables. Then re-
fit and/or tune the nonperturbative parameters and im-
prove the agreement with the higher Q observables. The
adjustment of parameters should be expected to be min-
imal since the larger Q measurements are less sensitive
to large bT.

C2: Continue to repeat step C1 with even higher
Q. One should expect the accuracy of predictions to in-
crease, both because of the growing constraints on non-
perturbative parameters from previous steps and because
larger Q is less sensitive to large bT and more sensitive
to small ↵s(Q) perturbative contributions.

It is possible to transform Eq. (65) into a form more
familiar from traditional implementations of the CSS for-
malism. While that is not necessary, and indeed we would
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The approximation, notated by the “(n)” superscript on
W (n)(qT, Q), is such that the scale dependence given
by the evolution equations in Eqs. (17)–(19) is accurate
point-by-point for Q � Q0 with errors at most of or-
der O

�
↵s(Q0)n+1

�
– see Eqs. (62)–(63). When Q = Q0

the W (n)(Q0, qT) defined in Eq. (65) reduces to the TMD
parton model up to the overall factor ofH(n)(↵s(µQ);C2)
and
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✓
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◆
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While it might appear that we have only succeeded
at introducing an excessive amount of notation, the end
result is a fairly simple recipe for combining any arbi-
trary model of nonperturbative transverse momentum
dependence with full TMD factorization and evolution.
After some basic initial decisions like choosing a value
for Q0 and fixing renormalization schemes, the steps are
as follows:

A) Model Building

A1: Choose a nonperturbative model, or a non-
perturbative technique more generally, to phenomeno-
logically parametrize the small transverse momentum de-
pendence in the TMD ↵ D

�
zA, zAkAT;µQ0 , Q

2
0

�
and in

K(kT;µQ0) at the input scale. (See, for example, the list
of models in the introduction. These can likely be used
here.)

A2: For step A1, make any modifications to
the models that are necessary to ensure that they
satisfy Eq. (39), Eq. (41), Eq. (47), Eq. (52), and
Eqs. (54)–(57). This step mostly amounts to extrap-
olating existing models to low order perturbative de-
scriptions of kT ⇡ Q0 behavior. The result is a

set of parametrizations for D̃(n,dr)

input,A
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zA, bT;µQ0 , Q

2
0

�
,

D̃(n,dr)

input,B

�
zB , bT;µQ0 , Q

2
0

�
, and K̃(n)

input
(bT;µQ0).

A3: Choose a functional form for the Q0(bT) in
Eq. (42) to implement the transition between scales.
Use the “input” functions from step A2 to construct

K̃
(n)

(bT;µQ0) and D̃
(n,dr)

(z, bT;µQ0 , Q
2
0
) via Eq. (45)

and Eq. (61).

B) Phenomenology at Q ⇡ Q0

B1: Apply factorization phenomenologically to Q =
Q0, Type I processes by taking

D̃
(n,dr)

(z, bT;µQ0 , Q
2

0
) ! D̃(n,dr)

input
(z, bT;µQ0 , Q

2

0
)

in Eq. (65). This corresponds to the TMD parton model
formula in Eq. (22) with the input function of step A2.
Fix any parameters in the nonperturbative model. This
step is essentially no di↵erent from traditional TMD par-
ton model motivated approaches to describing Type I
processes. Thus, prior existing phenomenological results
can likely be reused here.

B2: Consider the phenomenological behavior of cross
sections in a region of Q around Q ⇡ Q0. Take

D̃
(n,dr)

(z, bT;µQ0 , Q
2

0
) ! D̃(n,dr)

input
(z, bT;µQ0 , Q

2

0
)

K̃
(n)

(bT;µQ0) ! K̃(n)
input

(bT;µQ0)

in Eq. (65), and use the resulting formula in phenomeno-
logical fits to fix any nonperturbative parameters in

K̃(n)
input

(bT;µQ0) in the Q ⇡ Q0 region.

B3: Verify that the e↵ect of replacing K̃
(n)

(bT;µQ0)

and D̃
(n,dr)

(z, bT;µQ0 , Q
2
0
) by K̃(n)

input
(bT;µQ0) and

D̃(n,dr)

input

�
z, bT;µQ0 , Q

2
0

�
respectively is negligible for nu-

merical calculations around Q ⇡ Q0.

C) Phenomenology at large Q

C1: Use Eq. (65) to evolve to significantly larger Q
and make predictions for Type II observables. Then re-
fit and/or tune the nonperturbative parameters and im-
prove the agreement with the higher Q observables. The
adjustment of parameters should be expected to be min-
imal since the larger Q measurements are less sensitive
to large bT.

C2: Continue to repeat step C1 with even higher
Q. One should expect the accuracy of predictions to in-
crease, both because of the growing constraints on non-
perturbative parameters from previous steps and because
larger Q is less sensitive to large bT and more sensitive
to small ↵s(Q) perturbative contributions.

It is possible to transform Eq. (65) into a form more
familiar from traditional implementations of the CSS for-
malism. While that is not necessary, and indeed we would
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Why should we care about collinear factorization?

(large qT) 

• important test of pQCD (e. g. what is Q0?)


• Small qT limit should match the large qT 
behaviour of W-term (TMDs)


This last one is not only a

formal issue, it has consequences 


in  phenomenology 




SIDIS example
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Summarizing some of these ideas: 

• Binning in qT is most useful.

• Different cuts at small zh may help.

• More nonperturbative information at smaller 

• scales. How low can we go? (What is Q0?)

• Should not disregard large qT data.

• A good alternative to global fits: extract at

• and test at higher energies.
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The approximation, notated by the “(n)” superscript on
W (n)(qT, Q), is such that the scale dependence given
by the evolution equations in Eqs. (17)–(19) is accurate
point-by-point for Q � Q0 with errors at most of or-
der O

�
↵s(Q0)n+1

�
– see Eqs. (62)–(63). When Q = Q0

the W (n)(Q0, qT) defined in Eq. (65) reduces to the TMD
parton model up to the overall factor ofH(n)(↵s(µQ);C2)
and

W (qT, Q0)�W (n)(qT, Q0)

= O
�
↵s(µQ0)

n+1
�
+O

✓
m

Q0

◆
. (66)

While it might appear that we have only succeeded
at introducing an excessive amount of notation, the end
result is a fairly simple recipe for combining any arbi-
trary model of nonperturbative transverse momentum
dependence with full TMD factorization and evolution.
After some basic initial decisions like choosing a value
for Q0 and fixing renormalization schemes, the steps are
as follows:

A) Model Building

A1: Choose a nonperturbative model, or a non-
perturbative technique more generally, to phenomeno-
logically parametrize the small transverse momentum de-
pendence in the TMD ↵ D

�
zA, zAkAT;µQ0 , Q

2
0

�
and in

K(kT;µQ0) at the input scale. (See, for example, the list
of models in the introduction. These can likely be used
here.)

A2: For step A1, make any modifications to
the models that are necessary to ensure that they
satisfy Eq. (39), Eq. (41), Eq. (47), Eq. (52), and
Eqs. (54)–(57). This step mostly amounts to extrap-
olating existing models to low order perturbative de-
scriptions of kT ⇡ Q0 behavior. The result is a

set of parametrizations for D̃(n,dr)

input,A

�
zA, bT;µQ0 , Q

2
0

�
,

D̃(n,dr)

input,B

�
zB , bT;µQ0 , Q

2
0

�
, and K̃(n)

input
(bT;µQ0).

A3: Choose a functional form for the Q0(bT) in
Eq. (42) to implement the transition between scales.
Use the “input” functions from step A2 to construct

K̃
(n)

(bT;µQ0) and D̃
(n,dr)

(z, bT;µQ0 , Q
2
0
) via Eq. (45)

and Eq. (61).

B) Phenomenology at Q ⇡ Q0

B1: Apply factorization phenomenologically to Q =
Q0, Type I processes by taking

D̃
(n,dr)

(z, bT;µQ0 , Q
2

0
) ! D̃(n,dr)

input
(z, bT;µQ0 , Q

2

0
)

in Eq. (65). This corresponds to the TMD parton model
formula in Eq. (22) with the input function of step A2.
Fix any parameters in the nonperturbative model. This
step is essentially no di↵erent from traditional TMD par-
ton model motivated approaches to describing Type I
processes. Thus, prior existing phenomenological results
can likely be reused here.

B2: Consider the phenomenological behavior of cross
sections in a region of Q around Q ⇡ Q0. Take

D̃
(n,dr)

(z, bT;µQ0 , Q
2

0
) ! D̃(n,dr)

input
(z, bT;µQ0 , Q

2

0
)

K̃
(n)

(bT;µQ0) ! K̃(n)
input

(bT;µQ0)

in Eq. (65), and use the resulting formula in phenomeno-
logical fits to fix any nonperturbative parameters in

K̃(n)
input

(bT;µQ0) in the Q ⇡ Q0 region.

B3: Verify that the e↵ect of replacing K̃
(n)

(bT;µQ0)

and D̃
(n,dr)

(z, bT;µQ0 , Q
2
0
) by K̃(n)

input
(bT;µQ0) and

D̃(n,dr)

input

�
z, bT;µQ0 , Q

2
0

�
respectively is negligible for nu-

merical calculations around Q ⇡ Q0.

C) Phenomenology at large Q

C1: Use Eq. (65) to evolve to significantly larger Q
and make predictions for Type II observables. Then re-
fit and/or tune the nonperturbative parameters and im-
prove the agreement with the higher Q observables. The
adjustment of parameters should be expected to be min-
imal since the larger Q measurements are less sensitive
to large bT.

C2: Continue to repeat step C1 with even higher
Q. One should expect the accuracy of predictions to in-
crease, both because of the growing constraints on non-
perturbative parameters from previous steps and because
larger Q is less sensitive to large bT and more sensitive
to small ↵s(Q) perturbative contributions.

It is possible to transform Eq. (65) into a form more
familiar from traditional implementations of the CSS for-
malism. While that is not necessary, and indeed we would
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The approximation, notated by the “(n)” superscript on
W (n)(qT, Q), is such that the scale dependence given
by the evolution equations in Eqs. (17)–(19) is accurate
point-by-point for Q � Q0 with errors at most of or-
der O

�
↵s(Q0)n+1

�
– see Eqs. (62)–(63). When Q = Q0

the W (n)(Q0, qT) defined in Eq. (65) reduces to the TMD
parton model up to the overall factor ofH(n)(↵s(µQ);C2)
and
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. (66)

While it might appear that we have only succeeded
at introducing an excessive amount of notation, the end
result is a fairly simple recipe for combining any arbi-
trary model of nonperturbative transverse momentum
dependence with full TMD factorization and evolution.
After some basic initial decisions like choosing a value
for Q0 and fixing renormalization schemes, the steps are
as follows:

A) Model Building

A1: Choose a nonperturbative model, or a non-
perturbative technique more generally, to phenomeno-
logically parametrize the small transverse momentum de-
pendence in the TMD ↵ D

�
zA, zAkAT;µQ0 , Q

2
0

�
and in

K(kT;µQ0) at the input scale. (See, for example, the list
of models in the introduction. These can likely be used
here.)

A2: For step A1, make any modifications to
the models that are necessary to ensure that they
satisfy Eq. (39), Eq. (41), Eq. (47), Eq. (52), and
Eqs. (54)–(57). This step mostly amounts to extrap-
olating existing models to low order perturbative de-
scriptions of kT ⇡ Q0 behavior. The result is a

set of parametrizations for D̃(n,dr)

input,A

�
zA, bT;µQ0 , Q

2
0
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,

D̃(n,dr)

input,B

�
zB , bT;µQ0 , Q
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0

�
, and K̃(n)

input
(bT;µQ0).

A3: Choose a functional form for the Q0(bT) in
Eq. (42) to implement the transition between scales.
Use the “input” functions from step A2 to construct

K̃
(n)

(bT;µQ0) and D̃
(n,dr)

(z, bT;µQ0 , Q
2
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) via Eq. (45)

and Eq. (61).

B) Phenomenology at Q ⇡ Q0

B1: Apply factorization phenomenologically to Q =
Q0, Type I processes by taking
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(z, bT;µQ0 , Q
2
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) ! D̃(n,dr)

input
(z, bT;µQ0 , Q

2

0
)

in Eq. (65). This corresponds to the TMD parton model
formula in Eq. (22) with the input function of step A2.
Fix any parameters in the nonperturbative model. This
step is essentially no di↵erent from traditional TMD par-
ton model motivated approaches to describing Type I
processes. Thus, prior existing phenomenological results
can likely be reused here.

B2: Consider the phenomenological behavior of cross
sections in a region of Q around Q ⇡ Q0. Take
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in Eq. (65), and use the resulting formula in phenomeno-
logical fits to fix any nonperturbative parameters in
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(bT;µQ0) in the Q ⇡ Q0 region.

B3: Verify that the e↵ect of replacing K̃
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merical calculations around Q ⇡ Q0.

C) Phenomenology at large Q

C1: Use Eq. (65) to evolve to significantly larger Q
and make predictions for Type II observables. Then re-
fit and/or tune the nonperturbative parameters and im-
prove the agreement with the higher Q observables. The
adjustment of parameters should be expected to be min-
imal since the larger Q measurements are less sensitive
to large bT.

C2: Continue to repeat step C1 with even higher
Q. One should expect the accuracy of predictions to in-
crease, both because of the growing constraints on non-
perturbative parameters from previous steps and because
larger Q is less sensitive to large bT and more sensitive
to small ↵s(Q) perturbative contributions.

It is possible to transform Eq. (65) into a form more
familiar from traditional implementations of the CSS for-
malism. While that is not necessary, and indeed we would

• Ideal for both precision and accuracy
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Backup (recent work on CS kernel)
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where the transition from small to large bT has been
treated through the b⇤-prescription by defining

b⇤ (bT) =
bTp

1 + (bT/bmax)2
, µb⇤ =

2e��E

b⇤
(4)

as is usual in the CSS formalism [6, 31, 32] .

Moreover, in order to ensure that integrating the above
TMD FF renders the usual collinear FFs (indicated
by lower-case d in Eq. (3)), we introduce in the b⇤-
prescription a minimum value of bT, bmin, as in Ref. [6],

and replace Eq. (4) with b⇤

⇣p
b2T + (bmin)2

⌘
. The first

line of Eq. (3) embeds the uppolarized TMD FF at short-
distances and fixed scales µ = µb⇤ ⌘ 2e��E/b⇤ and
⇣ = µ

2
b⇤
. It is a standard result to express this con-

tribution as an operator product expansion where the
operator basis are the collinear FFs and the Wilson co-
e�cients are fully predicted by perturbative QCD. The
detailed expressions of the 1-loop Wilson coe�cients are
given in Appendix A.

The second line of Eq. (3) describes the perturbative
part of the evolution from µ = µb⇤ to µ = Q and from
⇣ = µ

2
b⇤

to ⇣ = ⌧Q
2. The functions gi, i = 1, 2 and

g
K

j
, j = 2, 3 are required to reach the NLL-accuracy.

They depend on the variable � = 2�0 aS(Q) log Q

µb⇤
. For

convenience they are reported in Appendix A.

Finally, the last line of Eq. (3) embeds the non-
perturbative content of the unpolarized TMD FF, which
is encoded in two non-perturbative functions, that must
be extracted from experimental data. The first is the
model function MD, which is the fingerprint of D1,⇡±/f

as it embeds the genuine large-distance behavior of the
TMD. The second is the function gK, describing the long-
distance behavior of the Collins-Soper kernel, accounting
for soft recoiling e↵ects. Notice that a factor zh is usually
included [6] in the logarithm of gK, which is not present
in Eq. (3). This simply corresponds to a di↵erent choice
for the reference scale of evolution. We choose not to in-
clude it in order to have a gK-factor completely unrelated
to the zh dependence in bT-space. With respect to the
usual definition of TMDs [6, 7], or “square root defini-
tion” as labeled in Ref. [28], these two non-perturbative

functions are related by the following equations

M
sqrt
D (z, bT) = MD(z, bT)

p
MS(bT), (5a)

g
sqrt
K (bT) =

1

2
gK(bT), (5b)

where MS is the soft model introduced in Ref. [28], de-
scribing the non-perturbative content of the soft factor
appearing in standard TMD factorization theorems. No-
tice that whileMD is di↵erent in the two definitions, gK is
basically the same, apart from a constant factor. Hence,
for the extraction of gK from Region 2 of e+e� ! hX

we can test the parametrization already used in past phe-
nomenological extractions, based on standard TMD fac-
torization. On the side of the TMD model, the compar-
ison between the novel MD extracted from Region 2 of
e
+
e
� ! hX with its “square root” counterpart will shed

light on the soft model MS(bT), the remaining unknown
required to perform global phenomenological analyses.

The cross section in Eq. (2) can be obtained in two
di↵erent ways. In Ref. [29] it is achieved by adopting a
topology cut-o↵ � that forces the cross section to describe
a 2-jet final state in the limit � ! 0. This introduces an
additional, artificial constraint which simplifies the com-
putation of the transverse momentum dependent contri-
butions by limiting the values of the transverse momen-
tum to be smaller than the topology cut-o↵. Moreover, it
allows to set an explicit relation linking the thrust, T , to
the rapidity cut-o↵ ⇣, namely ⇣ = ⌧Q

2. Finally, an ap-
proximated resummation of � produces the exponential
suppressing factor of Eq. (2), which replaces the e↵ect of
a proper thrust resummation [29]. Alternatively, Eq. (2)
can be obtained from the correct factorization theorem of
Region 2 devised in Ref. [25] by making two rather strong
approximations. First, the whole transverse momentum
dependence encoded outside the TMD FF is integrated
out up to the typical thrust-collinear scale ⇠

p
⌧Q. This

allows to recover the naive picture of a partonic cross
section convoluted with a TMD FF. Then, the TMD is
equipped with a rapidity cut-o↵, set to the minimal al-
lowed rapidity for particles belonging to the same jet of
the detected hadron, corresponding to ⇣ = ⌧Q

2. In this
way, the underlying correlation between thrust and trans-
verse momentum (due to the peculiar role of the rapidity
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2e��E
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(4)
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as it embeds the genuine large-distance behavior of the
TMD. The second is the function gK, describing the long-
distance behavior of the Collins-Soper kernel, accounting
for soft recoiling e↵ects. Notice that a factor zh is usually
included [6] in the logarithm of gK, which is not present
in Eq. (3). This simply corresponds to a di↵erent choice
for the reference scale of evolution. We choose not to in-
clude it in order to have a gK-factor completely unrelated
to the zh dependence in bT-space. With respect to the
usual definition of TMDs [6, 7], or “square root defini-
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where MS is the soft model introduced in Ref. [28], de-
scribing the non-perturbative content of the soft factor
appearing in standard TMD factorization theorems. No-
tice that whileMD is di↵erent in the two definitions, gK is
basically the same, apart from a constant factor. Hence,
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we can test the parametrization already used in past phe-
nomenological extractions, based on standard TMD fac-
torization. On the side of the TMD model, the compar-
ison between the novel MD extracted from Region 2 of
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� ! hX with its “square root” counterpart will shed

light on the soft model MS(bT), the remaining unknown
required to perform global phenomenological analyses.

The cross section in Eq. (2) can be obtained in two
di↵erent ways. In Ref. [29] it is achieved by adopting a
topology cut-o↵ � that forces the cross section to describe
a 2-jet final state in the limit � ! 0. This introduces an
additional, artificial constraint which simplifies the com-
putation of the transverse momentum dependent contri-
butions by limiting the values of the transverse momen-
tum to be smaller than the topology cut-o↵. Moreover, it
allows to set an explicit relation linking the thrust, T , to
the rapidity cut-o↵ ⇣, namely ⇣ = ⌧Q

2. Finally, an ap-
proximated resummation of � produces the exponential
suppressing factor of Eq. (2), which replaces the e↵ect of
a proper thrust resummation [29]. Alternatively, Eq. (2)
can be obtained from the correct factorization theorem of
Region 2 devised in Ref. [25] by making two rather strong
approximations. First, the whole transverse momentum
dependence encoded outside the TMD FF is integrated
out up to the typical thrust-collinear scale ⇠
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⌧Q. This

allows to recover the naive picture of a partonic cross
section convoluted with a TMD FF. Then, the TMD is
equipped with a rapidity cut-o↵, set to the minimal al-
lowed rapidity for particles belonging to the same jet of
the detected hadron, corresponding to ⇣ = ⌧Q

2. In this
way, the underlying correlation between thrust and trans-
verse momentum (due to the peculiar role of the rapidity
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TABLE IV. Models for MD and gK in impact parameter space
for our main analysis. MD is obtained by multiplying the BK
model, which corresponds to a power law in momentum space,
with an additional function of bT and zh.

MD =
22�p(bTM0)p�1

�(p� 1)
Kp�1(bTM0) ⇥ F (bT, zh)

ID MD model parameters

I F =

 
1 + log

�
1 + (bTMz)2

�

1 + (bTMz)2

!q

M0, M1

p = 1.51, q = 8

Mz = �M1 log(zh)

II F = 1
z0

Mz = M⇡

1

z f(z)2

s
3

1� f(z)

pz = 1 +
3

2

f(z)

1� f(z)

f(z) = 1� (1� z)� , � = 1�z0
z0

gK model

A gK = log (1 + (bTMK)pK) MK, pK

B gK = MKb
(1�2pK)
T

MK, pK

where M⇡ = 0.14 GeV is the mass of charged pions and f

has to be a positive-definite function, never larger than 1
and with a minimum in zh = z0. This is where the infor-
mation associated to the experimental observation comes
into play, helping to select an appropriate zh-dependence
for the TMD model. In fact, the function f has a mini-
mum in the exact point where the width W has a maxi-
mum. One of the simplest functional forms which fulfills
such requirements is

f(z, z0) = 1� (1� z)� , with � =
1� z0

z0
. (26)

This is what we adopt for Model II. The expression of
Mz and pz in terms of f(z) are summarized in Table IV.

Following the indication of these preliminary tests, we
will focus on the study of the large bT (i.e. small PT )
behaviour of the fitted cross sections, leaving the explo-
ration of the small bT region to further analyses. By
large bT, here we mean “the largest bT experimentally
accesible”, as the asymptotic behaviour may not be so
relevant for this data set, as discussed in Sec. III B. For

our main analysis with model II, we will adopt the func-
tional forms of Eq. (20) and Eq. (21), both characterized
by two free parameters, MK and pK. This gives two new
models, which we label “IIA” and “IIB” (see Table IV).
We thus minimize �

2 with respect to the free param-
eters (z0, MK, pK) for models IIA and IIB. In these two
cases, as for model I, we will estimate statistical errors by
determining the 2� confidence region in parameter space.
Note that, while parameter space shown in next section
for model II has a distortion respect to elliptical shapes,
we have checked that rescaling the parameters allows to
correct for this. Nonetheless, we present results in terms
of (z0, MK, pK) since they are closely related to features
of the data.
Following the above considerations, the main results of

our analysis will be presented in the next subsection for
all of our models.

F. Phenomenological Results.

With our final choices, we perform fits for each of the
considered models, labeled IA, IB, IIA, IIB, where “I”
and “II” indicate the choice of parametrization for MD

while “A” and “B” indicate the model chosen for gK, ac-
cording to the notation introduced in Table IV. In each
case we perform a �

2-minimization procedure using MI-
NUIT [51], fitting a total of 3 parameters in each model.
We estimate parameter errors by considering 2� confi-
dence regions. In other words, for each model we consider
configurations in parameter space around the minimal
one, varying all parameters simultaneously and accept-
ing those for which �

2
i
< �

2
0+��

2, with ��
2 = 8.02; this

value of ��
2 is consistent with varying three parameters

simultaneously. Final results for models IA and IB are
reported in Table V. For models IIA and IIB, results are
displayed in Table VI.
From a superficial look at Table V, one may conclude

that the quality of model IB is higher, given the smaller
values of �2

d.o.f.. However, we note that model IB has the
disadvantage that the ellipsoidal approximation extends
down to negative values of M0, which must be excluded.
This is reflected by the asymmetric errors in M0 and MK

in the third column of Table V.
Fits performed with model II have slightly higher �2s,

as shown in Table VI. This is probably due to the fact
that this model, being more tightly constrained, with
only one free parameter controlling the zh behaviour of
MD, shows a limited flexibility compared to model I.
Nonetheless clear di↵erences between models cannot be
observed when comparing to data. We thus consider both
models I and II as equally acceptable to describe the
general profile of our functions MD and gK. We choose
model IA to display the agreement of our predicted cross
sections to the BELLE data in Fig. 8, noting that cor-
responding comparisons for models IB, IIA, IIB would
indeed be very similar. Fig. 8 shows two types of errors
bands. Darker colored bands represent the statistical un-

models
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TABLE V. Minimal �2
d.o.f. obtained by fitting models IA and

IB, according to Table IV. In each case we perform fits in the
kinematical region of Eq. (22) and Eq. (23). In both cases IA
and IB, all dimensionless parameters are fixed, indicated in
the table by a star. Fixed values as explained in Sec. III E.

qT/Q < 0.15 (pts = 168)
IA IB

�
2
d.o.f. 1.25 1.19

M0(GeV) 0.300+0.075
�0.062 0.003+0.089

�0.003

M1(GeV) 0.522+0.037
�0.041 0.520+0.027

�0.040

p
⇤ 1.51 1.51

q
⇤ 8 8

MK(GeV) 1.305+0.139
�0.146 0.904+0.037

�0.086

p
⇤
K 0.609 0.229

certainty of the fit. The lighter colored bands are an
estimate of the error induced by the collinear fragmenta-
tion functions used in the analysis. They are produced
by refitting the model function for each of the replicas
provided by the NNFFs NLO extraction of Refs. [33]

For this estimate, only about 65% of the NNFFs repli-
cas allowed for a convergent fit. A more detailed study
of such errors is a necessity in this type of studies that
need constraints from independent analyses. For now,
we consider our estimate as a useful tool to understand
the e↵ect of the choice of collinear FFs in a TMD extrac-
tion. In fact, it is useful to observe in Fig. 8 that errors
from the collinear functions are consistently larger than
statistical errors. Arguably, the former render a more
realistic picture of the precision at which TMDs can be
extracted from data. It is clear from Fig. 8 that the
quality of the description of data deteriorates at smaller
values of T . This is not surprising since the formalism
employed [25, 28, 29] is expected to fail at smaller values
of thrust, where the topology of the e

+
e
� ! hX events

starts deviating from a 2-jet like configuration.
Further developments in the theoretical treatment of

the interplay between the rapidity divergence regulariza-
tion and the thrust dependence will likely improve the
quality of the extraction by allowing the possible inclu-
sion of more data points while achieving an improved
agreement to data [25]. We leave this for future work [30].

Interesting results are found about gK(bT ). We focus
on the study of the large bT (i.e. small PT ) behaviour of
the fitted cross sections, leaving to further analyses the
exploration of the small bT region, on which we are unable
to draw definite conclusions, as explained in Sec. IIID.
Our fit is rather sensitive to the modulation of gK in the

TABLE VI. Minimal �2
d.o.f. obtained by fitting models IIA and

IIB, according to table Table IV. In each case we perform fits
in the kinematical region of Eq. (22) and Eq. (23). There are
no nuisance parameters in model II.

qT/Q < 0.15 (pts = 168)
IIA IIB

�
2
d.o.f. 1.35 1.33

z0 0.574+0.039
�0.041 0.556+0.047

�0.051

MK(GeV) 1.633+0.103
�0.105 0.687+0.114

�0.171

pk 0.588+0.127
�0.141 0.293+0.047

�0.038

large bT region. Remarkably, it shows a strong preference
for a sub-linear power or logarithmic raise of gK, while
definitely ruling out the b

2
T or b4T behaviour at large bT.

We stress that by large bT, here we mean “the largest bT
experimentally accesible”, as the asymptotic behaviour
may not be so relevant for this data set, as discussed in
Sec. III B.
It is important to understand the strength of corre-

lations between MD and gK and the impact of model
choices in the extraction of profile functions. Although
these two points are not necessarily unrelated, we discuss
them separately in what follows.
Firstly, regarding correlations between MD and gK for

a given model, in an ideal scenario one would expect them
to be mild, which would provide some level of confidence
when comparing results to other analyses or data sets.
This situation is however not guaranteed. We find that
in fact MD and gK are correlated, as shown in Fig. 9,
where correlations between MK and the mass parameters
of MD, M0 and M1 are displayed for model IA, and in
Fig. 10 where analogous scatter plots are presented for
model IIB, for the correlation of z0 with MK and pK. We
obtain analogous results for model IB, with the added
feature that confidence regions in parameter space appear
as ellipses truncated in the region M0 < 0. For models of
type II, the correlation betweenMD and gK appears to be
stronger than in the parametrizations of type I, so much
so that a slight residual deformation from the ellipsoidal
form is still visible in Fig. 10, although the constraints
intrinsically built in model I drastically limit the number
of its free parameters. We checked that a transformation
of parameters MK and pK render scatter plots with an
approximate elliptical shape. It is noteworthy, that the
regions corresponding to 2� confidence level have well
defined contours, allowing for a reliable determination of
the error a↵ecting the extracted parameters.
Secondly, we find that the profile of the extracted func-

tions strongly depends on model choices. Note that the
full TMD in momentum space, shown in Fig. 11, shows
di↵erences beyond statistical error bands. Discrepancies
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starts deviating from a 2-jet like configuration.
Further developments in the theoretical treatment of

the interplay between the rapidity divergence regulariza-
tion and the thrust dependence will likely improve the
quality of the extraction by allowing the possible inclu-
sion of more data points while achieving an improved
agreement to data [25]. We leave this for future work [30].

Interesting results are found about gK(bT ). We focus
on the study of the large bT (i.e. small PT ) behaviour of
the fitted cross sections, leaving to further analyses the
exploration of the small bT region, on which we are unable
to draw definite conclusions, as explained in Sec. IIID.
Our fit is rather sensitive to the modulation of gK in the
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large bT region. Remarkably, it shows a strong preference
for a sub-linear power or logarithmic raise of gK, while
definitely ruling out the b

2
T or b4T behaviour at large bT.

We stress that by large bT, here we mean “the largest bT
experimentally accesible”, as the asymptotic behaviour
may not be so relevant for this data set, as discussed in
Sec. III B.
It is important to understand the strength of corre-

lations between MD and gK and the impact of model
choices in the extraction of profile functions. Although
these two points are not necessarily unrelated, we discuss
them separately in what follows.
Firstly, regarding correlations between MD and gK for

a given model, in an ideal scenario one would expect them
to be mild, which would provide some level of confidence
when comparing results to other analyses or data sets.
This situation is however not guaranteed. We find that
in fact MD and gK are correlated, as shown in Fig. 9,
where correlations between MK and the mass parameters
of MD, M0 and M1 are displayed for model IA, and in
Fig. 10 where analogous scatter plots are presented for
model IIB, for the correlation of z0 with MK and pK. We
obtain analogous results for model IB, with the added
feature that confidence regions in parameter space appear
as ellipses truncated in the region M0 < 0. For models of
type II, the correlation betweenMD and gK appears to be
stronger than in the parametrizations of type I, so much
so that a slight residual deformation from the ellipsoidal
form is still visible in Fig. 10, although the constraints
intrinsically built in model I drastically limit the number
of its free parameters. We checked that a transformation
of parameters MK and pK render scatter plots with an
approximate elliptical shape. It is noteworthy, that the
regions corresponding to 2� confidence level have well
defined contours, allowing for a reliable determination of
the error a↵ecting the extracted parameters.
Secondly, we find that the profile of the extracted func-

tions strongly depends on model choices. Note that the
full TMD in momentum space, shown in Fig. 11, shows
di↵erences beyond statistical error bands. Discrepancies
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FIG. 8. Results of fitting model IA from Table IV to BELLE data on pion production from e+e� annihilation [13], in the
kinematical region of Eq. (22) and Eq. (23). Darker shaded bands represent the statistical uncertainty of the fit at 2� confidence
level, and correspond to the parameter configurations of Fig. 9. The lighter shaded bands are an estimate of the error induced
by the collinear fragmentation functions used in the analysis, and are produced by refitting the model function for each of the
replicas provided by the NNFFs NLO extraction of [33]. For a better visualization of results, central lines are not included,
but they generally lie in the middle of the thin, darker statistical error bands. Models IB, IIA, IIB give analogous results. We
do not show them in the plot as they would be indistinguishable.

(a) (b)

FIG. 9. 2� confidence regions centered around the minimum configuration, shown in green, for the fit of model IA of Table IV
in the kinematical region of Eq. (22) and Eq. (23).

are more visible when considering separately the results
obtained for the extractions of MD and gK, as seen in
Fig. 12 where the profile functions di↵er beyond statisti-
cal error bands. As such, those discrepancies should be
considered as a kind of theoretical error. While this is
only a rough estimate of one kind of theoretical uncer-
tainties, it makes the case that statistical uncertainties
are generally not enough to asses the quality of an extrac-

tion. Even though this is specially the case in studies like
the present one, where only one process is considered, it
is a matter of concern even for global fits.

We now compare our results against other recent
TMD-analyses. Since the relevant TMD FF in our stud-
ies is di↵erent from that of the usual CSS, SCET and
related treatments (see Eq. (5a)), we can only compare
our results for the CS kernel which, up to trivial constant
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(a) (b)

FIG. 10. 2� confidence regions centered around the minimum configuration, shown in green, for the fit of model IIB of Table IV
in the kinematic region of Eq. (22) and Eq. (23). Here the presence of some correlation among the free parameters controlling
the behavior of MD and gK is signalled by a slight deformation from the expected ellipsoidal shapes.
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FIG. 11. Extractions of the unpolarized TMD FF, Eq. (3),
from one-hadron production BELLE data of [13], using mod-
els IA,IB,IIA,IIB of Table IV, in the kinematic region of
Eq. (22) and Eq. (23). The TMD FF for the u ! ⇡+ + ⇡�

channel is shown in momentum space.

factors, is the same in each scheme. In Fig. 13 we plot
the CS kernel [6, 50] computed to NLL-accuracy

K̃(bT;µ) =
1

2

"
g
K
1 (�) +

1

L⇤
b

g
K
2 (�)

�
� 1

2
gK(bT ), (27)

where the functions gK1 and g
K
2 , which depend only on the

combination � = 2�0 aS(µ)L⇤
b
, with L

⇤
b
= log (µ/µb⇤),

are reported in Appendix A. Our extraction of the CS
kernel for all our models is compared to the results ob-

tained in the analyses of PV19 [4] and SV19 [47]5. For
clarity, we don’t show central lines but only error bands
in each case. Fig. 13 shows a good agreement between
our extraction of the CS kernel and the SV19 analysis in
the region just above bT ⇠ 2 GeV�1. Note that these two
extractions are based on di↵erent factorization schemes
and exploit di↵erent data sets. The large bT behaviour
of our extraction is clearly di↵erent from the PV19 re-
sults, which adopts a b

4
T asymptotic behaviour in order

to describe Drell-Yan production data from di↵erent ex-
periments on a very wide kinematic range, and up to
extremely high energies. Instead, in the small bT region,
our extraction of the CS kernel di↵ers from both PV19
and SV19 results, where the perturbative part of the CS
kernel is expected to dominate, making all bands to co-
incide.
This is mostly due to two factors. First, the behaviour

of our model for gK at small distances, which approaches
zero only as bpT, with 0 < p < 1, significantly more slowly
compared to the b

2
T behaviour of the PV19 and SV19

parametrizations also at small distances. In fact, the
e↵ects of our extractions for gK are still significant at
relatively small values of bT. Second, the approximations
of Eq. (3), are likely not optimal to describe the small
bT behaviour of the TMDFF. Future improvements in
the perturbative accuracy and a better treatment of the
thrust dependence could resolve these discrepancies with
respect to the results of the PV19 and SV19 analyses.
Recently, several lattice QCD calculations of the CS

kernel have been performed by di↵erent groups and re-

5
Note that for the CS kernel, PV19 follows the conventions of

Ref. [6], the SV19 results must be multiplied by a factor of �2

and ours should be divided by a factor 2.
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FIG. 12. Extractions of MD and gK in Eq. (3) from e+e� ! hX BELLE data [13], in the kinematic region of Eq. (22) and
Eq. (23). In all cases, 2� statistical error bands are shown. For model IA they correspond to the region of parameter space of
Fig. 9 while for model IIB to Fig. 10. Left: MD according to model IA,IB,IIA,IIB of Table IV. Right: Corresponding results
for gK.

FIG. 13. Extractions of the CS kernel obtained in this analysis
with models IA, IB, IIA, IIB are compared the PV19 [4] and
SV19 [47] extractions. For clarity, central lines are not shown.
While there is a good agreement between the linear and sub-
linear large bT behaviour of this extraction and Ref. [47], the
result of Ref. [4] shows an evident deviation at large bT, where
gK goes like b4T. Discrepancies at small bT are due to the
higher pQCD accuracy of the PV19 and SV19 analyses. We
also note that our models are essentially di↵erent at small bT
compared to those used in Refs. [4, 47], as explained in the
text.

ported in Refs. [52–57]; it is therefore interesting to com-
pare our extraction to some of these computations. We
do this in Fig. 14, where for clarity we compare er-
ror bands of all our models with the most recent cal-
culation of each lattice QCD collaboration, Refs. [54–

57]. The logarithmic and sub-linear power large bT be-
haviour assumed for our extractions seem to be well sup-
ported by lattice QCD estimations of the CS kernel.
We note that while our results are in better agreement
with the SWZ21[56] and LPC22[57] calculations, the gen-
eral trend of our extractions is also consistent with the
ETMC/PKU[55] and SVZES[54] results, characterized
by a slow variation of the CS kernel at large bT. Once
again we underline that in our analysis little can be said
about the small bT behaviour of the CS kernel, thus we fo-
cused our attention in the large bT regime, where BELLE
experimental data o↵er good coverage.

IV. CONCLUSIONS

We performed an analysis of recent BELLE data for
one hadron production in e

+
e
� annihilation [13] and

extracted the TMD FF following the newly developed
formalism of Ref. [25, 28, 29]. In this framework, the
short distance behavior of the TMD FF is constrained
by collinear FFs, as in the standard CSS and SCET for-
malisms, while the long distance behaviour requires the
parametrization and determination, via comparison to
data, of two functions, MD and gK. We introduced con-
straints for these functions in the asymptotically large
region of bT, consistently with previous theoretical re-
sults from Refs. [44, 48, 49, 58]. Our analysis is based
on a maximum-likelihood procedure, carried out by �

2-
minimization. Statistical errors are estimated by a stan-
dard determination of confidence regions at 2� level.
Upon testing how di↵erent choices of available collinear

FFs perform when comparing to data, we found that both
JAM20 [35] and NNFF [33] sets, although showing non-

TMDs from e+e- -> h X
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FIG. 12. Extractions of MD and gK in Eq. (3) from e+e� ! hX BELLE data [13], in the kinematic region of Eq. (22) and
Eq. (23). In all cases, 2� statistical error bands are shown. For model IA they correspond to the region of parameter space of
Fig. 9 while for model IIB to Fig. 10. Left: MD according to model IA,IB,IIA,IIB of Table IV. Right: Corresponding results
for gK.
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result of Ref. [4] shows an evident deviation at large bT, where
gK goes like b4T. Discrepancies at small bT are due to the
higher pQCD accuracy of the PV19 and SV19 analyses. We
also note that our models are essentially di↵erent at small bT
compared to those used in Refs. [4, 47], as explained in the
text.
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57]. The logarithmic and sub-linear power large bT be-
haviour assumed for our extractions seem to be well sup-
ported by lattice QCD estimations of the CS kernel.
We note that while our results are in better agreement
with the SWZ21[56] and LPC22[57] calculations, the gen-
eral trend of our extractions is also consistent with the
ETMC/PKU[55] and SVZES[54] results, characterized
by a slow variation of the CS kernel at large bT. Once
again we underline that in our analysis little can be said
about the small bT behaviour of the CS kernel, thus we fo-
cused our attention in the large bT regime, where BELLE
experimental data o↵er good coverage.

IV. CONCLUSIONS

We performed an analysis of recent BELLE data for
one hadron production in e
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� annihilation [13] and

extracted the TMD FF following the newly developed
formalism of Ref. [25, 28, 29]. In this framework, the
short distance behavior of the TMD FF is constrained
by collinear FFs, as in the standard CSS and SCET for-
malisms, while the long distance behaviour requires the
parametrization and determination, via comparison to
data, of two functions, MD and gK. We introduced con-
straints for these functions in the asymptotically large
region of bT, consistently with previous theoretical re-
sults from Refs. [44, 48, 49, 58]. Our analysis is based
on a maximum-likelihood procedure, carried out by �

2-
minimization. Statistical errors are estimated by a stan-
dard determination of confidence regions at 2� level.
Upon testing how di↵erent choices of available collinear

FFs perform when comparing to data, we found that both
JAM20 [35] and NNFF [33] sets, although showing non-
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FIG. 14. The CS-kernel obtained in this analysis by adopt-
ing models IA, IB, IIA, IIB are compared to the CS kernel
computed in lattice QCD in Refs. [54–57], at µ = 2 GeV. For
clarity, central lines for our extractions are not shown and we
display only the most recent lattice calculation for each group.
The logarithmic and sub-linear power large bT behaviour as-
sumed for our extraction seem to be well supported by lattice
QCD estimations of the CS kernel.

negligible di↵erences (at least in some specific regions of
zh and bT) are consistent with the PT-dependent BELLE
cross sections, within our approach.

For our extraction, constraints for both MD and gK

in the asymptotically large bT region were imposed. For
MD, we considered models characterized by an exponen-
tial asymptotic bT decay, according to previous theoreti-
cal results from Ref. [44, 58] and argued that, for consis-
tency with universality of the large distance behavior of
TMDs, the CS kernel should grow more weakly than a
linear function of bT in the asymptotic limit. We consid-
ered two models for gK satisfying that condition, which
follow a sub-linear power and a logarithmic behavior, as
suggested in Refs. [49] and [48], respectively, in this limit.
We showed that, in the considered kinematic region, all
aforementioned constraints imposed in the very large bT

are consistent with the data. We remark, however, that
the asymptotic behavior of di↵erent models plays a role
in extending results to smaller scales, and that the slow
evolution characteristic of the region of a few GeV can
be accommodated by the type of models we tested in this
work (see detailed discussion in Ref. [44]).

A remarkable result of this analysis is the insight of
the influence of the profile function of gK in the region of
intermediate-moderate values of bT, which we expect to
be accessible at BELLE kinematics. Compared to pre-
vious studies [4, 47], which gave indications on the pre-
ferred behaviour of gK at small bT, our analysis based
on the BELLE data, which correspond to a relatively
moderate scale Q = 10.6 GeV, shows a significant sensi-
tivity to larger values of bT. We find clear signals that

a b
2
T or b

4
T functional form is inappropriate to describe

the long distance behaviour of the CSS kernel. In fact,
the analyzed data show a definite preference for a loga-
rithmic or sub-linear modulation at large-bT, in line with
the studies of Refs. [49, 50] based on more general formal
considerations.
The large bT behaviour of our models, supplemented

with constraints from BELLE data, seems to be well
supported by the lattice determinations of the CS ker-
nel from quasi TMD wave functions [54–57], which ev-
idence the slow variation of the kernel in this region of
bT. Remarkably, our extractions are in very good agree-
ment with the calculations of Refs. [56, 57] where an NLO
matching is applied. This is a very important cross-check,
as lattice QCD calculations are based on totally di↵erent
and independent methodologies.
On the other hand, little can be inferred from this anal-

ysis about the small-bT behaviour of the CS kernel and of
gK. This might be at least partially due to the relatively
low energy of the BELLE experiment, but this is an issue
which deserves more extensive studies, including higher
accuracy in the perturbative expansion. A more rigorous
formal treatment will be presented in Ref. [30].
A very important theoretical consideration regards the

transition between short and long distance behaviour,
which should be carefully treated when embedding mod-
els into the type of TMD FF definition like that of Eq. (3),
where the small bT behaviour is, in principle, constrained
by collinear factorization. In general, such constraints are
not guaranteed unless models are optimally embedded,
especially at small and moderate scales. Recently, this
and related issues have been comprehensively addressed
in Ref. [59] where, based on theoretical considerations,
a practical recipe for phenomenology was provided that
allows a more reliable combination of models of nonper-
turbative behaviour into the CSS formalism. These con-
siderations will likely help to resolve some of the issues
we found at small bT in our analysis. We plan to pursue
this techniques in future work.
Another relevant aspect concerns the estimation of

the errors a↵ecting the phenomenological extraction of
TMDs from experimental data. It is important to stress
that while statistical errors do provide insight into the
precision with which TMDs can be extracted, theoreti-
cal errors play also an important role, which remarkably
a↵ect accuracy. We addressed two sources of such er-
rors and provided rough estimates of their size. First,
we considered the e↵ect that the statistical errors of the
collinear functions have in the extraction of the unpo-
larized TMD FF, by refitting our model with each one
of the sets provided by the NNFF collaboration. Sec-
ond, the use of two di↵erent models for gK allowed us to
assess how profile functions extracted depend on model
choices, as seen in Fig. 12. In both cases, our estimates
are meant to provide examples of how important it is to
perform error estimation beyond statistical uncertainties.
More work is needed in order to address these issues with
a more robust approach.

CS kernel


