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How can something so complicated as a proton look so simple?

1 fm

Can this be explained / excluded in QCD?
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Quarkonia are like atoms with confinement
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E. Eichten, S. Godfrey, H. Mahlke and J. L. Rosner,
Rev. Mod. Phys. 80 (2008) 1161

“The J/y 1s the Hydrogen atom of QCD”



Bound states from the QFT action

Bound states are omitted from QFT textbooks

Cf. Careful derivations of the perturbative S-matrix

Caswell &
The Schrodinger equation does not follow from the QED action  Lepage (1975)

For states at rest: Assumed initial state for an EFT (NRQED, NRQCD)

oL

Their QM wave functions are not calculated ., VZ03C  V=06C  v=05C

What about moving atoms and hadrons: ?

Atoms in motion are pictured as
classically contracted

M. Jarvinen, PRD 71 (2005)
In our quest for hadrons:

Need textbook level derivations of bound states starting from Lorr




Relativistic qG spectrum
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Take the features of hadrons at face value

Particle Data Group

\

é )
No gluons, sea quarks
| Os 1s perturbative )
and
4 )

High-mass excitations

Confining potential:

0O -
O , Instantaneous

J

Dramatic consequences: A perturbative expansion for hadrons, as for atoms



The scale of Confinement: Aqep = 1 fm!

_ e" -

- / S E. Eichten et al
Cornell QQ potential V' (r) = V'r — . PRD 21 (1980) 203
as = 0.39 Perturbative analysis of quarkonia

V' =0.18 GeV2 Confinement scale: Not in £Lqcp
Must be added without changing £qocp

(Do QCD interactions depend on something beyond £qcp ?j

Yes: Boundary conditions
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The instantaneous gauge potential

Gauge theories do have instantaneous interactions:

Although their action is local, the gauge may be fixed non-locally

The lack of dpA% and V-A in F,»F#¥ means that AY and A, do not propagate

The values of AY and A}, are determined by the choice of gauge

Covariant gauge fixing: £cr= (dy A*)? adds the missing derivatives

This hides the instantaneous potential, obscures bound state dynamics.
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Temporal gauge: A%(t,x) =0

Canonical quantisation is straightforward: A0 = 0pA0 =0

[Ei(t, x), A7 (1, y)} =0 (x — y) Ei=—0dgAi Electric field

AO(t,x) = 0 1s preserved under time-independent gauge transformations,
which are generated by the operator of “Gauss’ law”’: Willemsen (1978)

oS |
5 A%ZS = 0;E'(z) — ey"(x) Does not vanish as an operator since A%=0

Physical states must be invariant under all gauge transformations:

0S
5AC§ (E:S iphys) =0 Determines V-E; from the charges in each state
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The classical, instantaneous field E.

52 s
ete: \(/ﬁ ™~
';eé/)
{
The electric field Ey 1s a classical field. xz\‘\‘

E. can bind gg Fock states strongly, without pair creation.

Allows valence dominance even for relativistic hadrons
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Temporal gauge in QCD: AL =0

The temporal gauge constraint determines V- E; , for each state:

5SQCD . . .
_ iEz ; cAZ Bt — TTCL
5A2(33) 0 a(x)_l_gf becip e 9¢ ¢($>
5Socn -
5A0(2) phys) =0

Include a homogeneous solution for Erq: V- Ep.(x)=0

Introduces the QCD scale from a boundary condition

Translation and rotation symmetry impose tight constraints

Works only for color singlet states



The confining potential in the Hamiltonian

Bra(@)lphys) = <07 [ dy[wa -y + 2] .(v) Iohys)

where £,(y) = — fapc ALE(y) + T T%(y)

%/deE%-E%
_ /dydz{y z[ /da:+g/<;} 41 }5 (y)€a(2)

2Iy—Z\

Hy

The field energy « volume of space is irrelevant only if it is universal.
This relates the normalisation # of all Fock components,

leaving a universal scale A = O(0,") as the single parameter.



Meson qq Fock state potential

”HVE%/deE‘i- L Hy [0) =0

Cornell potential

This potential is valid also for relativistic gg Fock states, in any frame
A4
29°CF

The universal vacuum energy density is [/ =
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Baryon Fock state potential

Baryon: q(x1)q(22)q(x3)) = Z 6ABC¢T4(331)¢13(332)¢2($3) 0)
A,B,C

2 1 1 1
Vaga(®1, @2, T3) = Adggq (1, 2, 3) — §&8<‘w1 — &9 i [z — 3 i T3 — 131‘)

1
dgqq(T1, T2, T3) = ﬁ\/(if/‘l — )2 + (X2 — x3)? + (3 — 21)?

When two of the quarks coincide the potential reduces to the gg potential:

4 Qg

quq(mlﬂw%mQ) — AQ‘wl - wZ‘ - VQQ(m17m2)

g‘ibl—wg‘ N

Analogous potentials are obtained for any globally color singlet
quark and gluon Fock state, such as ggg and gg.



The qgq potential

A (q state, with the emission of a transverse gluon: ;TLZ% E;r

q(z1)g(2g)q(2)) Z a(x1) Al (2,)Th 5B (22) |0)

A2
Vq(;cg(mlv Ty, T2) = \/77 dggq(T1,Tg, T2) (universal A)

dng(xl’wg’ 332) = \/i(N - Q/N)(wl — $2)2 + N(wg — %5131 — %:EQ)Q

1 1 1 1
v ~ S| - ( )
194 (T1, Tg, T2) = 5 @ N |z — x| [T — x| i 2 — @

When ¢ and g coincide: Vq(gog( =X,, T2) = A|xq — xo| = Vq(g)

(1) _ _ /(1)
Viga (X1 =g, T2) = Vg
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The gg potential

A “glueball” component: 9(x1)g(x2)) = Z AZ(%) Ai(wz) 0)

N
has the potential Vg = o AZ X1 — x| — N
F

g

|€U1 — L2

This agrees with the qgq potential where the quarks coincide:
Vog(@, 2g) = Vygg(x, 24, )

It 1s straightforward to work out the instantaneous potential for any Fock state.
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Bound Fock expansion for mesons in A%=0 gauge

q4

The perturbative expansion in o starts

from the lgg) Fock state, bound by the E;
O(a,’) instantaneous potential Vg :

448
O(as) corrections include states with
transverse gluons and quark pairs, ;/Z,% E;
determined perturbatively by Hocp lgg) T

Each Fock component of the bound state
includes its O(0,°) instantaneous potential.

This Fock expansion is valid in any frame,

and 1s formally exact at O(os™).
Paul Hoyer ECT* 9/22
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O (a7) qQq bound states

An O (ozg) meson state with P = 0 and wave function ®:

’M> = Z /d.’I;ldCBQ &ﬁ(t — O, $1)5AB(I)QB(ZU1 — mg)wﬁB(t — O, 2132) ‘O>
A,B;a,3

The (rest frame) bound state condition H |M) = M |M) gives
o <
[z'fyofy -V + mfyo] O(x) + ¢(x) [z’fyofy .V — mfyo] = | M —V(jz|)| ®(x)

where x=x1—x2and V(x) = A2’m‘ at O (a(;)

In the non-relativistic limit (m > A) this reduces to the Schrodinger equation.

—> The quarkonium phenomenology with the Cornell potential.
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Example: —np =1nc = (—1)7 states at O(0sP)

2 N .
¢, (x) = [ (i - V +mr?) + 1] vs Fi(r)Yia ()
M-V
; LIS /" g v’ / 1 . 2 Q_j(j—|_1) _
Radial equation: F| + (r + 7 V)F1 + L(M V) —m ;s }Fl =0

Regularity of the wave function determines the bound state masses M

Mass spectrum: * m=0
. 4 B ’
Linear Regge J e e e
trajectories 3- ® © © e e o o o o o
with daughters
2 - [ [ [ [ [ o o [ o [

Spectrum similar to
dual models
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QFT dynamics at O (o)

In a perturbative expansion each order in oy, including O(o,9),
must have all features required by field theory.

Boost covariance of bound state with CM momentum P:
1

dazldazg @EA(ml)eip'<wl+w2)/25AB(I)(P)(.’131 — $2)¢3($2> |0>
w3l

iV - {a, @ ()} — %P o, @7 (x)| + mho, O (x)| = |E—V(x)| 2" (x)

‘M7P> —

Implies [ — \/M2 + pP?
Relates ®(P)(t) at a common value of 7 = (£ — V'r)? — P*

EM form factor: Gauge invariant

Poincaré invariant (checked in D = 1+1)
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QFT dynamics at O (o)

2

Bound state overlap determined by their wi’s

o1 //
String breaking: Quark pairs created in V(r) : A<
5 \

Hadron loops: Required by unitarity a a

Dihadron component of hadron wt (ctf. form factors)\/

A brave new ag° world given to us by QFT

It should have all required features
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Summary

The QCD scale Aqcp can be introduced only via a boundary condition

In temporal gauge (A% = 0) the constituents instantaneously determine V-E.

Including a homogeneous solution for E;, gives confinement in QCD

Expanding around free quarks and gluons may never give confinement.

A Bound Fock expansion: Formally exact when summed to all orders in oy

O(0sY) “Born term” provides a non-trivial, consistent(?) hadron dynamics

A formulation of bound states at the

same level as the perturbative S-matrix. . i.tails in:

PH 2101.06721
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The perturbative o

o (0) < 1 1f the strong coupling stops running around Q ~ 1 GeV

LTt = 043

Gribov hep-ph/9902279
* —

Sept. 2013

oL ( ) v T decays (N°LO)
S Q Lattice QCD (NNLO)

( a DIS jets (NLO)

03¢ 0 Heavy Quarkonia (NLO)

o e'e jets & shapes (res. NNLO)
® 7 pole fit (N3LO)

v pp —> jets (NLO)

0.2 -

0.1}

= QCD 0,4(M,) = 0.1185 = 0.0006

1 10 Q [GeV] 100 1000
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QED atoms (are not) in QF T textbooks

Bound states are not discussed in today’s textbooks. The last exception:

C. Itzykson and J.-B. Zuber: Quantum Field Theory (1980)

10-3 HYPERFINE SPLITTING IN POSITRONIUM

It should not be concluded that relativistic weak binding corrections cannot be
obtained for two-body systems that agree with experiment. On the contrary, the
positronium states give an example of a successful agreement. This will serve to
illustrate the theory.|To be completely fair, we should admit that accurate pre-
dictions require some artistic gifts from the practitioner.| As yet no systematic
method has been devised to obtain the corrections in a completely satisfactory
way.

I & 7 do not discuss the Schrodinger equation and its relation to the QED action.
The situation has not improved qualitatively.

Paul Hoyer Pavia 2020
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The art of atoms

Review paper: Rev. Mod. Phys. 57 (1985) 723
Recoil effects in the hyperfine structure of QED bound states

G. T. Bodwin

High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439

D. R. Yennie

Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14853

M. A. Gregorio

Instituto de Fisica, Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brazil

“In spite of the statement in the preceding paragraph that bound-
state theory is nonperturbative, it is possible to make use of small
parameters such as o and me/ma (where ma is the mass of the
nucleus) to develop expressions in increasing orders of smallness.
However, the nonperturbative nature of the expansion shows up in
non-analytic dependence on these parameters (such as logarithms).
As indicated in the preceding paragraph, there is an art in developing
a theoretical expression in this manner.”



