

Grant no. 12135007

国家自然科学 基金委员会 National Natural Science Foundation of China

Emergence of Hadron Mass

- > Standard Model of Particle Physics has one obvious mass-generating mechanism
 - = Higgs Boson ... impacts are critical to evolution of Universe as we know it
- \triangleright However, Higgs boson is alone responsible for just $\sim 1\%$ of the visible mass in the Universe
- > Proton mass budget ... only 9 MeV/939 MeV is directly from Higgs
- Evidently, Nature has another very effective mechanism for producing mass:

Emergent Hadron Mass (EHM)

- ✓ Alone, it produces 94% of the proton's mass
- ✓ Remaining 5% is generated by constructive interference between EHM and Higgs-boson

Emergence of Hadron Mass - Basic Questions

- What is the origin of EHM?
- Does it lie within QCD?
- What are the connections with ...
 - Gluon and quark confinement?
 - Dynamical chiral symmetry breaking (DCSB)?
 - Nambu-Goldstone modes = π & K?
- What is the role of Higgs in modulating observable properties of hadrons?
 - Without Higgs mechanism of mass generation, π and K would be indistinguishable
- What is and wherefrom mass?

Proton and ρ -meson mass budgets are practically identical

 $\pi\text{-}$ and K-meson mass budgets are essentially/completely different from those of proton and ρ

GENESIS

Modern Understanding Grew Slowly from Ancient Origins

- More than 40 years ago Dynamical mass generation in continuum quantum chromodynamics, J.M. Cornwall, Phys. Rev. D **26** (1981) 1453 ... ~ 1070 citations
- \triangleright Owing to strong self-interactions, gluon partons \Rightarrow gluon quasiparticles, described by a mass function that is large at infrared momenta

Truly mass from nothing An interacting theory, written in terms of massless gluon fields, produces dressed gluon fields that are characterised by a mass function that is large at infrared momenta

✓ QCD fact

✓ Continuum theory and lattice simulations agree

3-gluon verte

4-gluon vert

✓ Empirical verification?

Modern Understanding

- More than 40 year
 Dynamical mass ger
 J.M. Cornwall, Phys.
- Owing to strong se described by a

gins

mics,

3-gluon vertex

ıasiparticles,

omenta

4-gluon vertex

- ✓ QCD fact
- on ✓ Continuum theory and lattice simulations agree
 - ✓ Empirical verification?

This is where we live

← What's happening out here?!

QCP's Running Coupling

Dyson-Schwinger Equations in Modern Mathematics and Physics (DSEMP2014) Trento, Italy, September 22-26, 2014

Effective charge from lattice QCD, Zhu-Fang Cui, Jin-Li Zhang et al.,

Process independent NJU-INP 014/19, arXiv:1912.08232 [hep-ph], Chin. Phys. C 44 (2020) 083102/1-10 effective charge = running coupling

- Modern theory enables unique QCD analogue of "Gell-Mann – Low" running charge to be rigorously defined and calculated
- Analysis of QCD's gauge sector yields a *parameter-free prediction*
- N.B. Qualitative change in $\hat{\alpha}_{Pl}(k)$ at $k \approx \frac{1}{2} m_p$
- No Landau Pole
 - "Infrared Slavery" picture linear potential is not correct explanation of confinement
- ightharpoonup Below $k \sim \widehat{m}_0$, interactions become scale independent, just as they were in the Lagrangian; so, QCD becomes practically conformal again

JLab EG4 (2022) JLab E97110 (2022) JLab EG1dvcs Hall A/CLAS JLab CLAS (2008) JLab CLAS (2014) **DESY HERMES CERN COMPASS** CERNSMC **CERNOPAL** SLAC E142/E143 SLAC E154/E155 JLab RSS Fermilab q [GeV]

The QCD Running Coupling,

A. Deur, S. J. Brodsky and G. F. de Teramond, Prog. Part. Nucl. Phys. 90 (2016) 1-74

Process independent strong running coupling

Daniele Binosi et al., arXiv:1612.04835 [nucl-th], Phys. Rev. D 96 (2017) 054026/1-7

EHM Basics

- > Absent Higgs boson couplings, the Lagrangian of QCD is scale invariant
- > Yet ...
 - Massless gluons become massive
 - A momentum-dependent charge is produced
 - Massless quarks become massive
- EHM is expressed in EVERY strong interaction observable
- Challenge to Theory =

Elucidate all observable consequences of these phenomena and highlight the paths to measuring them

Test the theory predictions so that the boundaries of the Standard Model can finally be drawn

Opportunities with JLab Energy and Luminosity Upgrade

EHM at High Energy and Luminosity Facilities

Charting EHM

- Proton was discovered 100 years ago
 It is stable; hence, an ideal target in experiments
- But just as studying the hydrogen atom ground state didn't give us QED, focusing on the ground state of only one form of hadron matter will not solve QCD
- New era is dawning
 - High energy + high luminosity
 - ⇒ science can move beyond the monomaniacal focus on the proton
- Precision studies of the structure of
 - Nature's most fundamental Nambu-Goldstone bosons ($\pi \& K$) will become possible
 - Baryon excited states
 - ✓ Baryons are the most fundamental three-body systems in Nature
 - ✓ If we don't understand how QCD, a <u>Poincaré-invariant quantum field theory</u>, builds each of the baryons in the complete spectrum, then we don't understand Nature.

G. Eichmann *et al.*, Phys. Rev. Lett. 104 (2010) 201601

Faddeey Equation for Baryons

Structure of Baryons

- Poincaré covariant Faddeev equation sums all possible exchanges and interactions that can take place between three dressed-quarks
- ➤ Direct solution of Faddeev equation using rainbow-ladder truncation is now possible, but numerical challenges remain

Structure of Baryons

Solution delivers
Poincaré-covariant
proton wave function

- Poincaré covariant Faddeev equation sums all possible exchanges and interactions that can take place between three dressed-quarks
- Direct solution of Faddeev equation using rainbow-ladder truncation is now possible, but numerical challenges remain
- For many/most applications, diquark approximation to quark+quark scattering kernel is used
- > **Prediction**: owing to EHM phenomena, strong diquark correlations exist within baryons
 - proton and neutron ... both scalar and axial-vector diquarks are present

- ✓ CSM prediction = presence of axialvector (AV) diquark correlation in the proton
- ✓ AV Responsible for \approx 40% of proton charge

DIQUARK CORRELATIONS IN HADRON PHYSICS: ORIGIN, IMPACT AND EVIDENCE

Modern experimental facilities, new theoretical techniques for the continuum bound-state problem and progress with lattice-regularized QCD have provided strong indications that soft quarkquark (diquark) correlations play a crucial role in hadron physics.

More info

- Theory predicts experimental observables that would constitute unambiguous measurable signals for the presence of diquark correlations.
- Some connect with spectroscopy of exotics
 - ✓ tetraquarks and pentaquarks
- Numerous observables connected with structure of conventional hadrons, e.g.
 - ✓ existence of zeros in d-quark contribution to proton Dirac and Pauli form factors
 - ✓ Q^2 -dependence of nucleon-to-resonance transition form factors
 - \checkmark x-dependence of proton structure functions
 - ✓ deep inelastic scattering on nuclear targets (nDIS) ... proton production described by direct knockout of diquarks, which subsequently form into new protons

Diquarks - Facts

Progress in Particle and Nuclear Physics

Volume 116, January 2021, 103835

Review

Diquark correlations in hadron physics: Origin, impact and evidence

PHYSICAL REVIEW D 105, 094022 (2022)

Nucleon axial-vector and pseudoscalar form factors and PCAC relations

Chen Chen (陈晨), 1,2,3,4,* Christian S. Fischer, 3,4,† Craig D. Roberts, 5,6,‡ and Jorge Segovia, 1 Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei, Anhui 230026, China

2 Peng Huanwu Center for Fundamental Theory, Hefei, Anhui 230026, China

3 Institut für Theoretische Physik, Justus-Liebig-Universität Gießen, D-35392 Gießen, Germany

4 Helmholtz Forschungsakademie Hessen für FAIR (HFHF), GSI Helmholtzzentrum für Schwerionenforschung, Campus Gießen, D-35392 Gießen, Germany

5 School of Physics, Nanjing University, Nanjing, Jiangsu 210093, China

6 Institute for Nonperturbative Physics, Nanjing University, Nanjing, Jiangsu 210093, China

7 Dpto. Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, E-41013 Sevilla, Spain

Nucleon Electroweak Form Factors and Pion-Nucleon Coupling

- Symmetry preserving current for realistic nucleon = quark + nonpointlike diquark
- Probe strikes
 - ➤ Quark (1)
 - ➤ Diquark elastic (2)
 - ➤ Diquark transition (3)
 - Quark in-flight (4)
 - ➤ Seagull terms (5) & (6)
- Guarantees PCAC and all related identities
- Parameter-free predictions

FIG. 3. Axial or pseudoscalar currents that ensure PCAC for on-shell baryons that are described by the Faddeev amplitudes produced by the equation depicted in Fig. 2. Single line: dressed-quark propagator; undulating line: the axial or pseudoscalar current; Γ : diquark correlation amplitude; double line: diquark propagator; and χ : seagull terms. Diagram 1 is the top-left image, the top-right is Diagram 2, and so on, with Diagram 6 being the bottom-right image.

(33)

Nucleon axial form factor: $G_A(Q^2)$

- ✓ Parameter-free continuum quark+diquark prediction compared with up-to-date lattice result
- ✓ Mean $\chi^2 = 0.27$
- \checkmark Q^2 reach of continuum prediction is unlimited
 - ✓ Now have results to 10 GeV^2
- ✓ "Precision" lattice result is constrained to the small Q^2 -window shown
- ✓ Contribution dissection:

4	$\langle J angle^S_{ m q}$	$\langle J angle_{ m q}^A$	$\langle J angle_{ m qq}^{AA}$	$\langle J angle_{ m qq}^{\mathit{SA}+\mathit{AS}}$	$\langle J angle_{ m ex}$	$\langle J angle_{ m sg}$
$G_A(0)$	$0.71_{4_{\pm}}$	0.064 ₂₊	0.025 ₅₊	$0.13_{0_{\pm}}$	$0.072_{32_{+}}$	0
$G_P(0)$	$0.74_{4_{\pm}}$	$0.070_{5_{+}}$	$0.025_{5_{+}}$	$0.13_{0_{\pm}}$	$0.22_{4_{+}}$	$-0.19_{1_{\pm}}$
			$0.025_{5_{\pm}}$		$0.22_{4_{\pm}}^{-}$	$-0.19_{1_{\mp}}$

Preprint nos. NJU-INP 062/22, USTC-ICTS/PCFT-22-19

Nucleon axial form factor at large momentum transfers

Chen Chen^{1,2} ID and Craig D. Roberts^{3,4} ID

Email: chenchen1031@ustc.edu.cn (C. Chen); cdroberts@nju.edu.cn (C. D. Roberts).

¹Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei, Anhui 230026, China

²Peng Huanwu Center for Fundamental Theory, Hefei, Anhui 230026, China

³School of Physics, Nanjing University, Nanjing, Jiangsu 210093, China

⁴Institute for Nonperturbative Physics, Nanjing University, Nanjing, Jiangsu 210093, China

Large Q² Nucleon Axial Form Factor

- \triangleright Parameter-free CSM predictions to $Q^2 = 10 \ m_p^2$
- One other calculation, viz. LCSRs using different models for $\mathfrak{S}^{0.8}$ proton DA ... Only available on $\mathfrak{S}^{0.8}$
- \triangleright CSM prediction agrees with available data: small & large Q^2
- \triangleright Large Q^2 data from CLAS [K. Park et al., Phys. Rev. C 85] (2012) 035208], threshold pion electroproduction, extends $Q^2 \approx 5 m_p^2$
 - \checkmark This technique could be used to reach higher Q^2
- ✓ Regarding oft-used dipole Ansatz,
 - ✓ Fair representation of $G_A(x)$ on $x \in [0, 3]$ = fitting domain
 - ✓ But outside fitted domain, quality of approximation deteriorates quickly
 - ✓ dipole overestimates true result by 56% at x = 10

Craia Roberts: cdroberts@nju.edu.cn 417 "Charting EHM using High-Energy and Luminosity"

 $x = Q^2 / m_N^2$

Large Q² Nucleon Axial Form Factor

- Light-front transverse density profiles
- Omitting axialvector diquarks
 - ✓ magnitude of the d quark contribution to
 GA is just 10% of that from the u quark
 - ✓ d quark is also much more localized $r_{A_d}^{\perp} \approx 0.5 \ r_{A_u}^{\perp}$
- Working with realistic axialvector diquark fraction
 - ✓ d and u quark transverse profiles are quite similar

$$r_{A_d}^{\perp} \approx 0.9 r_{A_u}^{\perp}$$

Proton Spin Structure

- Flavour separation of proton axial charge
- d-quark receives large contribution from probe+quark in presence of axialvector diquark

$$0 \frac{g_A^d}{g_A^u} = 0^{+8.1^+} -0.32(2)$$

$$\circ \frac{g_A^d}{g_A^u} = ^{0^+ \text{ only }} -0.054(13)$$

Table 1 Diagram and flavour separation of the proton axial charge: $g_A^u = G_A^u(0), \ g_A^d = G_A^d(0); \ g_A^u - g_A^d = 1.25(3).$ The listed uncertainties in the tabulated results reflect the impact of $\pm 5\%$ variations in the diquark masses in Eq. (3), $e.g. \ 0.88_{6_{\mp}} \Rightarrow 0.88 \mp 0.06.$

$ \langle J \rangle_{ m q}^S$	$\langle J \rangle_{ m q}^A$	$\langle J \rangle_{ m qq}^{AA} \langle J \rangle_{ m qq}^{\{q\}}$	$\frac{SA}{A} \langle J \rangle_{\rm ex}^{SS}$	$S \langle J angle_{ m ex}^{\{SJ\}}$	$A \setminus \langle J \rangle_{\text{ex}}^{AA}$
$g_A^u 0.88_{6_{\pm}}$	-0.08_{0+}	$0.03_{0+}0.08_{0}$	0_{\pm} 0	≈ 0	$0.03_{\pm 1}$
$\begin{array}{c c}g_A^u&0.88_{6_\mp}\\-g_A^d&0\end{array}$	$0.16_{0_{\pm}}$	0.080	0.05_{1}	$_{\pm} \approx 0$	$0.01_{\pm 0}$

- Experiment: $\frac{g_A^d}{g_A^u} = 0^{+8.1^+} 0.27(4) \Leftarrow$ strong pointer to importance of AV correlation
- ightharpoonup Hadron scale: $g_A^u + g_A^d \, (+g_A^s = 0) = 0.52(1) \Rightarrow$ quarks carry 52% of the proton spin
- ➤ Poincaré-covariant proton wave function: remaining 48% lodged with quark+diquark orbital angjular momentum
- Extended to entire octet of ground-state baryons: dressed-quarks carry 50(7)% of proton spin at hadron scale

 **Contact Interaction analysis of octet baryon axialvector and pseudoscalar form factors,

Peng Cheng (程鹏), Fernando E. Serna, Zhao-Qian Yao (姚照千) et al., NJU-INP 063/22, e-Print: 2207.13811 [hep-ph], Phys. Rev. D (2022) in press

Preprint nos. NJU-INP 057/22, USTC-ICTS/PCFT-22-11

Composition of low-lying $J = \frac{3}{2}^{\pm} \Delta$ -baryons

Langtian Liu,^{1,2} Chen Chen,^{3,4,*} Ya Lu,^{1,2,5} Craig D. Roberts,^{1,2,†} and Jorge Segovia^{6,2}

¹School of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
²Institute for Nonperturbative Physics, Nanjing University, Nanjing, Jiangsu 210093, China
³Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei, Anhui 230026, China
⁴Peng Huanwu Center for Fundamental Theory, Hefei, Anhui 230026, China
⁵Department of Physics, Nanjing Tech University, Nanjing 211816, China
⁶Dpto. Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide, E-41013 Sevilla, Spain
(Dated: 2022 March 22)

Baryon Structure

- Poincaré covariance \Rightarrow irrespective of quark model assignments $n^{2s+1}\ell_J$, every hadron contains orbital angular momentum, e.g.,
 - $-\pi$ contains two S-wave components and two P-wave components
 - Few systems are simply radial excitations of another
- \triangleright No separation of J into L+S is Poincaré invariant
 - Consequently, e.g., negative parity states are <u>not</u> simply orbital angular momentum excitations of positive parity ground states
- In quantum field theory, there is no direct connection between parity and orbital angular momentum
 - Parity is a Poincaré invariant quantum number
 - -L is not Poincaré invariant = value depends on the observer's frame of reference
- ➤ QCD structure of hadrons mesons and baryons is far richer than can be produced by quark models, relativized or not
 - ✓ Baryons are the most fundamental three-body systems in Nature
 - ✓ If we don't understand how QCD, a <u>Poincaré-invariant quantum field theory</u>, builds each of the baryons in the complete spectrum, then we don't understand Nature.

Composition of low-lying $J=\frac{3}{2}^{\pm} \Delta$ -baryons

- Poincaré-covariant quark+diquark Faddeev equation
 - \Rightarrow insights into the structure of four lightest $(I, J^P) = (\frac{3}{2}, \frac{3^{\pm}}{2})$ baryon multiplets.
- \triangleright Prediction: Whilst these systems can contain isovector-axialvector $(1,1^+)$ and isovector-vector $(1,1^-)$ diquarks, one may neglect the latter and still arrive at a reliable description.
- $(\frac{3}{2}, \frac{3}{2}^+)$ are the simpler systems & features bear some resemblance to quark model pictures
 - Most prominent rest-frame orbital angular momentum component is S-wave
 - $\Delta(1600)\frac{3}{2}^+$ may fairly be viewed $^{1.0}_{0.5}_{0.0}$ as radial excitation of $\Delta(1232)\frac{3}{2}^+$

Craig Roberts: cdroberts@nju.edu.cn 417 "Charting EHM using High-Energy and Luminosity"

Rest-frame angular momentum decompositions

Composition of low-lying $J=\frac{3}{2}^{\pm} \Delta$ -baryons

- Poincaré-covariant quark+diquark Faddeev equation
 - \Rightarrow insights into the structure of four lightest $(I, J^P) = (\frac{3}{2}, \frac{3^{\pm}}{2})$ baryon multiplets.
- \triangleright Prediction: Whilst these systems can contain isovector-axialvector $(1,1^+)$ and isovectorvector $(1,1^-)$ diquarks, one may neglect the latter and still arrive at a reliable description.
- $\rightarrow (\frac{3}{2}, \frac{3}{2})$ states are more complex
 - $\Delta(1940)\frac{3}{2}^-$ doesn't look much $\Delta(1700)\frac{3}{2}^-$ mainly P-wave. like $\Delta(1700)\frac{3}{2}$ radial excitation
 - Rest-frame wave function of $\Delta(1700)\frac{3}{2}$ is predominantly ^{1.0} P-wave

 $\Delta(1940)\frac{3}{2}$ mainly S-wave! Unlike quark model

Rest-frame angular momentum decompositions

Composition of low-lying $J=\frac{3}{2}^{\pm} \Delta$ -baryons

Poincaré-covariant quark+diquark Faddeev equation

⇒ insig

Predictivector

Predictivector

Large momentum transfer resonance electroexcitation experiments can test these predictions; so, will shed light on the nature of emergent hadron mass.

ectorription.

- $\rightarrow (\frac{3}{2}, \frac{3}{2})$ states are more complex
 - $\Delta(1940)\frac{3}{2}^-$ doesn't look much $\Delta(1700)\frac{3}{2}^-$ mainly P-wave. like $\Delta(1700)\frac{3}{2}$ radial excitation
 - Rest-frame wave function of $\Delta(1700)\frac{3}{2}$ is predominantly ^{1.0} P-wave

 \mathcal{V}_1 \mathcal{V}_2 \mathcal{V}_3 \mathcal{V}_4 \mathcal{V}_5 \mathcal{V}_6 \mathcal{V}_7 \mathcal{V}_8 - but $\Delta(1940)^{\frac{3}{2}}$ is largely S-wave

 $\Delta(1940)\frac{3}{2}$ mainly S-wave! Unlike quark model

Rest-frame angular momentum decompositions

Parton Distribution Functions

Diquarks & Deep Inelastic Scattering

- > The ratio of neutron and proton structure functions at large x is keen discriminator between competing pictures of proton structure
- **Example:**
 - Only scalar diquark in the proton (no axial-vector):

$$\lim_{x \to 1} \frac{F_2^n(x)}{F_2^p(x)} = \frac{1}{4}$$

No correlations in the proton wave function (SU(4))

spin-flavour)
$$\lim_{x \to 1} \frac{F_2^n(x)}{F_2^p(x)} = \frac{2}{3}$$

- Experiments have been trying to deliver reliable data on this ratio for fifty years!
- MARATHON a more-than ten-year effort, using a tritium target at JLab, has delivered precise results

D. Abrams, et al., Measurement of the Nucleon Fn2/Fp2 Structure Function Ratio by the Jefferson Lab MARATHON Tritium/Helium-3 Deep Inelastic Scattering Experiment – arXiv:2104.05850 [hep-ex], Phys. Rev. Lett. (2022) in press.

 F_2^n/F_2^p Solid blue circles الظb MARATHON Open red squares: JLab BoNuS Vertically-lined-hatched green band: SLAC 0.7 0.3 0⁺ only Bjorken x

FIG. 2: The F_2^n/F_2^p ratio plotted versus the Bjorken x from the JLab MARATHON experiment. Also shown are JLab Hall B BoNuS data [56], and a band based on the fit of the SLAC data as provided in Ref. [46], for the MARATHON kinematics $[Q^2 = 14 \cdot x (\text{GeV}/c)^2]$ (see text). All three experimental data sets include statistical, point to point systematic, and normalization uncertainties.

Neutron/Proton structure function ratio

- ightharpoonup Ratio $1^+/0^+$ diquarks in proton wave function is measure of EHM
- Structure function ratio is clear window onto $d_V(x)/u_V(x)$

$$\frac{F_2^n(x;\zeta)}{F_2^p(x;\zeta)} = \frac{\mathcal{U}(x;\zeta) + 4\mathcal{D}(x;\zeta) + \Sigma(x;\zeta)}{4\mathcal{U}(x;\zeta) + \mathcal{D}(x;\zeta) + \Sigma(x;\zeta)}$$

$$U(x;\zeta) = u(x;\zeta) + \bar{u}(x;\zeta), \ D(x;\zeta) = d(x;\zeta) + \bar{d}(x;\zeta)$$

$$\Sigma(x;\zeta) = s(x;\zeta) + \bar{s}(x;\zeta) + c(x;\zeta) + \bar{c}(x;\zeta)$$

Comparison with MARATHON data

[D. Abrams, et al., Measurement of Nucleon F_2^n/F_2^p Structure Function Ratio by the Jefferson Lab MARATHON Tritium/Helium-3 Deep Inelastic Scattering Experiment – arXiv:2104.05850 [hep-ex], Phys. Rev. Lett. (2022) in press]

Agreement with modern data on entire x-domain – parameter-free prediction

W Valence quark ratio in the proton, Zhu-Fang Cui, (崔著钫), Fei Gao (高飞), Daniele Binosi, Lei Chang (常雷), Craig D. Roberts and Sebastian M. Schmidt, NJU-INP 049/21, e-print: 2108.11493 [hep-ph], Chin. Phys. Lett. Express 39 (04) (2022) 041401/1-5: Express Letter

Craig Roberts: cdroberts@nju.edu.cn 417 "Charting EHM using High-Energy and Luminosity"

- ✓ CSM prediction = presence of axial-vector diquark correlation in the proton
- ✓ Responsible for \approx 040% of proton charge

Probability that scalar diquark only models of nucleon might be consistent with available data is 1/7,000,000

Expanding array of parameter-free predictions, including

- Fransition form factors: $γ*+p \rightarrow Δ(1232)$, Δ(1600), Ya Lu, Chen Chen, Zhu-Fang Cui, Craig D Roberts, Sebastian M Schmidt, Jorge Segovia and Hong Shi Zong, arXiv:1904.03205 [nucl-th], Phys. Rev. D **100** (2019) 034001/1-13
 - Predictions confirmed in recent months following analysis of large-Q² CLAS data
- Nucleon-to-Roper electromagnetic transition form factors at large-Q², Chen Chen et al., arXiv:1811.08440 [nucl-th], Phys. Rev. D 99 (2019) 034013/1-13
- Nucleon elastic form factors at accessible large spacelike momenta, Zhu-Fang Cui et al., NJU-INP 017/20, arXiv:2003.11655 [hep-ph], Phys. Rev. D 102 (2020) 014043/1-14
- Arr Dynamical diquarks in the γ*p Arr N(1535)1/2- transition, Khépani Raya et al., NJU-INP 046/21, arXiv:2108.02306 [hep-ph], Eur. Phys. J. A 57 (2021) 266/1-16
- Revealing pion and kaon structure via generalised parton distributions, Khépani Raya et al., NJU-INP 051/21, e-Print: 2109.11686 [hep-ph], Chin. Phys. C 46 (01) (2022) 013107/1-22
- Proton and pion distribution functions in counterpoint, Ya Lu (陆亚) et al., NJU-INP 056/22, e-Print: 2203.00753 [hep-ph], Phys. Lett. B 830 (2022) 137130/1-7

Emergent Hadron Mass

- QCD is unique amongst known fundamental theories of natural phenomena
 - Degrees-of-freedom used to express the scale-free Lagrangian are not directly observable
 - Massless gauge bosons become massive, with no "human" interference
 - Gluon mass ensures a stable, infrared completion of the theory through appearance of a running coupling that saturates at infrared momenta, being everywhere finite
 - Massless fermions become massive, producing
 - Massive baryons and simultaneously Massless mesons
- > Emergent features of QCD are expressed in every strong interaction observable
- They can also be revealed via
 - EHM interference with Nature's other known source of mass = Higgs
- ➤ High energy and high luminosity facilities are the key to validating these concepts proving QCD to be 1st well-defined four-dimensional quantum field theory ever contemplated
- > This may open doors that lead far beyond the Standard Model

Emergent Hadron Mass

- > QCD is uniq There are theories of many things,
 - Degrees
 Massles
 But is there a theory of everything?
 - Gluon mass ensures a st a running coupling that

theory through the appearance of being everywhere finite

- Massless fermions become massive, producing
 - Massive baryons and simultaneously Massless mesons
- > Emergent features of QCD are expressed in every strong interaction observable
- > They can also be revealed via

EHM interference with Nature's other known source of mass = Higgs

- > High energy and high luminosity facilities are the key to validating these concepts proving QCD to be 1st well-defined four-dimensional quantum field theory ever contemplated
- This may open doors that lead far beyond the Standard Model

Valence Quark Ratio in the Proton ∂ Zhu-Fang Cui, Fei Gao, Daniele Binosi, Lei Chang, Craig D. Roberts, and Sebastian M. Schmidt Chin. Phys. Lett. 2022, 39 (4): 041401 . DOI: 10.1088/0256-307X/39/4/041401 Abstract HTML PDF (571KB)

MARATHON EXPERIMENT Schlessinger point method

- New mathematical method for interpolation and extrapolation of data
 - based on continued-fraction representation of functions, augmented by statistical sampling
- Delivers model-independent prediction for all ratios
 - No reference to models or physics theories
- Provides benchmark against which all pictures of nucleon structure can be measured
- Probability that scalar diquark only models of nucleon might be consistent with available data is 1/7,000,000

Proton and pion distribution functions in counterpoint

Proton and pion distribution functions in counterpoint, Ya Lu (陆亚) et al., NJU-INP 056/22, e-Print: 2203.00753 [hep-ph], Phys. Lett. B 830 (2022) 137130

- Symmetry-preserving analyses using continuum Schwinger function methods (CSMs) deliver hadron scale DFs that agree with QCD constraints
- Valence-quark degrees-of-freedom carry all hadron's momentum at ζ_H : $\langle x \rangle_{u_p}^{\zeta_H} = 0.687$, $\langle x \rangle_{d_p}^{\zeta_H} = 0.313$, $\langle x \rangle_{u_\pi}^{\zeta_H} = 0.5$
- Diquark correlations in proton, induced by EHM

$$\Rightarrow u_V(x) \neq 2d_V(x)$$

- Proton and pion valence-quark DFs have markedly different behaviour
 - $u^{\pi}(x; \zeta_H)$ is Nature's most dilated DF
 - i. "Obvious" because $(1-x)^2$ vs. $(1-x)^3$ behaviour & preservation of this unit difference under evolution
 - ii. Also "hidden" = strong EHM-induced broadening

Proton valence-quark DFs: Continuum cf. Lattice

- Owing to difficulties in handling so-called disconnected contributions, the calculation of individual proton valence DFs using lattice-regularised QCD (IQCD) is problematic
- ➤ IQCD results are typically only available for isovector distributions, from which disconnected contributions vanish in the continuum limit.
- Comparison of isovector distributions $u^p(x; \zeta_3) d^p(x; \zeta_3)$
- Completely different approaches; yet good agreement, especially since refinements of both calculations may be anticipated.

- ✓ <u>Continuum</u>: *Proton and pion distribution functions in counterpoint*, Ya Lu (陆亚) *et al.*, NJU-INP 056/22, e-Print: 2203.00753 [hep-ph]
- ✓ <u>Lattice</u>: Nucleon Isovector Unpolarized Parton

 Distribution in the Physical-Continuum Limit, H.-W. Lin et al., arXiv:2011.14971 [hep-lat]

Asymmetry of antimatter in the proton

- Pauli blocking: gluon splitting produces $d+\bar{d}$ in preference to $u+\bar{u}$
- Comparison with SeaQuest data

 [J. Dove, et al., The asymmetry of antimatter in the proton, Nature 590 (7847) (2021) 561–565.]
- Gottfried sum rule

$$\int_{0.004}^{0.8} dx \left[\bar{d}(x; \zeta_3) - \bar{u}(x; \zeta_3) \right] = 0.116(12)$$

✓ Most recent result from global fits [CT18]: 0.110(80)

- ✓ Proton and pion distribution functions in counterpoint, Ya Lu (陆亚), Lei Chang (常雷), Khépani Raya, Craig D. Roberts and José Rodríguez-Quintero, NJU-INP 056/22, e-Print: 2203.00753 [hep-ph], Phys. Lett. B 830 (2022) 137130/1-7
- ✓ Parton distributions of light quarks and antiquarks in the proton, Lei Chang (常雷), Fei Gao (高飞) and Craig D. Roberts, NJU-INP 055/22, e-Print: 2201.07870 [hep-ph], Phys. Lett. B 829 (2022) 137078/1-7

