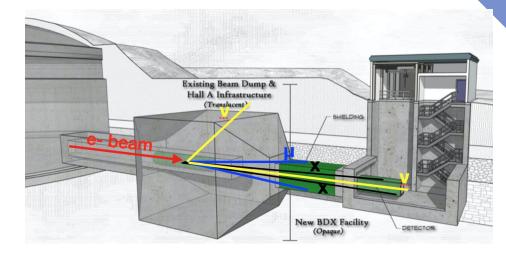
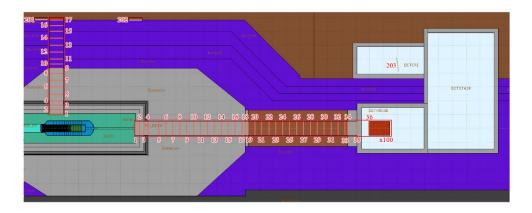
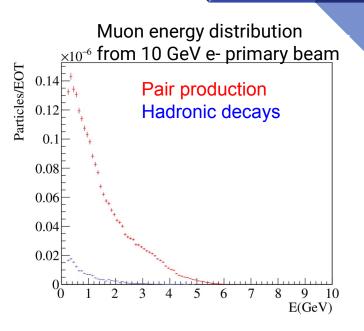
Opportunities with JLAB Energy and Luminosity Upgrade 27 September 2022

New physics perspectives @ JLAB with secondary beams

Mariangela Bondì

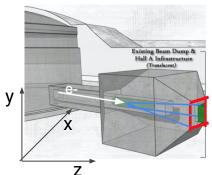

INFN - Sezione di Catania

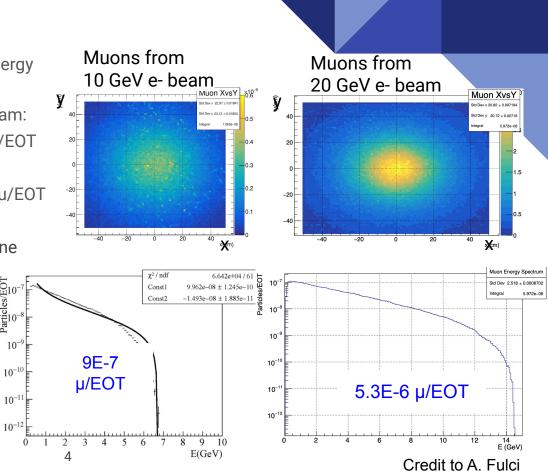

Producing secondary beam @ JLAB


- JLAB-CEBAF offers the highest intense O(GeV) ebeam in the world
- Use the primary e- beam to produce high intensity secondary beams
 - Interaction of high-current (O(100µA)), medium-energy (O(10GeV)) electron beam with a thick target (dump).
 - Muons
 - Neutrinos
 - Light Dark matter (if exists)
 - ·····
 - ·····
 -
- Estimation of secondary beam produced by the interaction of e- beam with HALL-A beam dump

Muon beam @ JLAB

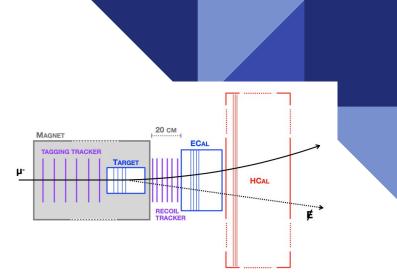
- Muon flux estimation through MC simulation based on FLUKA both for 10 GeV and 20 GeV e- beam
 - Used Hall-A beam dump description implemented in FLUKA by the JLAB RadCon
- High energy muons are produced in the dump via 2 processes:
 - $\circ \quad \ \ \text{Photo-production of } \pi \text{ and } k$
 - \circ Pair-production: $\gamma N \rightarrow \mu \mu N$

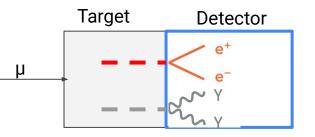




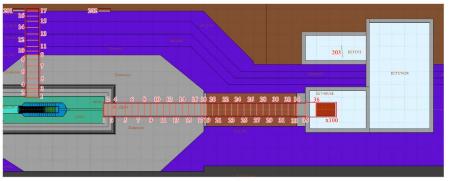
Credit to A. Fulci

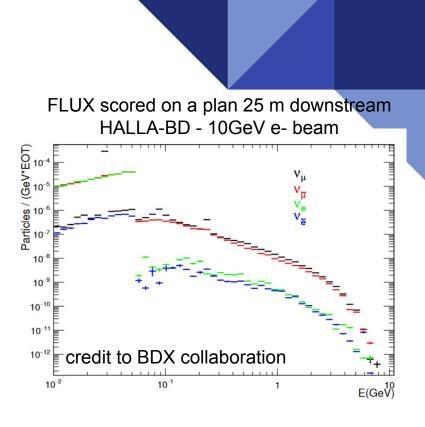
Muon beam @ JLAB


- Muon beam shows a Bremsstrahlung-like energy spectrum
- Flux increases with the energy of primary beam:
 - Muon flux from 10 GeV e- beam: 9E-7 µ/EOT 0
 - Rate ~ $3E8 \mu/s$
 - Muon flux from 10 GeV e- beam: 5.3E6 µ/EOT Ο
 - Rate ~2E9 µ/s
 - Flux larger than CERN's M2 beam line one 0 (Eµ>100GeV - Rate ~2E7) Particles/EOT
- Muon flux profile: σx and $\sigma y \sim 20$ cm



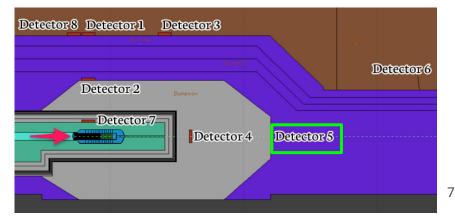
Muon beam @ JLAB

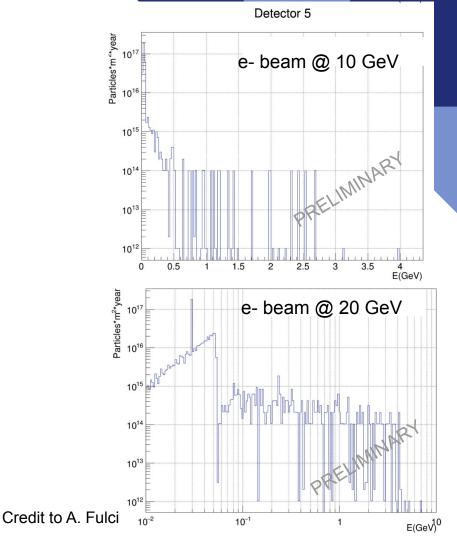

- Exploiting muon beams would enable the search for a possible light gauge boson, which would couple predominantly to muons and/or taus
 - Such a light boson could be either a scalar or a vector mediator
 - Its existence would be a viable explanation of g-2 anomaly
- Fixed-target, missing-momentum search strategy to probe invisibly decaying particles (similar to proposed M3 experiment @ Fermilab)
- Muon beam dump experiment to probe the visible decay into e+e-(γγ).



Neutrino beam @ JLAB

- Neutrinos flux estimated through MC simulations based on FLUKA
- Neutrino flux evaluated both for 10Gev e- beam and 20GeV e- beam
- Production mechanisms:
 - Low energy vs are due pion and muon decay at rest
 - π decay produces a prompt 28.5 MeV v along with a μ which subsequently decay producing v_e e v_m
 - Weak angular dependence
 - High-energy v from in-flight pion and muon decay

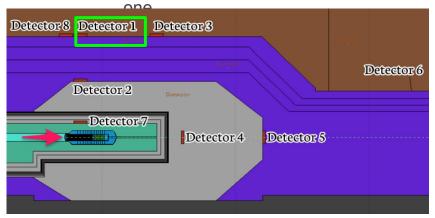


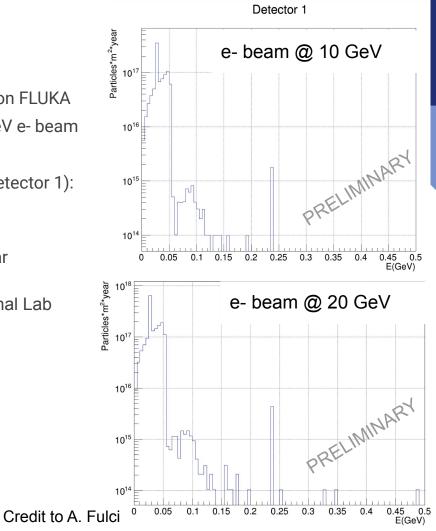

Credit to A. Fulci

6

Neutrino flux on-axis

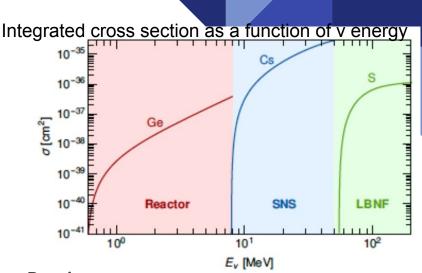
- Neutrinos flux estimated through MC simulations based on FLUKA
- Neutrino flux evaluated both for 10Gev e- beam and 20GeV e- beam
- Flux scored on a plane downstream Hall-A beam dump (detector 5):
 - Flux from 10 GeV e- beam: 3E17 v/m2/year (1year corresponding to 1E22 EOT)
 - Flux from 20 GeV e- beam: 9E17 v/m2/year (1year corresponding to 1E22 EOT)





Neutrino flux off-axis

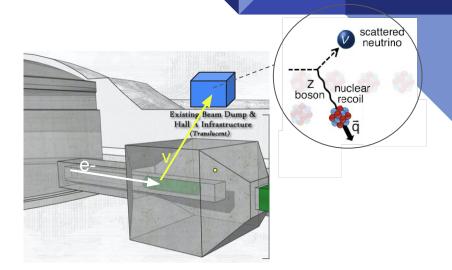
- Neutrinos flux estimated through MC simulations based on FLUKA
- Neutrino flux evaluated both for 10Gev e- beam and 20GeV e- beam
- Neutrino flux with a DAR spectrum
- Flux scored on a plane 10 m above Hall-A beam dump (detector 1):
 - Flux from 10 GeV e- beam: 9E17 v/m2/year (1year corresponding to 1E22 EOT)
 - Flux from 20 GeV e- beam: 1.8E18 v/m2/year (1year corresponding to 1E22 EOT)
 - Flux comparable to SNS@ Oak Ridge National Lab


8

CEvNS measurement

- Low energy neutrinos (< 100 MeV) coherently scatter on entire target nucleus $q < (1/R_N)$
- Cross section scaling with N²
- The largest cross section among neutrino scattering channels for Ev < 100 MeV
- Low recoil energy due to kinematics O(10 keV)
- First measurement in 2017 on CsI by COHERENT collaboration (~134 events)
- why interesting?:
 - weak parameters -> mixing angle
 - nuclear properties -> neutrons distribution radius
 - sterile neutrino
 - neutrino magnetic moment
 - non standard interaction mediated by exotic particles

- Requirements:
 - High-intense v-flux
 - v-flux energy range: few MeV few 100 MeV
 - detector has be sensitive to small energy depositions
 - backgrounds need to be sufficiently small to observe the signal.

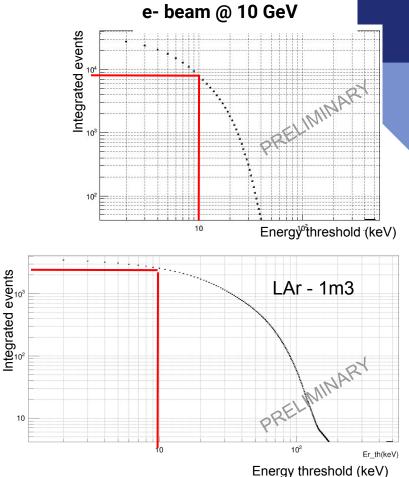

CEvNS measurement @ JLAB

• Beam

- Produced by the interaction between e- beam and Hall A dump in a energy range: 10MeV - 300 MeV
- \circ Neutrino flux @ 10 GeV : ~10^{18} v/m^2 at ~10 m above the dump for 10^{22}EOT
- Neutrino flux @ 20 GeV : ~2x10¹⁸ v/m² at ~10 m above the dump for 10^{22} EOT

• Detector:

- Detector located 10m on top of the dump
- Two detection technology are under study:
 - Csl
 - LAr-TPC
- Veto system: active (plastic ...) and passive (lead, water, borate silicone and/or cadmium sheet layers...)



- Backgrounds:
 - beam-related background: neutron
 - beam-unrelated background: cosmic, radioactive detector contamination, environmental radioactivity
 - Backgrounds studies on-going using MC simulation
 - Measurements in situ to validate MC framework are necessary

10

Detector	e- @ 10 GeV v flux: 1E8 v/m²/year	e- @ 20 GeV v flux: 2E8 v/m²/year
Csl (1m ³) [thr : 10 keV]	8000	
LAr (1m ³) [thr: 10 keV]	2500	

CEvNS @JLAB: expected yield

Credit to A. Fulci, S. Grazzi, A. Pilloni

104	Csl dete	ctor - 1m3
10 ⁴	PREL	MINARY
		0 ² Er_tł
3	L	Ar - 1m3
3	EL	MINARY
		rgy threshold

e- beam @ 20 GeV

CEvNS @JLAB: expected yield

e- @ 20 GeV v flux: 2E8

v/m²/year

~15000

~4500

e- @ 10 GeV

v flux: 1E8 v/m²/year

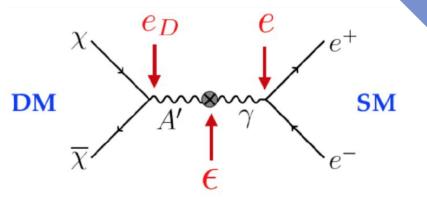
8000

2500

Credit to A. Fulci, S. Grazzi, A. Pilloni

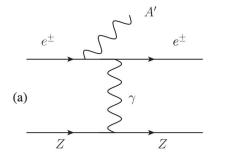
Detector

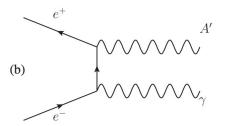
Csl $(1m^3)$

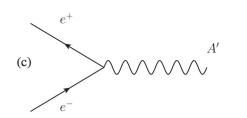

LAr $(1m^3)$

[thr: 10 keV]

[thr : 10 keV]


Light Dark Matter @ JLAB


- Dark Matter is there but we know nothing about the particle content of DM
- New promising hypothesis: Light Dark Matter in the mass range 1MeV 1GeV
- Simplest possibility: **vector-portal:** DM-SM interaction through a new U(1) gauge-boson ("dark photon") coupling to electric charge
- Model parameters:
 - \circ $\,$ Dark-photon mass, $M_{A'}$ and coupling to electric charge ϵ
 - \circ Dark matter mass, $M_{_{X}}$ and coupling to dark photon $g_{_{D}}$



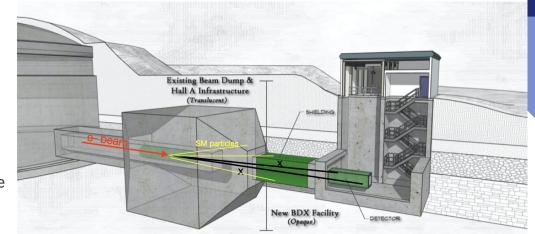
Light Dark Matter: production

Three main production mechanisms in fixed targets, lepton beam experiments:

• A) A'-strahlung:

- Radiative A' emission in nucleus EM field followed by A'->XX
- $\circ \qquad \text{Scales as } Z^2 \alpha^3$
- Forward-boosted, high-energy A' emission

• B) Non-resonant e+e- annhilation:


- \circ e+e- -> A' γ followed by A'->XX
- $\circ \quad \ \ Scales \ \ as \ \ Z\alpha^2$
- Forward-backward A' emission in the CM

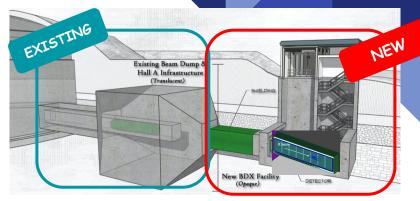
• C) Resonant e+e- annhilation:

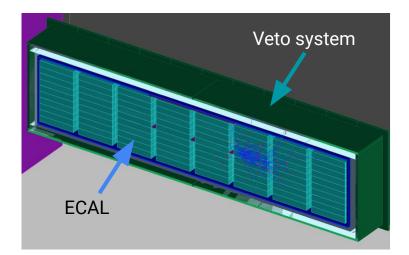
- e+e- -> A'->XX
- Scales as Zα
- \circ Breit-Wigner like cross section with $M_{A'}=\sqrt{2m_eE}$

Beam Dump eXperiment @ JLAB

- BDX is a **JLAB experiment** approved by PAC46
- Unique experiment able to **PRODUCE** and **DETECT** light dark matter
- Two step experiment:
 - production of LDM beam
 - $\circ \quad \mbox{detection of LDM particle: } \chi \mbox{ scatters on e- in the} \\ detector \ realising \ visible \ signal$

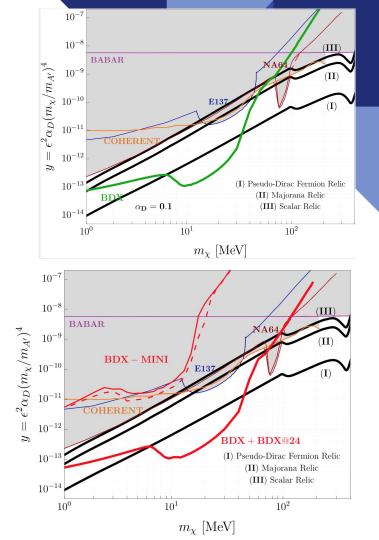
The experiment is designed with two goals


- Maximize production and detection of LDM
 - Number of expected events scales as ϵ^4
 - high intensity beam
 - ~1m3 detector medium/high density material


- Reduce backgrounds
 - cosmic backgrounds
 - beam-related backgrounds
 - passive shielding material and active veto system

Beam Dump eXperiment @ JLAB

• JLAB offers the best condition for BDX


- A high energy beam: 11 GeV
- The highest available electron beam current: ~65uA (currently)
- Charge : 10^22 EOT
- Fully parasitic wrt Hall-A physics program
- New facility to be built in front of Hall-A beam dump
 - Passive shielding layer between beam dump and detector to reduce SM beam-related background
 - Sizeable overburden (~10 m water-equivalent) to reduce cosmogenic background
 - New underground hall (~8m) at 25 m downstream hall-A beam dump that will host the detector
- Detector with 2 components: Ecal + Veto system
 - ECAL: 800 CsI(TI) crystals
 - Veto system:
 - two layers of plastic scintillator counters, 16
 - lead passive layer

Beam Dump eXperiment @ JLAB

- The BDX experiment is meat to run with 12 GeV e- beam
- BDX can benefit of 24 GeV e- beam extending the reach
 - Pro:
 - Increase number of secondary particles in the dump -> enhanced DM production
 - Some DM production mechanisms (resonant annihilation) are strongly dependent on the beam energy
 - Drawbacks:
 - Increased beam-related background
 - µ shielding may not be sufficient -> rethink experimental setup
 - v background increased -> need to study

- High intensity extracted electron beams are a precious source of secondary beams:
 - Light Dark Matter (if exists)
 - \circ Neutrinos
 - \circ Muons
 - 0
- A 24 GeV primary electron beam impinged on Hall-A dump can produce higher intensity secondary beams then the 12 GeV one
 - Neutrino beam with a DAR spectrum : flux of 2E8 v/m² for 10²² EOT e-@ 20 GeV
 - $\circ~$ Muon beam with a Bremsstrahlung-like spectrum. Energy range : O(10 MeV) O(10 GeV). Flux @ 20 GeV : 5E-6 μ/EOT .
- Secondary beams can be exploited to explore "hot" physic cases