# $J/\psi$ SDMEs with GlueX at 17 GeV

Keigo Mizutani Opportunities with JLab Energy and Luminosity Upgrade 27 September 2022

## Why measure $J/\psi$ SDMEs?

- Threshold J/ $\psi$  photoproduction  $\rightarrow$  properties of proton mass?
- High  $E_{\gamma}$  region is well explained by Pomeron model.
- Understanding of production mechanism near threshold is desired.



In addition to  $\sigma_{total}$  and d $\sigma/dt$  measurements, Spin observables (SDME) place stringent constraints on models!

## **Polarization measurements: Naturality**

Decay angle wrt polarization plane is sensitive to naturality  $P(-1)^J$  of the t-channel exchanged particle.



Naturality  $\frac{\rho_{1-1}^1 - \text{Im}\rho_{1-1}^2}{2}$  is +0.5 when Pomeron exchange is dominant. Deviation from +0.5 implies unnatural parity exchanges.

# Angular distributions of $J/\psi \rightarrow e^+e^-$



Decay angles  $(\theta, \phi)$  in helicity frame is sensitive to helicity conservation.

When helicity of the photon is fully transferred to J/ $\psi$ ,  $W(\cos \theta) \sim 1 + \cos^2 \theta \quad (\rho_{00}^0 = 0)$  $W(\phi) = \text{flat} \quad (\text{Re}\rho_{1-1}^0 = 0)$ 

 $\Phi$  . angle btw polarization & production plane

$$\begin{array}{l} \mbox{Helicity} \\ \mbox{conservation} \end{array} \begin{cases} W(\cos\theta) = \frac{3}{8} \left( 1 + \rho_{00}^0 + (1 - 3\rho_{00}^0)\cos^2\theta \right), \\ W(\phi) = \frac{1}{2\pi} \left( 1 + \operatorname{Re}\rho_{1-1}^0\cos 2\phi \right), \\ W(\phi - \Phi) = \frac{1}{2\pi} \left( 1 - P_\gamma \frac{\rho_{1-1}^1 - \operatorname{Im}\rho_{1-1}^2}{2}\cos\left[2\left(\phi - \Phi\right)\right]\right), \\ \mbox{Helicity} \\ \mbox{conservation} \end{cases} \\ W(\phi + \Phi) = \frac{1}{2\pi} \left( 1 - P_\gamma \frac{\rho_{1-1}^1 + \operatorname{Im}\rho_{1-1}^2}{2}\cos\left[2\left(\phi + \Phi\right)\right]\right), \\ \mbox{Beam Asym.} (\Sigma) \qquad W(\Phi) = 1 - P_\gamma \left(2\rho_{11}^1 + \rho_{00}^1\right)\cos 2\Phi. \end{cases}$$

### What we expect about $J/\psi$ SDMEs?

- 5
- No SDME measurements for threshold J/ $\psi$  photoproduction so far.
- Helicity conservation is known to be broken for light vector mesons. The same for  $J/\psi$  or not?
- In high  $E_{\gamma}$  region, naturality close to +0.5 is observed for light vector mesons, corresponding to t-channel Pomeron exchange.
  - How about threshold  $J/\psi$  production?
  - Close to +0.5 because of 2 gluon exchange?
  - Or close to -0.5 because of 3 gluon exchange?
- Beam asymmetry  $\sum \sim 0$  is observed for light vector mesons.  $\sum \sim 0$  for J/ $\psi$  as well?

Basically, we have no knowledge about  $J/\psi$  SDMEs near thr. That's why we measure them.

GlueX can do unique measurements of naturality.

# $\gamma p \to J/\psi (\to e^+ e^- p)$ analysis

.2

GlueX-I + 30% GlueX-II data are used for this analysis. J/ $\psi$  is identified using  $M(e^+e^-)$  distribution (10-20% background). Calorimeter response (p/E) is used to subtract  $\pi$  misidentification background.



### **Polarized measurements**





 $n \cos 2(\phi - \phi) = P (o^{1} - Imo^{2})/2$ 

 $-n \cos^2(\phi + \phi) = P (o^1 + lmo^2)/2$ 



 $9_{9}$  10<sub>10</sub> 11<sub>11</sub> 12<sub>12</sub> 13<sub>3</sub>

0

The same assumption as Lubomir's talk.

14 14

15



0,1 0.1

00

9<sup>9</sup>

Polarization FOM increases ~30 times in the coherent peak region. Precise measurement of naturality is possible with 17 GeV data.

 $10^{10}$   $11^{11}$   $12^{12}$   $13^{13}$   $14^{14}$   $15^{15}$   $16^{16}$  17 17  $E_{\gamma}$  (GeV) eV)

### Polarized SDMEs at 17 GeV



Also, other SDMEs provide strong constraints on the production mechanism.

### Unpolarized SDME (cosθ<sub>hel</sub>)





### Helicity conservation at 17 GeV

#### Non-zero values mean the helicity is not conserved.



Luminosity near threshold region ( $E_{\gamma} < 12.5$  GeV) is 5.5 times larger with 17 GeV beam.

Precise check of helicity conservation is possible with 17 GeV beam.

### E<sub>v</sub> dep. of Unpolarized SDMEs



Measurements of  $E_{\gamma}$  dep. of helicity conservation will be improved with 17 GeV beam as seen above.



- J/ψ SDMEs are measured to help determine the production mechanism near threshold.
- We have no SDME data so far. No reliable predictions either.
  - GlueX can provide unique polarized SDME measurements.
- 17 GeV energy upgrade gives 30 times larger polarization FOM, and significantly increase the precision of polarized measurements.
  - Precise measurements of naturality.
- For unpolarized measurements, 17 GeV upgrade gives 5.5 times larger yields near threshold region. Helicity conservation can be checked precisely.

# Backup

# GJ frame to check helicity conservation 17



Decay asymmetry measurements in the helicity frame are used to check "helicity conservation" where incoming photon helicity is fully transferred to  $J/\psi$ .

GJ frame allows us to check "helicity conservation in  $\gamma J/\psi \rightarrow \bar{p}p$ ".

For light vector mesons ( $\rho$ ,  $\omega$ ,  $\phi$ ), it is known that helicity conservation in  $\gamma V \rightarrow \bar{p}p$  is badly broken.



### E<sub>v</sub> dep. of Unpolarized SDMEs (GJ)



 $E_{\gamma}$  dep. of helicity conservation in  $\gamma J/\psi \rightarrow \bar{p}p$  will be more precisely measured with 17 GeV beam, which place strict constraints on models.

### GJ frame analysis at 17 GeV



5.5 times larger luminosity (17 GeV beam) allows us more precise study about helicity conservation in  $\gamma J/\psi \to \bar{p}p$ .

# JPAC Pomeron model by Daniel Winney 21

Helicity frame Solid: vector Pomeron Dashed: Pomeron with Helicity conserved

#### GJ frame Solid: vector Pomeron Dashed: Pomeron with Helicity conserved



Ref.) A. I. Titov et al., PRC60,035205 (1999)

In the case of  $\phi \to K^+K^-$  ( $a = K^+$ ), we obtain:

$$W(\cos\theta,\phi) = \frac{3}{4\pi} \left( \frac{\rho_{11} + \rho_{-1-1}}{2} \sin^2\theta + \rho_{00} \cos^2\theta - \frac{\text{Re}\rho_{10} - \text{Re}\rho_{-10}}{\sqrt{2}} \sin 2\theta \cos\phi + \frac{\text{Im}\rho_{10} + \text{Im}\rho_{-10}}{\sqrt{2}} \sin 2\theta \sin\phi - \text{Re}\rho_{1-1} \sin^2\theta \cos 2\phi + \text{Im}\rho_{1-1} \sin^2\theta \sin 2\phi \right), \quad (2)$$

In the case of  $J/\psi \rightarrow e^-e^+$  ( $a = e^-$ ), we obtain:

$$W(\cos\theta,\phi) = \frac{3}{8\pi} \left( \frac{\rho_{11} + \rho_{-1-1}}{2} \left( 1 + \cos^2\theta \right) + \rho_{00} \sin^2\theta + \frac{\text{Re}\rho_{10} - \text{Re}\rho_{-10}}{\sqrt{2}} \sin 2\theta \cos\phi - \frac{\text{Im}\rho_{10} + \text{Im}\rho_{-10}}{\sqrt{2}} \sin 2\theta \sin\phi + \text{Re}\rho_{1-1} \sin^2\theta \cos 2\phi - \text{Im}\rho_{1-1} \sin^2\theta \sin 2\phi \right), \quad (3)$$

### Linearly polarized distributions



For  $K^+K^-$  case,

$$W^{0}(\cos\theta,\phi) = \frac{3}{4\pi} \left( \frac{1-\rho_{00}^{0}}{2} + \frac{3\rho_{00}^{0}-1}{2}\cos^{2}\theta - \sqrt{2}\operatorname{Re}\rho_{10}^{0}\sin2\theta\cos\phi - \operatorname{Re}\rho_{1-1}^{0}\sin^{2}\theta\cos2\phi \right),$$
(4)

$$W^{1}(\cos\theta,\phi) = \frac{3}{4\pi} \left( \rho_{11}^{1} \sin^{2}\theta + \rho_{00}^{1} \cos^{2}\theta - \sqrt{2} \operatorname{Re} \rho_{10}^{1} \sin 2\theta \cos\phi - \operatorname{Re} \rho_{1-1}^{1} \sin^{2}\theta \cos 2\phi \right),$$
(5)

$$W^{\alpha}(\cos\theta,\phi) = \frac{3}{4\pi} \left(\sqrt{2}\mathrm{Im}\rho_{10}^{\alpha}\sin2\theta\sin\phi + \mathrm{Im}\rho_{1-1}^{\alpha}\sin^2\theta\sin2\phi\right) \quad (\alpha = 2,3).$$
(6)

For  $e^-e^+$  case,

$$W^{0}(\cos\theta,\phi) = \frac{3}{8\pi} \left( \frac{1+\rho_{00}^{0}}{2} - \frac{3\rho_{00}^{0}-1}{2}\cos^{2}\theta + \sqrt{2}\operatorname{Re}\rho_{10}^{0}\sin2\theta\cos\phi + \operatorname{Re}\rho_{1-1}^{0}\sin^{2}\theta\cos2\phi \right),$$
(7)

$$W^{1}(\cos\theta,\phi) = \frac{3}{8\pi} \left( \rho_{11}^{1} \left( 1 + \cos^{2}\theta \right) + \rho_{00}^{1} \sin^{2}\theta + \sqrt{2} \operatorname{Re} \rho_{10}^{1} \sin 2\theta \cos\phi + \operatorname{Re} \rho_{1-1}^{1} \sin^{2}\theta \cos 2\phi \right),$$
(8)

$$W^{\alpha}(\cos\theta,\phi) = \frac{3}{8\pi} \left( -\sqrt{2} \mathrm{Im}\rho_{10}^{\alpha} \sin 2\theta \sin \phi - \mathrm{Im}\rho_{1-1}^{\alpha} \sin^2\theta \sin 2\phi \right) \quad (\alpha = 2,3).$$
(9)

### Averaged one-dimensional distributions 24

For  $V \rightarrow 2$  spinless particles,

$$W(\cos\theta) = \frac{3}{2} \left( \frac{1 - \rho_{00}^0}{2} \sin^2\theta + \rho_{00}^0 \cos^2\theta \right),$$
(10)

$$W(\phi) = \frac{1}{2\pi} \left( 1 - 2\text{Re}\rho_{1-1}^0 \cos 2\phi \right),$$
(11)

$$W(\phi - \Phi) = \frac{1}{2\pi} \left( 1 + 2P_{\gamma} \frac{\rho_{1-1}^1 - \mathrm{Im}\rho_{1-1}^2}{2} \cos\left[2\left(\phi - \Phi\right)\right] \right),\tag{12}$$

$$W(\phi + \Phi) = \frac{1}{2\pi} \left( 1 + 2P_{\gamma} \frac{\rho_{1-1}^{1} + \operatorname{Im} \rho_{1-1}^{2}}{2} \cos\left[2\left(\phi + \Phi\right)\right] \right), \tag{13}$$

$$W(\Phi) = 1 - P_{\gamma} \left( 2\rho_{11}^1 + \rho_{00}^1 \right) \cos 2\Phi.$$
(14)

For  $J/\psi \rightarrow e^-e^+$ ,

$$W(\cos\theta) = \frac{3}{8} \left( 1 + \rho_{00}^{0} + (1 - 3\rho_{00}^{0})\cos^{2}\theta \right),$$
(15)  

$$W(\phi) = \frac{1}{2\pi} \left( 1 + \operatorname{Re}\rho_{1-1}^{0}\cos 2\phi \right),$$
(16)  

$$W(\phi - \Phi) = \frac{1}{2\pi} \left( 1 - P_{\gamma} \frac{\rho_{1-1}^{1} - \operatorname{Im}\rho_{1-1}^{2}}{2}\cos \left[2\left(\phi - \Phi\right)\right] \right) \underbrace{\operatorname{Naturality}}_{Naturality} (17)$$
  

$$W(\phi + \Phi) = \frac{1}{2\pi} \left( 1 - P_{\gamma} \frac{\rho_{1-1}^{1} + \operatorname{Im}\rho_{1-1}^{2}}{2}\cos \left[2\left(\phi + \Phi\right)\right] \right),$$
(18)  

$$W(\Phi) = 1 - P_{\gamma} \left(2\rho_{11}^{1} + \rho_{00}^{1}\right)\cos 2\Phi. \qquad \operatorname{Beam Asym.} \left(\sum\right) (19)$$