Fracture functions formalism for polarization effects in TFR of SIDIS

Aram Kotzinian

YerPhI, Armenia & INFN, Torino

Outlook

- Accessing LO (twist-2) nucleon structure in SIDIS
- Non-perturbative inputs Spin and Transverse Momentum Dependent (STMDs)
 - Parton Distribution Functions in nucleon.
 - STMD PDF: SIDIS, DY
 - Parton Fragmentation Functions STMD FF: Hadron production in e⁺e⁻ annihilation (SIA), SIDIS, high p_T hadron production in pp collisions
 - STMD Fracture Functions
 - String Fragmentation: LEPTO, PYTHIA

Twist-2 TMD PDFs

			Quark polarization	
		U	L	т
Nucleon Polarization	U	$f_1^q(x,k_T^2)$		$\frac{\epsilon_T^{ij} k_T^{j}}{M} h_1^{\perp q}(x, k_T^2)$
	L		$S_L g_{1L}^q(x,k_T^2)$	$S_L \frac{\mathbf{k}_T}{M} h_{1L}^{\perp q}(x, k_T^2)$
	т	$\frac{\left[\mathbf{k}_{T}\times\mathbf{S}_{T}\right]_{3}}{M}f_{1T}^{\perp q}(x,k^{2})$	$\frac{\mathbf{k}_T \cdot \mathbf{S}_T}{M} g_{1T}^{\perp q}(x, k_T^2)$	$\frac{\mathbf{S}_T h_{1T}^q(x, k_T^2) +}{\frac{\mathbf{k}_T}{M} \frac{\left(\mathbf{k}_T \cdot \mathbf{S}_T\right)}{M} h_{1T}^{\perp q}(x, k_T^2)}$

All azimuthal dependences are in prefactors. TMDs do not depend on them

pQCD factorization: DIS

At large $Q^2 = -q^2$ the DIS can be described using QED lepton quark scattering cross section and nonperturbative input – colinear PDF $f_1^q(x)$: $d\sigma^{N \to lhX} \sim \sum f_q(x, \mathbf{k}_T^2) \otimes d\sigma^{lq \to l'q'}$

Access to nucleon unpolarized $f_1^{q+\overline{q}}(x)$ and longitudinally polarized $g_1^{q+\overline{q}}(x)$ leading twist colinear (transverse momentum integrated) PDFs

pQCD TMD factorization: DY processes

We can access to nucleon, pion and kaon TMD PDFs $f_1(x, k_T^2)$, $g_1(x, k_T^2)$, $h_1(x, k_T^2)$ and $h_1^{\perp}(x, k_T^2)$ leading twist PDFs if we do not intergrate over transverse momentum of virtual photon

QCD TMD factorization: SIDIS in CFR

$$d\sigma^{lN \to lhX} = \sum_{q} f_q(x, \mathbf{k}_T^2) \otimes d\sigma^{lq \to lq} \otimes D_h^q(x, \mathbf{k}_T; x_F, \mathbf{p}_T^h)$$

Access to nucleon $f_1^q(x, k_T^2)$, $g_1^q(x, k_T^2)$ and $h_1^q(x, k_T^2)$,... leading twist TMD PDFs. Additional nonperturbative input:

unpolarized TMD FFs $D_q^h(z, p_T^2)$ and Collins TMD FF $H_{1q}^h(z, p_T^2)$

ECT*, Trento, Italy. Sep 26 - 30, 2022

QCD TMD factorization in semi-inclusive e+e- annihilation (SIA)

Access to $q + \overline{q}$ fragmentation functions $D_{q+\overline{q}}^{h}(z, p_{\perp}^{2})$ Two hadron production in opposite hemispheres: acces to Collins FF $H_{1q}^{h}(z, p_{\perp}^{2})$

SIDIS: CFR

LO cross section in SIDIS CFR

$$\frac{d\sigma^{\ell(l,\lambda)+N(P_{N},S)\to\ell(l')+h(P)+X}(x_{F}>0)}{dxdQ^{2}d\phi_{S}dzd^{2}P_{T}} = \frac{\alpha^{2}x}{yQ^{2}}(1+(1-y)^{2})\times \left[F_{UU,T}+D_{nn}(y)F_{UU}^{\cos 2\phi_{h}}\cos(2\phi_{h})+S_{L}D_{ll}(y)F_{LL}+S_{L}D_{nn}(y)F_{UL}^{\sin 2\phi_{h}}\sin(2\phi_{h})+\lambda S_{L}D_{ll}(y)F_{LL}+S_{T}\left(F_{UT,T}^{\sin(\phi_{h}-\phi_{S})}\sin(\phi_{h}-\phi_{S})+D_{nn}(y)\left(F_{UT}^{\sin(\phi_{h}+\phi_{S})}\sin(\phi_{h}+\phi_{S})+F_{UT}^{\sin(3\phi_{h}-\phi_{S})}\sin(3\phi_{h}-\phi_{S})\right)\right)+\frac{\lambda S_{T}D_{ll}(y)F_{LT}^{\cos(\phi_{h}-\phi_{S})}\cos(\phi_{h}-\phi_{S})}{(\lambda S_{T}D_{ll}(y)F_{LT}^{\cos(\phi_{h}-\phi_{S})}\cos(\phi_{h}-\phi_{S})}$$

$$D_{ll}(y) = \frac{y(2-y)}{1+(1-y)^2}, \quad D_{nn}(y) = \frac{2(1-y)}{1+(1-y)^2}$$

At LO only 8 terms contributes out of 18 Structure Functions entering in the general expression of SIDIS cross section 6 azimuthal modulations, 4 terms are generated by Collins effect in fragmentation

SIDIS: TFR

Trentadue, Veneziano 1994 Graudenz 1994 Collins 1998, 2000, 2002 de Florian, Sassot 1997, 1998 Grazzini, Trentadue, Veneziano 1998 Ceccopieri, Trentadue 2006, 2007, 2008 Sivers 2009 Ceccopieri , Mancusi 2013 Ceccopieri 2013

.

$$\frac{d\sigma^{\ell(l)+N(P_N)\to\ell(l')+h(P)+X}}{dxdQ^2d\zeta} = M_{q/N}^h\left(x,Q^2,\zeta\right) \otimes \frac{d\sigma^{\ell(l)+q(k)\to\ell(l')+q(k')}}{dQ^2},$$

 $\zeta = \frac{P^-}{P_N^-} \approx x_F (1 - x)$

Fracture function *M* is a Conditional Probability Distribution Function (CPDF) to observe the hadron h produced in target nucleon momentum direction in γ^* P CMS when hard probe interacts with parton carrying fraction x of nucleon momentum.

Collinear Frac.Func.: application to HERA data, 1

D. de Florian, R. Sassot, Leading Proton Structure Function. PRD 58, 054003 (1998)

ture function parametrization (solid lines)

FIG. 8. ZEUS diffractive data, against the expectation coming from the fracture function parametrization (fit A).

Collinear Frac.Func.: application to HERA data, 2

Shoeibi et al, Neutron fracture functions. PRD 95, 074011 (2017)

ECT*,Trento, Italy. Sep 26 – 30, 2022

SIDIS TFR: Spin & TMD (STMD) Fracture Functions

Anselmino, Barone and AK, PL B 699 (2011)108; 706 (2011)46; 713 (2012)317 Nucleon and quark polarization are included, produced hadron and quark transverse momentum are not integrated over. Classification of twist-two Fracture Functions and cross sections expressions.

$$\frac{d\sigma^{\ell(l,\lambda)+N(P_N,S)\to\ell(l')+h(P)+X}}{dxdQ^2d\phi_Sd\zeta d^2P_T} = M^h_{q,s/N,S}(x,k_T^2,\zeta,P_T^2,\mathbf{k}_T\cdot\mathbf{P}_T) \otimes \frac{d\sigma^{\ell(l,\lambda)+q(k,s)\to\ell(l')+q(k',s')}}{dQ^2}$$
$$\mathbf{k}_T\cdot\mathbf{P}_T = k_TP_T\cos(\phi_h - \phi_q), \quad \zeta = \frac{P^-}{P_N^-} \approx x_F(1-x)$$

Quark correlator

CFR

TFR

$$\mathcal{M}^{[\Gamma]}(x_{B},\vec{k}_{\perp},\zeta,\vec{P}_{h\perp}) = \frac{1}{4\zeta} \int \frac{d\xi^{+}d^{2}\xi_{\perp}}{(2\pi)^{6}} e^{i(x_{B}P^{-}\xi^{+}-\vec{k}_{\perp}\cdot\vec{\xi}_{\perp})} \sum_{X} \int \frac{d^{3}P_{X}}{(2\pi)^{3}2E_{X}} \times \langle P,S | \overline{\psi}(0)\Gamma | P_{h}, S_{h}; X \rangle \langle P_{h}, S_{h}; X | \psi(\xi^{+},0,\vec{\xi}_{\perp}) | P,S \rangle$$
$$\Gamma = \gamma^{-}, \quad \gamma^{-}\gamma_{5}, \quad i\sigma^{i-}\gamma_{5}$$

Probabilistic interpretation at LO:

the conditional probabilities to find an unpolarized ($\Gamma = \gamma^{-}$), a longitudinally polarized ($\Gamma = \gamma^{-} \gamma_{5}$) or a transversely polarized ($\Gamma = \sigma^{i-} \gamma_{5}$) quark with longitudinal momentum fraction x_{Bj} and transverse momentum \mathbf{k}_{\perp} inside a nucleon fragmenting into a hadron carrying a fraction ζ of the nucleon longitudinal momentum and a transverse momentum $\mathbf{P}_{h\perp}$.

SIDIS

STMD Fracture Functions for spinless hadron production

		Quark polarization			
		U	L	Т	
Nucleon Polarization	U	\hat{u}_1	$\frac{\mathbf{k}_T \times \mathbf{P}_T}{m_N m_h} \hat{l}_1^{\perp h}$	$\frac{\epsilon_T^{ij} P_T^{j}}{m_h} \hat{t}_1^h + \frac{\epsilon_T^{ij} k_T^j}{m_N} \hat{t}_1^\perp$	
	L	$\frac{S_L(\mathbf{k}_T \times \mathbf{P}_T)}{m_N m_h} \hat{u}_{1L}^{\perp h}$	$S_L \hat{l}_{1L}$	$\frac{\mathbf{S}_{L}\mathbf{P}_{T}}{m_{h}}\hat{t}_{1L}^{h} + \frac{\mathbf{S}_{L}\mathbf{k}_{T}}{m_{N}}\hat{t}_{1L}^{\perp}$	
	т	$\frac{\mathbf{P}_{T} \times \mathbf{S}_{T}}{m_{h}} \hat{u}_{1T}^{h} + \frac{\mathbf{k}_{T} \times \mathbf{S}_{T}}{m_{N}} \hat{u}_{1T}^{\perp}$	$\frac{\mathbf{P}_T \cdot \mathbf{S}_T}{m_h} \hat{l}_{1T}^h + \frac{\mathbf{k}_T \cdot \mathbf{S}_T}{m_N} \hat{l}_{1T}^\perp$	$ \frac{\mathbf{S}_{T}\hat{t}_{1T} + \frac{\mathbf{P}_{T}(\mathbf{P}_{T}\cdot\mathbf{S}_{T})}{m_{h}^{2}}\hat{t}_{1T}^{hh} + \frac{\mathbf{k}_{T}(\mathbf{k}_{T}\cdot\mathbf{S}_{T})}{m_{N}^{2}}\hat{t}_{1T}^{\perp\perp} + \frac{\mathbf{P}_{T}(\mathbf{k}_{T}\cdot\mathbf{S}_{T}) - \mathbf{k}_{T}\cdot(\mathbf{P}_{T}\cdot\mathbf{S}_{T})}{m_{N}}\hat{t}_{1T}^{\perp h}}{m_{N}m_{h}} $	

At twist-2 there are 16 independent Fracture Functions depending on quark and TFR hadron momenta

$$x, k_T^2, \zeta, P_T^2, k_T P_T \cos(\phi_h - \phi_q)$$

Azimuthal dependences for different nucleon and quark polarizations appears not only in prefactors, as it was in the case of SIDIS in CFR, but also in the argument of fracture functions

The terms which contains the same prefactors as in SIDIS in CFR are marked in red

STMD Fracture Functions for spinless hadron production

			Quark polariz	ation	
		U	L	T	
	U	\hat{u}_1	$\frac{\mathbf{k}_T \times \mathbf{P}_T}{m_N m_h} \hat{l}_1^{\perp h}$	$\frac{\epsilon_T^{ij} P_T^{j}}{m_h} \hat{t}_1^h + \frac{\epsilon_T^{ij} k_T^j}{m_N} \hat{t}_1^\perp$	$\hat{u}_1 \rightarrow$ unintegrated twist-2 fracture functions
Nucleon Polarization	L	$\frac{S_L(\mathbf{k}_T \times \mathbf{P}_T)}{m_N m_h} \hat{u}_{1L}^{\perp h}$	$S_L \hat{l}_{1L}$	$\frac{S_L \mathbf{P}_T}{m_h} \hat{t}_{1L}^h + \frac{S_L \mathbf{k}_T}{m_N} \hat{t}_{1L}^\perp$	U, L, T subscrupts \rightarrow unpolarized, longitudinal and transversely polarized nucleon $\perp, h \rightarrow$ dependence on transverse momenum
	т	$\frac{\mathbf{P}_{T} \times \mathbf{S}_{T}}{m_{h}} \hat{u}_{1T}^{h} + \frac{\mathbf{k}_{T} \times \mathbf{S}_{T}}{m_{N}} \hat{u}_{1T}^{\perp}$	$\frac{\mathbf{P}_{T} \cdot \mathbf{S}_{T}}{m_{h}} \hat{l}_{1T}^{h} + \frac{\mathbf{k}_{T} \cdot \mathbf{S}_{T}}{m_{N}} \hat{l}_{1T}^{\perp}$	$ \frac{\mathbf{S}_{T}\hat{t}_{1T} + \frac{\mathbf{P}_{T}(\mathbf{P}_{T}\cdot\mathbf{S}_{T})}{m_{h}^{2}}\hat{t}_{1T}^{hh} + \frac{\mathbf{k}_{T}(\mathbf{k}_{T}\cdot\mathbf{S}_{T})}{m_{N}^{2}}\hat{t}_{1T}^{\perp\perp} + \frac{\mathbf{P}_{T}(\mathbf{k}_{T}\cdot\mathbf{S}_{T}) - \mathbf{k}_{T}\cdot(\mathbf{P}_{T}\cdot\mathbf{S}_{T})}{m_{N}}\hat{t}_{1T}^{\perp h}}{m_{N}m_{h}} $	of quark and produced hadron

Sum Rules connecting Fracture Functions to TMD PDFs

Integrating the fracture function over the longitudinal and transverse momentum of hadron in TFR and summing over all hadrons we recover the corresponding quark TMD DF

$$\sum_{h} \int \zeta d\zeta \int d^2 P_T \hat{u}_1 = (1 - x) f_1(x, k_T^2)$$

Similar TMD Sum Rules for all TMD PDFs

$$\begin{split} &\sum_{h} \int \zeta d\zeta \int d^{2} P_{T} \hat{u}_{1} = (1-x) f_{1}(x, k_{T}^{2}) \\ &\sum_{h} \int \zeta d\zeta \int d^{2} P_{T} \left(\hat{u}_{1T}^{\perp} + \frac{m_{N}}{m_{h}} \frac{\mathbf{k}_{T} \cdot \mathbf{P}}{k_{T}^{2}} \hat{u}_{1T}^{h} \right) = -(1-x) f_{1T}^{\perp}(x, k_{T}^{2}) \\ &\sum_{h} \int \zeta d\zeta \int d^{2} P_{T} \hat{l}_{1L} = (1-x) g_{1L}(x, k_{T}^{2}) \\ &\sum_{h} \int \zeta d\zeta \int d^{2} P_{T} \left(\hat{l}_{1T}^{\perp} + \frac{m_{N}}{m_{h}} \frac{\mathbf{k}_{T} \cdot \mathbf{P}}{k_{T}^{2}} \hat{l}_{1T}^{h} \right) = (1-x) g_{1T}(x, k_{T}^{2}) \\ &\sum_{h} \int \zeta d\zeta \int d^{2} P_{T} \left(\hat{t}_{1L}^{\perp} + \frac{m_{N}}{m_{h}} \frac{\mathbf{k}_{T} \cdot \mathbf{P}}{k_{T}^{2}} \hat{t}_{1T}^{h} \right) = (1-x) h_{1L}^{\perp}(x, k_{T}^{2}) \\ &\sum_{h} \int \zeta d\zeta \int d^{2} P_{T} \left(\hat{t}_{1L}^{\perp} + \frac{m_{N}}{m_{h}} \frac{\mathbf{k}_{T} \cdot \mathbf{P}}{k_{T}^{2}} \hat{t}_{1}^{h} \right) = -(1-x) h_{1L}^{\perp}(x, k_{T}^{2}) \\ &\sum_{h} \int \zeta d\zeta \int d^{2} P_{T} \left(\hat{t}_{1}^{\perp} + \frac{m_{N}}{m_{h}} \frac{\mathbf{k}_{T} \cdot \mathbf{P}}{k_{T}^{2}} \hat{t}_{1}^{h} \right) = -(1-x) h_{1}^{\perp}(x, k_{T}^{2}) \\ &\sum_{h} \int \zeta d\zeta \int d^{2} P_{T} \left(\hat{t}_{1T}^{\perp} + \frac{m_{N}^{2}}{m_{h}^{2}} \frac{2(\mathbf{k}_{T} \cdot \mathbf{P})^{2} - k_{T}^{2} P_{T}^{2}}{k_{1}^{4}} \hat{t}_{1T}^{hh} \right) = (1-x) h_{1T}^{\perp}(x, k_{T}^{2}) \\ &\sum_{h} \int \zeta d\zeta \int d^{2} P_{T} \left(\hat{t}_{1T} + \frac{k_{T}^{2}}{2m_{N}^{2}} \hat{t}_{1T}^{1\perp} + \frac{P_{T}^{2}}{2m_{h}^{2}} \hat{t}_{1T}^{hh} \right) = (1-x) h_{1}(x, k_{T}^{2}) \end{split}$$

Quark transverse momentum integrated Fracture Functions

In single hadron production in TFR NO access to final quark transverse momentum and polarization

Quark transverse momentum integrates fracture functions market by tilde:

$$\begin{split} \widetilde{u}_{1}(x_{B},\zeta_{2},P_{T2}^{2}) &= \int d^{2}k_{T} \, \widehat{u}_{1}\left(x_{B},k_{T}^{2},\zeta,P_{T1}^{2},\mathbf{k}_{T}\cdot\mathbf{P}_{T1}\right) \\ \widetilde{u}_{1T}^{h}\left(x_{B},\zeta_{2},P_{T2}^{2}\right) &= \int d^{2}k_{T} \left\{ \widehat{u}_{1T}^{h} + \frac{m_{2}}{m_{N}} \frac{\mathbf{k}_{T}\cdot\mathbf{P}_{T2}}{P_{T2}^{2}} \widehat{u}_{1T}^{\perp} \right\} \\ \widetilde{l}_{1L}(x_{B},\zeta_{2},P_{T2}^{2}) &= \int d^{2}k_{T} \widehat{l}_{1L} \\ \widetilde{l}_{1T}^{h}\left(x_{B},\zeta_{2},P_{T2}^{2}\right) &= \int d^{2}k_{T} \left\{ \widehat{l}_{1T}^{h} + \frac{m_{2}}{m_{N}} \frac{\mathbf{k}_{T}\cdot\mathbf{P}_{T2}}{P_{T2}^{2}} \widehat{l}_{1T}^{\perp} \right\} \end{split}$$

LO cross-section of single hadron production in TFR

$$\frac{d\sigma^{\ell(l,\lambda)+N(P_{N},S)\to\ell(l')+h(P)+X}(x_{F}<0)}{dxdQ^{2}d\phi_{S}d\zeta d^{2}P_{T}} = \frac{\alpha^{2}x}{yQ^{4}}\left(1+(1-y)^{2}\right)\sum_{q}e_{q}^{2}\times \left[\tilde{u}_{1}\left(x,\zeta,P_{T}^{2}\right)-S_{T}\left(\frac{P_{T}}{m_{h}}\tilde{u}_{1T}^{h}\left(x,\zeta,P_{T}^{2}\right)\sin(\phi_{h}-\phi_{S})\right)+\right]$$

$$\times \left[\lambda y(2-y)\left(S_{L}\tilde{l}_{1L}\left(x,\zeta,P_{T}^{2}\right)+S_{T}\frac{P_{T}}{m_{h}}\tilde{l}_{1T}^{h}\left(x,\zeta,P_{T}^{2}\right)\cos(\phi_{h}-\phi_{S})\right)\right]$$

At LO (twist 2) only 4 terms out of 18 Structure Functions in SIDIS, Only 2 azimuthal modulations

In single hadron production in TFR NO access to final quark transverse momentum and polarization \longrightarrow No Collins-like sin($\phi_h + \phi_s$) modulation

Quark transverse spin in hard *I-q* scattering

→ STMD fracture functions depends on initial quark transverse polarization dependent fracture functions.
 No Collins like modulation in TFR.

Hadronization Function in MC event generators (LEPTO, PYTHIA)

Hadronization Function modeled by Lund String Fragmentation describes both CFR and TFR

Quark dynamics in MC even generators

We modified standard MC generators so that mLEPTO and mPYTHIA can generate k_{τ} with anisotropic azimuthal modulation according Sivers effect

$$d\sigma^{lN \to lhX} = \sum_{q} \left(f_q(x, \mathbf{k}_T^2) + \frac{\mathbf{k}_{\mathbf{T}} \times \mathbf{S}_{\mathbf{T}}}{M} f_{qT}^{\perp}(x, \mathbf{k}_T^2) \right) \otimes d\sigma^{lq \to lq} \otimes H_{h/N}^q(x, \mathbf{k}_{\mathbf{T}}; x_F, \mathbf{p}_{\mathbf{T}}^h)$$

Sivers effect in the event generators

Matevosyan, AK, Aschenauer, Avakian, Thomas, PRD 92, 054028 (2015)

ECT*, Trento, Italy. Sep 26 - 30, 2022

Only correlation of target S_T and struck quark k_T is explicitly parametrized using Sivers PDFs. Then this correlation is transferred to produced hadrons via unpolarized string fragmentation.

FIG. 13 (color online). EIC model SSAs for 5×50 SIDIS kinematics for charged pions and kaons versus x_F . The Sivers asymmetry is present both in the current and target fragmentation regions.

FIG. 17 (color online). Predictions for SSAs for charged pions and kaons versus x_F at CLAS12. The Sivers asymmetry is present both in the current and target fragmentation regions.

Double hadron production in DIS (DSIDIS): TFR & CFR

$$\frac{d\sigma^{\ell(l,\lambda)+N(P_N,S)\to\ell(l')+h_1(P_1)+h_2(P_2)+X}}{dxdQ^2d\phi_Sdzd^2P_{T1}d\zeta d^2P_{T2}} = M_{q,s/N,S}^{h_2} \otimes \frac{d\sigma^{\ell(l,\lambda)+q(k,s)\to\ell(l')+q(k',s')}}{dQ^2} \otimes D_{q,s'}^{h_1}$$

$$D_{q,s'}^{h_1}(z, \mathbf{p}_T) = D_1(z, p_T^2) + \frac{\mathbf{p}_T \times \mathbf{s'}_T}{m_h} H_1(z, p_T^2), \quad \mathbf{s'}_T - \text{fragmenting quark transverse polarization}$$

Unintegrated DSIDIS LO cross-section: accessing quark polarization

$$\frac{d\sigma^{\ell(l,\lambda)+N(P_{N},S)\to\ell(l')+h_{1}(P_{1})+h_{2}(P_{2})+X}}{dxdQ^{2}d\phi_{S}dzd^{2}P_{T1}d\zeta d^{2}P_{T2}} = \\
= \frac{\alpha^{2}x}{Q^{4}y} \left(1+(1-y)^{2}\right) \begin{pmatrix} \hat{u}^{h_{2}} \otimes D_{1}^{h_{1}} + \lambda D_{ll}(y)\hat{l}^{h_{2}} \otimes D_{1}^{h_{1}} \\
+ \hat{t}^{h_{2}} \otimes \frac{\mathbf{p}_{T} \times \mathbf{s'}_{T}}{m_{h_{1}}} H_{1}^{h_{1}} \end{pmatrix} \\
= \frac{\alpha^{2}x}{Q^{4}y} \left(1+(1-y)^{2}\right) \begin{pmatrix} \sigma_{UU} + S_{L}\sigma_{UL} + S_{T}\sigma_{UT} + \\ \lambda D_{ll}\left(\sigma_{LU} + S_{L}\sigma_{LL} + S_{T}\sigma_{LT}\right) \end{pmatrix}$$

DSIDIS cross section is a sum of polarization independent, single and double spin dependent terms as in 1h SIDIS cross section.

Back-to-back two hadrons production provides access to all 16 twist-2 k_T-unintegrated fracture functions (see additional slides)

DSIDIS azimuthal modulations

AK @ DIS2011

$$C[\hat{M} \cdot Dw] = \sum_{a} e_{a}^{2} \int d^{2}k_{T} d^{2}p_{T} \delta^{(2)}(z\mathbf{k}_{T} + \mathbf{p}_{T} - \mathbf{P}_{T1}) \hat{M}_{a}(x, \zeta, k_{T}^{2}, P_{T2}^{2}, \mathbf{k}_{T} \cdot \mathbf{P}_{T2}) D_{a}(z, p_{T}^{2}) w$$

Structure functions $F_{\dots}^{\hat{u}\cdot D}$ depend on $x, z, \zeta, P_{T1}^2, P_{T2}^2$ and $(\mathbf{P}_{T1}\cdot\mathbf{P}_{T2})$ $\mathbf{P}_{T1}\cdot\mathbf{P}_{T2} = P_{T1}P_{T2}\cos(\Delta\phi)$, with $\Delta\phi = \phi_1 - \phi_2$

 $A_{\mu\nu}$ asymmetry, 1 Anselmino, Barone and AK, PLB 713 (2012) 317 $\sigma_{LU} = -\frac{P_{T1}P_{T2}}{P_{k1}}F_{k1}^{\hat{l}_1^{\perp h}} \cdot D_1 \sin(\phi_1 - \phi_2)$ Polarizatior Nucleon $m_2 m_N$ $\sigma_{UU} = F_0^{\hat{u} \cdot D_1} - D_{nn} \left(\frac{P_{T1}^2}{m_1 m_N} F_{kp1}^{\hat{t}_1^\perp \cdot H_1} \cos(2\phi_1) + \frac{P_{T1}P_{T2}}{m_1 m_2} F_{p1}^{\hat{t}_1^h \cdot H_1} \cos(\phi_1 + \phi_2) + \left(\frac{P_{T2}^2}{m_1 m_2} F_{kp2}^{\hat{t}_1^\perp \cdot H_1} + \frac{P_{T2}^2}{m_1 m_2} F_{p2}^{\hat{t}_1^h \cdot H_1} \right) \cos(2\phi_2) \right)$ $F^{\hat{u}\cdot D}$ depend on $x, z, \zeta, P_{T_1}^2, P_{T_2}^2$ and $(\mathbf{P}_{T_1}\cdot \mathbf{P}_{T_2})$ $\mathbf{P}_{T_1} \cdot \mathbf{P}_{T_2} = P_{T_1} P_{T_2} \cos(\Delta \phi), \text{ with } \Delta \phi = \phi_1 - \phi_2$ Choosing as independent angles $\Delta \phi$ and ϕ_2 ($\phi_1 = \Delta \phi + \phi_2$) and integrating σ_{UU} over ϕ_2 we eliminate all terms proportional to $D_{NN} \Rightarrow$ Aram Kotzinian

A_{LU} asymmetry, 2

$$\mathcal{A}_{LU} = -\frac{y(1-\frac{y}{2})}{(1-y+\frac{y^2}{2})} \frac{\mathcal{F}_{LU}^{\sin\Delta\phi}}{\mathcal{F}_{UU}} \sin\Delta\phi$$
$$= -\frac{|\mathbf{P}_{1\perp}||\mathbf{P}_{2\perp}|}{m_N m_2} \frac{y(1-\frac{y}{2})}{(1-y+\frac{y^2}{2})} \frac{\mathcal{C}[w_5\hat{l}_1^{\perp h}D_1]}{\mathcal{C}[\hat{u}_1D_1]} \sin\Delta\phi,$$

$$A_{LU} = \frac{\int d\phi_2 \sigma_{LU}}{\int d\phi_2 \sigma_{UU}} = -\frac{P_{T1} P_{T2}}{m_2 m_N} \frac{F_{k1}^{\hat{l}_1 \perp h} \cdot D_1 \left(x, z, \zeta, P_{T1}^2, P_{T2}^2, \cos(\Delta \phi)\right)}{F_0^{\hat{u} \cdot D_1} \left(x, z, \zeta, P_{T1}^2, P_{T2}^2, \cos(\Delta \phi)\right)} \sin(\Delta \phi)$$

Expected leading-twist asymmetry is proportional to $sin(\Delta \phi)$

A_{LU} @ CLAS12, (1)

Timothy B. Hayward, H. Avakian and A.Kotzinian et al, CLASS Collaboration. arXiv:2208.05086v1 [hep-ex] 10 Aug 2022

• Observed non-zero asymmetries are the first experimental confirmation of possible spin-orbit correlations between hadrons produced simultaneously in the CFR and TFR.

0.02

0.00

-0.02

-0.04

-0.06

-0.08

0.0

 $\mathcal{A}_{LU}^{\sin\Delta\phi}$

• Observed linear dependence on the product of transverse momenta is consistent with expectations.

FIG. 3. The measured $\mathcal{A}_{LU}^{\sin \Delta \phi}$ asymmetry as a function of $P_{T1}P_{T2}$. Thin black bars indicate statistical uncertainties and wide gray bars represent systematic uncertainties.

0.2

Ŧ

ē

0.1

Aram Kotzinian

0.3

 $P_{T1}P_{T2}$ (GeV²)

0.4

0.5

0.6

30

Polarized SIDY

STAR@RHIC?

Kinematics as in Arnold.Metz.Schlegel, PhysRevD.79.034005

Conclusions

- Frac. Funs: A new members of the polarized TMDs family -- 16 LO STMD fracture functions
- For hadron produced in the TFR of SIDIS, only 4 k_T-integrated fracture functions of unpolarized and longitudinally polarized quarks are accessible at twist-two
 - SSA contains only a Sivers-type modulation $sin(\phi_h \phi_s)$ but no Collins-type $sin(\phi_h + \phi_s)$ or $sin(3\phi_h \phi_s)$. The eventual observation of Collins-type asymmetry will indicate that LO factorized approach fails and long-range correlations between the struck quark polarization and P_T of produced in TFR hadron might be important.
- DSIDIS cross section at LO contains 2 azimuthal independent and 20 azimuthally modulated terms. Access to all 16 STMD fracture functions.
 - The first b2b σ_{LU} asymmetry measurement at JLAB12 shows significant effect
- Polarized SIDY cross section (p + p → l⁺l⁻ + h + X) at LO contains 2 azimuthal independent, 20 lepton plane azimuthal angle independent and 52 lepton plane azimuthal angle dependent terms. In total 74 terms. Access to all 16 STMD fracture functions. See additional slides.
- The ideal place to test the fracture functions formalism and measure these new nonperturbative objects are JLab12 (24), EIC facilities and COMPAS using Camera detector

Additional slides

LO double hadron production cross section

AK @ DIS2011

$$\sigma_{UU} = F_0^{\hat{u} \cdot D_1} - D_{nn} \left(\frac{P_{T1}^2}{m_1 m_N} F_{p1}^{\hat{t}_1^\perp \cdot H_1} \cos(2\phi_1) + \frac{P_{T1}P_{T2}}{m_1 m_2} F_{p1}^{\hat{t}_1^h \cdot H_1} \cos(\phi_1 + \phi_2) + \left(\frac{P_{T2}^2}{m_1 m_2} F_{p2}^{\hat{t}_1^\perp \cdot H_1} + \frac{P_{T2}^2}{m_1 m_2} F_{p2}^{\hat{t}_1^h \cdot H_1} \right) \cos(2\phi_2) \right)$$

$$\sigma_{LU} = -\frac{P_{T1}P_{T2}}{m_2 m_N} F_{k1}^{\hat{l}_1^{\perp h} \cdot D_1} \sin(\phi_1 - \phi_2)$$

 σ_{UL}

$$\sigma_{UL} = -\frac{P_{T1}P_{T2}}{m_2 m_N} F_{k1}^{\hat{u}_{1L}^{\perp h} \cdot D_1} \sin(\phi_1 - \phi_2) + D_{nn} \left(\frac{P_{T1}^2}{m_1 m_N} F_{kp1}^{\hat{i}_{1L}^{\perp} \cdot H_1} \sin(2\phi_1) + \frac{P_{T1}P_{T2}}{m_1 m_2} F_{p1}^{\hat{i}_{1L}^{\perp} \cdot H_1} \sin(\phi_1 + \phi_2) + \left(\frac{P_{T2}^2}{m_1 m_N} F_{kp2}^{\hat{i}_{1L}^{\perp} \cdot H_1} + \frac{P_{T2}^2}{m_1 m_2} F_{p2}^{\hat{i}_{1L}^{\perp} \cdot H_1} \right) \sin(2\phi_2) \right)$$

σ_{LU} , σ_{LL} , σ_{LT}

$$\sigma_{LU} = -\frac{P_{T1}P_{T2}}{m_2 m_N} F_{k1}^{\hat{l}_1^{\perp h} \cdot D_1} \frac{\sin(\phi_1 - \phi_2)}{m_2 m_N}$$

$$\sigma_{LL} = F_0^{\hat{l}_1 \cdot D_1}$$

$$\sigma_{LT} = \frac{P_{T1}}{m_N} F_{k1}^{\hat{l}_{1T}^{\perp} \cdot D_1} \cos(\phi_1 - \phi_S) + \left(\frac{P_{T2}}{m_2} F_0^{\hat{l}_{1T}^{h} \cdot D_1} + \frac{P_{T2}}{m_N} F_{k2}^{\hat{l}_{1T}^{\perp} \cdot D_1}\right) \cos(\phi_2 - \phi_S)$$

SIDY

Kinematics as in Arnold.Metz.Schlegel, PhysRevD.79.034005

SIDY cross section

$$\begin{aligned} \frac{d\sigma}{d^4qd\Omega d\zeta d^2 P_T} &= \frac{\alpha_{em}^2 x_a x_b}{2q^4} \frac{1}{N_c} \sum_q e_q^2 \int d^2 \vec{k}_{aT} d^2 \vec{k}_{bT} \,\delta^{(2)} \left(\vec{q}_T - \vec{k}_{aT} - \vec{k}_{bT} \right) \times \\ &\times \begin{pmatrix} \left(1 + \cos^2 \theta \right) \left(\Phi^{q[\gamma^+]} \overline{\mathcal{M}}^{q[\gamma^-]} + \Phi^{q[\gamma^+\gamma_5]} \overline{\mathcal{M}}^{q[\gamma^-\gamma_5]} \right) \\ &+ \sin^2 \theta \begin{pmatrix} \cos 2\phi \left(\delta^{i1} \delta^{j1} - \delta^{i2} \delta^{j2} \right) \\ &+ \sin 2\phi \left(\delta^{i1} \delta^{j2} + \delta^{i2} \delta^{j1} \right) \end{pmatrix} \Phi^{q[i\sigma^{i+}\gamma_5]} \overline{\mathcal{M}}^{q[i\sigma^{j-}\gamma_5]} \\ &+ \{\Phi \leftrightarrow \overline{\Phi}, \overline{\mathcal{M}} \leftrightarrow \mathcal{M}\} + \mathcal{O}(1/q) \end{pmatrix} \end{aligned}$$
$$= \frac{\alpha_{em}^2 x_a x_b}{2q^4} \begin{pmatrix} \sigma_{UU} + S_{bL} \sigma_{UL} + S_{bT} \sigma_{UT} \\ &+ S_{aL} \sigma_{LU} + S_{aL} S_{bL} \sigma_{LL} + S_{aL} S_{bT} \sigma_{LT} \\ &+ S_{aT} \sigma_{TU} + S_{aT} S_{bL} \sigma_{TL} + S_{aT} S_{bT} \sigma_{TT} \end{pmatrix}$$

σ_{UU}

$$\sigma_{UU} = \left(1 + \cos^2 \theta\right) F_{UU}$$
$$-\sin^2 \theta \begin{bmatrix} F_{UU}^{\cos(2\phi)} \cos(2\phi) \\ + F_{UU}^{\cos(2\phi-\phi_h)} \cos(2\phi-\phi_h) \\ + F_{UU}^{\cos(2\phi-2\phi_h)} \cos(2\phi-2\phi_h) \end{bmatrix}$$

$$\begin{split} F_{UU} &= F_0^{f_1 \cdot \hat{u}_1} \\ F_{UU}^{\cos(2\phi)} &= \frac{q_T^2}{M_a M_b} F_{ab2}^{h_1^{\perp} \cdot \hat{u}_{1T}^{\perp}} \\ F_{UU}^{\cos(2\phi - \phi_h)} &= \frac{P_T q_T}{m M_a} F_{a2}^{h_1^{\perp} \cdot \hat{u}_{1T}^{h}} \\ F_{UU}^{\cos(2\phi - 2\phi_h)} &= \frac{P_T^2}{m M_a} F_{a1}^{h_1^{\perp} \cdot \hat{u}_{1T}^{h}} + \frac{P_T^2}{M_a M_b} F_{ab1}^{h_1^{\perp} \cdot \hat{u}_{1T}^{\perp}} \hat{u}_{1T}^{\perp} \end{split}$$

		Quark polarization		
		U L T		
on ition	U	*		*
ucle ariza	L			
N Pol	Т			

ECT*,Trento, Italy. Sep 26 – 30, 2022

σ_{UL}

Detected hadron originates from longitudinally polarized nucleon remnant (hadron b in reaction diagram).

Convolutions & tensorial decomposition

$$C[\hat{M} \cdot Dw] = \sum_{a} e_{a}^{2} \int d^{2}k_{T} d^{2}p_{T} \delta^{(2)}(z\mathbf{k}_{T} + \mathbf{p}_{T} - \mathbf{P}_{T1}) \hat{M}_{a}(x, \zeta, k_{T}^{2}, P_{T2}^{2}, \mathbf{k}_{T} \cdot \mathbf{P}_{T2}) D_{a}(z, p_{T}^{2}) w$$

$$C[\hat{M} \cdot D] = F_{0}^{\hat{M} \cdot D}$$

$$C[\hat{M} \cdot Dk^{i}] = P_{T1}^{i} F_{k1}^{\hat{M} \cdot D} + P_{T2}^{i} F_{k2}^{\hat{M} \cdot D}$$

$$C[\hat{M} \cdot Dp^{i}] = P_{T1}^{i} F_{p1}^{\hat{M} \cdot D} + P_{T2}^{i} F_{p2}^{\hat{M} \cdot D}$$

$$C[\hat{M} \cdot Dk^{i}k^{j}] = P_{T1}^{i} P_{T1}^{j} F_{kk1}^{\hat{M} \cdot D} + P_{T2}^{i} P_{T2}^{j} F_{kk2}^{\hat{M} \cdot D} + \delta^{ij} F_{kk3}^{\hat{M} \cdot D}$$

$$C[\hat{M} \cdot Dk^{i}k^{j}] = P_{T1}^{i} P_{T1}^{j} F_{kk1}^{\hat{M} \cdot D} + P_{T2}^{i} P_{T2}^{j} F_{k2}^{\hat{M} \cdot D} + \left(P_{T1}^{i} P_{T2}^{j} - P_{T1}^{j} P_{T2}^{i}\right) F_{kp3}^{\hat{M} \cdot D} + \delta^{ij} F_{kp4}^{\hat{M} \cdot D}$$

$$C[\hat{M} \cdot Dk^{i}k^{j}p^{i}] = P_{T1}^{i} P_{T1}^{j} F_{kp1}^{\hat{M} \cdot D} + P_{T2}^{i} P_{T2}^{j} F_{kp2}^{\hat{M} \cdot D} + \left(P_{T1}^{i} P_{T2}^{j} - P_{T1}^{j} P_{T2}^{i}\right) F_{kp3}^{\hat{M} \cdot D} + \delta^{ij} F_{kp4}^{\hat{M} \cdot D}$$

$$C[\hat{M} \cdot Dk^{i}k^{j}p^{k}] = P_{T1}^{i} P_{T1}^{j} P_{kp1}^{k} F_{kkp1}^{\hat{M} \cdot D} + P_{T1}^{i} P_{T2}^{j} F_{kkp2}^{\hat{M} \cdot D} + P_{T2}^{i} P_{T2}^{j} P_{T2}^{k} F_{kkp3}^{\hat{M} \cdot D}$$

$$+ P_{T2}^{i} P_{T2}^{j} P_{T1}^{k} F_{kkp4}^{\hat{M} \cdot D} + P_{T1}^{i} \delta^{ij} F_{kkp5}^{\hat{M} \cdot D} + P_{T2}^{i} \delta^{ij} F_{kkp6}^{\hat{M} \cdot D}$$

$$+ P_{T2}^{i} P_{T2}^{j} P_{T1}^{k} F_{kkp4}^{\hat{M} \cdot D} + P_{T1}^{i} \delta^{ij} F_{kkp5}^{\hat{M} \cdot D} + P_{T2}^{k} \delta^{ij} F_{kkp6}^{\hat{M} \cdot D}$$

$$+ P_{T2}^{i} P_{T2}^{j} P_{T1}^{k} F_{kkp4}^{\hat{M} \cdot D} + P_{T1}^{i} \delta^{ij} F_{kkp5}^{\hat{M} \cdot D} + P_{T2}^{k} \delta^{ij} F_{kkp6}^{\hat{M} \cdot D}$$

$$+ P_{T2}^{i} P_{T2}^{j} P_{T1}^{k} F_{kkp4}^{\hat{M} \cdot D} + P_{T1}^{i} \delta^{ij} F_{kkp5}^{\hat{M} \cdot D} + P_{T2}^{k} \delta^{ij} F_{kkp6}^{\hat{M} \cdot D}$$

$$+ P_{T2}^{i} P_{T2}^{j} P_{T1}^{k} F_{kkp4}^{\hat{M} \cdot D} + P_{T1}^{i} \delta^{ij} F_{kkp5}^{\hat{M} \cdot D} + P_{T2}^{k} \delta^{ij} F_{kkp6}^{\hat{M} \cdot D}$$

$$+ P_{T2}^{i} P_{T2}^{j} P_{T1}^{k} F_{kkp4}^{\hat{M} \cdot D} + P_{T1}^{i} \delta^{ij} F_{kkp5}^{\hat{M} \cdot D} + P_{T2}^{i} \delta^{ij} F_{kkp6}^{\hat{M} \cdot D}$$

$$+ P_{T2}^{i} P_{T2}^{i} P_{T1}^{i} P_{T1}$$

Structure functions

$$\begin{split} F_{k1}^{\hat{M}\cdot D} &= C \left[\hat{M} \cdot D \frac{(\mathbf{P}_{T1} \cdot \mathbf{P}_{T2})(\mathbf{P}_{T2} \cdot \mathbf{k}) - (\mathbf{P}_{T1} \cdot \mathbf{k})\mathbf{P}_{T2}^{2}}{(\mathbf{P}_{T1} \cdot \mathbf{P}_{T2})^{2} - \mathbf{P}_{T1}^{2}\mathbf{P}_{T2}^{2}} \right] \\ F_{k2}^{\hat{M}\cdot D} &= C \left[\hat{M} \cdot D \frac{(\mathbf{P}_{T1} \cdot \mathbf{P}_{T2})(\mathbf{P}_{T1} \cdot \mathbf{k}) - (\mathbf{P}_{T2} \cdot \mathbf{k})\mathbf{P}_{T1}^{2}}{(\mathbf{P}_{T1} \cdot \mathbf{P}_{T2})^{2} - \mathbf{P}_{T1}^{2}\mathbf{P}_{T2}^{2}} \right] \\ F_{kk1}^{\hat{M}\cdot D} &= C \left[\hat{M} \cdot D \frac{(-2(\mathbf{P}_{T1} \cdot \mathbf{k})^{2} + \mathbf{k}^{2}\mathbf{P}_{T1}^{2})\mathbf{P}_{T2}^{4} + (2(\mathbf{P}_{T2} \cdot \mathbf{k})^{2} - \mathbf{k}^{2}\mathbf{P}_{T2}^{2})(2(\mathbf{P}_{T1} \cdot \mathbf{P}_{T2})^{2} - \mathbf{P}_{T1}^{2}\mathbf{P}_{T2}^{2})}{4(\mathbf{P}_{T1} \cdot \mathbf{P}_{T2})^{2}((\mathbf{P}_{T1} \cdot \mathbf{P}_{T2})^{2} - \mathbf{P}_{T1}^{2}\mathbf{P}_{T2}^{2})} \right] \\ F_{kk2}^{\hat{M}\cdot D} &= C \left[\hat{M} \cdot D \frac{(2(\mathbf{P}_{T1} \cdot \mathbf{P}_{T2})^{2} - \mathbf{P}_{T1}^{2}\mathbf{P}_{T2}^{2})(\mathbf{P}_{T1} \cdot \mathbf{k})^{2} + \mathbf{P}_{T1}^{2}(\mathbf{P}_{T1}^{2}\mathbf{P}_{T2}^{2} - (\mathbf{P}_{T1} \cdot \mathbf{P}_{T2})^{2})\mathbf{k}^{2} - (\mathbf{P}_{T2} \cdot \mathbf{k})^{2}\mathbf{P}_{T1}^{4}}{2(\mathbf{P}_{T1} \cdot \mathbf{P}_{T2})^{2}((\mathbf{P}_{T1} \cdot \mathbf{P}_{T2})^{2} - \mathbf{P}_{T1}^{2}\mathbf{P}_{T2}^{2})} \right] \\ F_{kk2}^{\hat{M}\cdot D} &= C \left[\hat{M} \cdot D \frac{(2(\mathbf{P}_{T1} \cdot \mathbf{P}_{T2})^{2} + \mathbf{P}_{T1}^{2}\mathbf{P}_{T2}^{2})\mathbf{k}^{2} - (\mathbf{P}_{T2} \cdot \mathbf{k})^{2}\mathbf{P}_{T1}^{2} - (\mathbf{P}_{T1} \cdot \mathbf{k})^{2}\mathbf{P}_{T2}^{2}}{2(\mathbf{P}_{T1} \cdot \mathbf{P}_{T2})^{2} - \mathbf{P}_{T1}^{2}\mathbf{P}_{T2}^{2}} \right] \\ F_{kk3}^{\hat{M}\cdot D} &= C \left[\hat{M} \cdot D \frac{((\mathbf{P}_{T1} \cdot \mathbf{P}_{T2})^{2} + \mathbf{P}_{T1}^{2}\mathbf{P}_{T2}^{2})\mathbf{k}^{2} - (\mathbf{P}_{T2} \cdot \mathbf{k})^{2}\mathbf{P}_{T1}^{2} - (\mathbf{P}_{T1} \cdot \mathbf{k})^{2}\mathbf{P}_{T2}^{2}}{2(\mathbf{P}_{T1} \cdot \mathbf{P}_{T2})^{2} - \mathbf{P}_{T1}^{2}\mathbf{P}_{T2}^{2}} \right] \\ F_{kp1}^{\hat{M}\cdot D} &= C \left[\hat{M} \cdot D \frac{((\mathbf{P}_{T1} \cdot \mathbf{P}_{T2})^{2} + (\mathbf{k} \cdot \mathbf{p})\mathbf{P}_{T1}^{2})\mathbf{P}_{T2}^{2}}{4(\mathbf{P}_{T1} \cdot \mathbf{P}_{T2})^{2} ((\mathbf{P}_{T1} \cdot \mathbf{P}_{T2})^{2} - \mathbf{P}_{T1}^{2}\mathbf{P}_{T2}^{2})} + \frac{(2(\mathbf{P}_{T2} \cdot \mathbf{k})(\mathbf{P}_{T2} \cdot \mathbf{p}) - (\mathbf{k} \cdot \mathbf{p})\mathbf{P}_{T2}^{2})(2(\mathbf{P}_{T1} \cdot \mathbf{P}_{T2})^{2} - \mathbf{P}_{T1}^{2}\mathbf{P}_{T2}^{2})}{4(\mathbf{P}_{T1} \cdot \mathbf{P}_{T2})^{2} ((\mathbf{P}_{T1} \cdot \mathbf{P}_{T2})^{2} - \mathbf{P}_{T1}^{2}\mathbf{P}_{T2}^{2})} \right] \right] \end{array}$$

σ_{UU}

$$\sigma_{UU} = \left(1 + \cos^2 \theta\right) F_{UU}$$
$$-\sin^2 \theta \begin{bmatrix} F_{UU}^{\cos(2\phi)} \cos(2\phi) \\ + F_{UU}^{\cos(2\phi-\phi_h)} \cos(2\phi-\phi_h) \\ + F_{UU}^{\cos(2\phi-2\phi_h)} \cos(2\phi-2\phi_h) \end{bmatrix}$$

$$\begin{split} F_{UU} &= F_0^{f_1 \cdot \hat{u}_1} \\ F_{UU}^{\cos(2\phi)} &= \frac{q_T^2}{M_a M_b} F_{ab2}^{h_1^{\perp} \cdot \hat{u}_{1T}^{\perp}} \\ F_{UU}^{\cos(2\phi - \phi_h)} &= \frac{P_T q_T}{m M_a} F_{a2}^{h_1^{\perp} \cdot \hat{u}_{1T}^{h}} \\ F_{UU}^{\cos(2\phi - 2\phi_h)} &= \frac{P_T^2}{m M_a} F_{a1}^{h_1^{\perp} \cdot \hat{u}_{1T}^{h}} + \frac{P_T^2}{M_a M_b} F_{ab1}^{h_1^{\perp} \cdot \hat{u}_{1T}^{\perp}} \hat{u}_{1T}^{\perp} \end{split}$$

		Quark polarization		
		U L T		
on ition	U	*		*
ucle ariza	L			
N Pol	Т			

ECT*,Trento, Italy. Sep 26 – 30, 2022

 σ_{UL}

$$\sigma_{UL} = \left(1 + \cos^2 \theta\right) F_{UL}^{\sin(\phi_h)} \sin(\phi_h)$$
$$-\sin^2 \theta \begin{bmatrix} F_{UL}^{\sin(2\phi)} \sin(2\phi) \\ +F_{UL}^{\sin(2\phi-\phi_h)} \sin(2\phi-\phi_h) \\ +F_{UL}^{\sin(2\phi-2\phi_h)} \sin(2\phi-2\phi_h) \end{bmatrix}$$

σ_{UT}

$$\sigma_{UT} = (1 + \cos^2 \theta) \begin{bmatrix} F_{UT}^{\sin(\phi_b - \phi_h)} \sin(\phi_b - \phi_h) \\ + F_{UT}^{\sin(\phi_b)} \sin(\phi_b) \end{bmatrix}$$
$$- \sin^2 \theta \begin{bmatrix} F_{UT}^{\sin(2\phi + \phi_b)} \sin(2\phi + \phi_b) \\ + F_{UT}^{\sin(2\phi - \phi_b + \phi_h)} \sin(2\phi - \phi_b + \phi_h) \\ + F_{UT}^{\sin(2\phi + \phi_b - 3\phi_h)} \sin(2\phi + \phi_b - \phi_h) \\ + F_{UT}^{\sin(2\phi + \phi_b - 3\phi_h)} \sin(2\phi + \phi_b - 3\phi_h) \\ + F_{UT}^{\sin(2\phi - \phi_b - 2\phi_h)} \sin(2\phi - \phi_b - 2\phi_h) \\ + F_{UT}^{\sin(2\phi - \phi_b - 2\phi_h)} \sin(2\phi - \phi_b - 2\phi_h) \\ + F_{UT}^{\sin(2\phi - \phi_b - 2\phi_h)} \sin(2\phi - \phi_b - \phi_h) \\ + F_{UT}^{\sin(2\phi - \phi_b - 2\phi_h)} \sin(2\phi - \phi_b - \phi_h) \\ + F_{UT}^{\sin(2\phi - \phi_b - 2\phi_h)} \sin(2\phi - \phi_b - \phi_h) \\ + F_{UT}^{\sin(2\phi - \phi_b - \phi_h)} \sin(2\phi - \phi_b - \phi_h) \\ \end{bmatrix}$$

		Quark polarization		
		U	L	т
on tion	C			
ucle ariza	L			
Pol	Т	*		*

σ_{LU}

After integration over azimuthal angle of lepton scattering plane

only first term survives and gives access to $\hat{l}_1^{\perp h}$ fracture function

$$\sigma_{LL} = (1 + \cos^2 \theta) F_{LL}$$

$$+ \sin^2 \theta \begin{bmatrix} F_{LL}^{\cos(2\phi - 2\phi_h)} \cos(2\phi - 2\phi_h) \\ + F_{LL}^{\cos(2\phi - \phi_h)} \cos(2\phi - \phi_h) \\ + F_{LL}^{\cos(2\phi)} \cos(2\phi) \end{bmatrix}$$

		QuarkpolarizationULT		
on ition	U			
ucle ariza	L		*	*
N Pol	т			

σ_{LT}

$$\sigma_{LT} = \left(1 + \cos^{2}\theta\right) \begin{bmatrix} F_{LT}^{\cos(\phi_{b} - \phi_{h})} \cos(\phi_{b} - \phi_{h}) \\ + F_{LT}^{\cos(\phi_{b})} \cos(\phi_{b}) \end{bmatrix}$$

$$+ \sin^{2}\theta \begin{bmatrix} F_{LT}^{\cos(2\phi - \phi_{b} + \phi_{h})} \cos(2\phi - \phi_{b} + \phi_{h}) \\ + F_{LT}^{\cos(2\phi + \phi_{b})} \cos(2\phi + \phi_{b} - \phi_{h}) \\ + F_{LT}^{\cos(2\phi + \phi_{b} - 3\phi_{h})} \cos(2\phi + \phi_{b} - 3\phi_{h}) \\ + F_{LT}^{\cos(2\phi - \phi_{b} - 2\phi_{h})} \cos(2\phi - \phi_{b} - 2\phi_{h}) \\ + F_{LT}^{\cos(2\phi - \phi_{b} - 2\phi_{h})} \cos(2\phi - \phi_{b} - 2\phi_{h}) \\ + F_{LT}^{\cos(2\phi - \phi_{b} - 2\phi_{h})} \cos(2\phi - \phi_{b} - \phi_{h}) \\ + F_{LT}^{\cos(2\phi - \phi_{b} - 2\phi_{h})} \cos(2\phi - \phi_{b} - \phi_{h}) \\ + F_{LT}^{\cos(2\phi - \phi_{b} - \phi_{h})} \cos(2\phi - \phi_{b} - \phi_{h}) \\ + F_{LT}^{\cos(2\phi - \phi_{b} - \phi_{h})} \cos(2\phi - \phi_{b} - \phi_{h}) \\ \end{bmatrix}$$

Quark polarization

L

*

U

Т

*

σ_{TU}

$$\begin{split} \sigma_{TU} &= \left(1 + \cos^2 \theta\right) \begin{bmatrix} \sin(\phi_a - \phi_h) \sin(\phi_a - \phi_h) \\ + F_{TU}^{\sin(\phi_a)} \sin(\phi_a) \\ + F_{TU}^{\sin(\phi_a + \phi_h)} \sin(\phi_a + \phi_h) \\ + F_{TU}^{\sin(\phi_a - 2\phi_h)} \sin(\phi_a - 2\phi_h) \end{bmatrix} \\ &+ \sin^2 \theta \begin{bmatrix} \sin(2\phi - \phi_a - \phi_h) \sin(2\phi - \phi_a - \phi_h) \\ + F_{TU}^{\sin(2\phi - \phi_a)} \sin(2\phi - \phi_a) \\ + F_{TU}^{\sin(2\phi + \phi_a - 3\phi_h)} \sin(2\phi + \phi_a - 3\phi_h) \\ + F_{TU}^{\sin(2\phi + \phi_a - 2\phi_h)} \sin(2\phi + \phi_a - 2\phi_h) \\ + F_{TU}^{\sin(2\phi + \phi_a - 2\phi_h)} \sin(2\phi + \phi_a - 2\phi_h) \\ + F_{TU}^{\sin(2\phi + \phi_a)} \sin(2\phi + \phi_a) \\ \end{bmatrix}$$

		Quark polarization		
		ULT		
on tion	U	*	*	*
ucle ariza	L			
N IO	т			

σ_{TL}

$$\begin{split} \sigma_{TL} &= \left(1 + \cos^2 \theta\right) \begin{bmatrix} F_{TL}^{\cos(\phi_a - \phi_h)} \cos(\phi_a - \phi_h) \\ + F_{TL}^{\cos(\phi_a)} \cos(\phi_a) \\ + F_{TL}^{\cos(\phi_a + \phi_h)} \cos(\phi_a + \phi_h) \\ + F_{TL}^{\cos(\phi_a - 2\phi_h)} \cos(\phi_a - 2\phi_h) \end{bmatrix} \\ &+ \sin^2 \theta \begin{bmatrix} F_{TL}^{\cos(2\phi + \phi_a - 3\phi_h)} \cos(2\phi + \phi_a - 3\phi_h) \\ + F_{TL}^{\cos(2\phi + \phi_a - 2\phi_h)} \cos(2\phi + \phi_a - 2\phi_h) \\ + F_{TL}^{\cos(2\phi + \phi_a)} \cos(2\phi + \phi_a) \\ + F_{TL}^{\cos(2\phi - \phi_a - \phi_h)} \cos(2\phi - \phi_a - \phi_h) \\ + F_{TL}^{\cos(2\phi - \phi_a)} \cos(2\phi - \phi_a) \end{bmatrix} \end{bmatrix}$$

		Quark polarization		
		U	L	т
on ition	U			
ucle ariza	L		*	*
N Pol	Т			

$$\sigma_{TT} = (1 + \cos^{2}\theta) \begin{bmatrix} F_{TT}^{\cos(\phi_{a}-\phi_{b})}\cos(\phi_{a}-\phi_{b}) \\ + F_{TT}^{\cos(\phi_{a}-\phi_{b})}\cos(\phi_{a}-\phi_{b}) \\ + F_{TT}^{\cos(\phi_{a}-\phi_{b}-\phi_{b})}\cos(\phi_{a}-\phi_{b}-\phi_{b}) \\ + F_{TT}^{\cos(2\phi+\phi_{a}-\phi_{b}-2\phi_{b})}\cos(2\phi+\phi_{a}-\phi_{b}-2\phi_{b}) \\ + F_{TT}^{\cos(2\phi+\phi_{a}-\phi_{b}$$

Structure functions of σ_{UU} , σ_{UL} , σ_{UT}

$$\begin{split} F_{UU} &= F_{0}^{f_{1}\cdot\hat{u}_{1}} \\ F_{UU}^{\cos(2\phi)} &= \frac{q_{T}^{2}}{M_{a}M_{b}} F_{ab2}^{h_{1}^{\perp}\cdot\hat{u}_{1T}^{\star}} \\ F_{UU}^{\cos(2\phi-\phi_{h})} &= \frac{P_{T}q_{T}}{mM_{a}} F_{a2}^{h_{1}^{\perp}\cdot\hat{u}_{1T}^{\star}} \\ F_{UU}^{\cos(2\phi-2\phi_{h})} &= \frac{P_{T}^{2}}{mM_{a}} F_{a1}^{h_{1}^{\perp}\cdot\hat{u}_{1T}^{\star}} + \frac{P_{T}^{2}}{M_{a}M_{b}} F_{ab1}^{h_{1}^{\perp}\cdot\hat{u}_{1T}^{\star}} \\ F_{UL}^{\sin(2\phi-\phi_{h})} &= \frac{P_{T}q_{T}}{mM_{a}} F_{a2}^{h_{1}^{\perp}\cdot\hat{u}_{1T}^{\star}} + \frac{P_{T}^{2}}{M_{a}M_{b}} F_{ab1}^{h_{1}^{\perp}\cdot\hat{u}_{1T}^{\star}} \\ F_{UU}^{\sin(2\phi-\phi_{h})} &= \frac{P_{T}q_{T}}{mM_{a}} F_{a1}^{h_{1}^{\perp}\cdot\hat{u}_{1T}^{\star}} + \frac{P_{T}^{2}}{M_{a}M_{b}} F_{ab1}^{h_{1}^{\perp}\cdot\hat{u}_{1T}^{\star}} \\ F_{UL}^{\sin(2\phi-\phi_{h})} &= \frac{P_{T}q_{T}}{mM_{b}} F_{b2}^{h_{1}^{\perp}\cdot\hat{u}_{1T}^{\star}} \\ F_{UL}^{\sin(2\phi-\phi_{h})} &= \frac{q_{T}^{2}}{M_{a}M_{b}} F_{ab2}^{h_{1}^{\perp}\cdot\hat{u}_{1T}^{\star}} \\ F_{UL}^{\sin(2\phi-\phi_{h})} &= \frac{P_{T}q_{T}}{M_{a}M_{b}} F_{ab}^{h_{1}^{\perp}\cdot\hat{u}_{1T}^{\star}} \\ F_{UL}^{\sin(2\phi-\phi_{h})} &= \frac{P_{T}q_{T}}{M_{a}M_{b}} F_{ab2}^{h_{1}^{\perp}\cdot\hat{u}_{1T}^{\star}} \\ F_{UL}^{\sin(2\phi-\phi_{h})} &= \frac{P_{T}q_{T}}{M_{a}} F_{ab}^{h_{1}^{\perp}\cdot\hat{u}_{1T}^{\star}} \\ F_{UL}^{\sin(2\phi-\phi_{h})} &= \frac{P_{T}q_{T}}{M_{a}} F_{ab}^{h_{1}^{\perp}\cdot\hat{u}_{1T}^{\star}$$

$$\begin{split} F_{UT}^{\sin(\phi,-\phi_{h})} &= \frac{P_{T}}{m} F_{0}^{f_{1}i_{1}^{h}} + \frac{P_{T}}{M_{b}} F_{b1}^{f_{1}i_{1}^{h}}, \quad F_{UT}^{\sin(\phi_{h})} = \frac{q_{T}}{M_{b}} F_{b2}^{f_{1}i_{1}^{h}} \\ F_{UT}^{\sin(2\phi-\phi_{h}+\phi_{h})} &= -\frac{P_{T}q_{T}^{2}}{2mM_{a}M_{b}} F_{ab2}^{h_{1}^{h}i_{1}^{h}}, \quad F_{UT}^{\sin(2\phi+\phi_{h})} = \frac{q_{T}^{3}}{2M_{a}M_{b}^{2}} F_{abb3}^{h_{1}^{h}i_{1}^{h}}, \quad F_{UT}^{\sin(2\phi+\phi_{h}-\phi_{h})} = \frac{P_{T}q_{T}^{2}}{2M_{a}M_{b}^{2}} F_{abb4}^{h_{1}^{h}i_{1}^{h}} \\ F_{UT}^{\sin(2\phi+\phi_{h}-3\phi_{h})} &= \frac{P_{T}^{3}}{2m^{2}M_{a}} F_{a1}^{h_{1}^{h}i_{1}^{h}} + \frac{P_{T}^{3}}{2M_{a}M_{b}^{2}} F_{abb1}^{h_{1}^{h}i_{1}^{h}}, \quad F_{UT}^{\sin(2\phi-\phi_{h}-2\phi_{h})} = \frac{P_{T}^{2}q_{T}}{2mM_{a}M_{b}} F_{ab3}^{h_{1}^{h}i_{1}^{h}} \\ F_{UT}^{\sin(2\phi+\phi_{h}-2\phi_{h})} &= \frac{P_{T}^{2}q_{T}}{2m^{2}M_{a}} F_{a2}^{h_{1}^{h}i_{1}^{h}} + \frac{P_{T}^{2}q_{T}}{2M_{a}M_{b}^{2}} F_{abb2}^{h_{1}^{h}i_{1}^{h}} \\ F_{UT}^{\sin(2\phi-\phi_{h}-2\phi_{h})} &= \left(\frac{P_{T}}{M_{a}} F_{a1}^{h_{1}^{h}i_{1}^{h}} + \frac{P_{T}^{2}q_{T}}{2M_{a}M_{b}^{2}} F_{abb2}^{h_{1}^{h}i_{1}^{h}} \\ + \frac{P_{T}^{2}q_{T}}{2M_{a}M_{b}^{2}} F_{abb2}^{h_{1}^{h}i_{1}^{h}} \\ F_{UT}^{\sin(2\phi-\phi_{h}-\phi_{h})} &= \left(\frac{P_{T}}{M_{a}} F_{a1}^{h_{1}^{h}i_{1}^{h}} + \frac{P_{T}^{2}q_{T}}{2m^{2}M_{a}} F_{a1}^{h_{1}^{h}i_{1}^{h}} \\ + \frac{P_{T}^{2}q_{T}}{2M_{a}M_{b}^{2}} F_{abb1}^{h_{1}^{h}i_{1}^{h}} \\ + \frac{P_{T}^{2}q_{T}}{2M_{a}M_{b}^{2}} F_{abb1}^{h_{1}^{h}i_{1}^{h}} \\ + \frac{P_{T}^{2}q_{T}}{2M_{a}M_{b}^{2}} F_{abb1}^{h_{1}^{h}i_{1}^{h}} \\ + \frac{P_{T}^{2}q_{T}}{2M_{a}M_{b}^{2}} F_{abb5}^{h_{1}^{h}i_{1}^{h}} \\ + \frac{P_{T}^{2}q_{T}}{2M_{a}M_{b}^{2}} F_{abb3}^{h_{1}^{h}i_{1}^{h}} \\ + \frac{P_{T}^{2}q_{T}}{2M_{a}M_{b}^{2}} F_{abb3}^{h_{1}^{h}i_{1}^{h}} \\ - \frac{P_{T}^{2}q_{T}}{2mM_{a}M_{b}} F_{ab3}^{h_{1}^{h}i_{1}^{h}} \\ + \frac{P_{T}^{2}q_{T}}{2M_{a}M_{b}^{2}} F_{abb2}^{h_{1}^{h}i_{1}^{h}} \\ + \frac{P_{T}^{2}q_{T}}{2mM_{a}M_{b}} F_{ab3}^{h_{1}^{h}i_{1}^{h}} \\ - \frac{P_{T}^{2}q_{T}}{2mM_{a}M_{b}} F_{ab3}^{h_{1}^{h}i_{1}^{h}} \\ + \frac{P_{T}^{2}q_{T}}{2mM_{a}M_{b}^{2}} F_{abb2}^{h_{1}^{h}i_{1}^{h}} \\ - \frac{P_{T}^{2}q_{T}}{2mM_{a}M_{b}} F_{ab3}^{h_{1}^{h}i_{1}^{h}} \\ + \frac{P_{T}^{2}q_{T}}{2mM_{a}M_{$$

Structure functions of σ_{LU} , σ_{LL}

$$\begin{split} F_{LL} &= F_0^{g_{1L} \cdot \hat{l}_{1L}} \\ F_{LL}^{\cos(2\phi - 2\phi_h)} &= \frac{P_T^2}{mM_a} F_{a1}^{h_{1L}^\perp \cdot \hat{l}_{1T}^h} + \frac{P_T^2}{M_a M_b} F_{ab1}^{h_{1L}^\perp \cdot \hat{l}_{1T}^\perp} \\ F_{LL}^{\cos(2\phi - \phi_h)} &= \frac{P_T q_T}{mM_a} F_{a2}^{h_{1L}^\perp \cdot \hat{l}_{1T}^h} \\ F_{LL}^{\cos(2\phi)} &= \frac{q_T^2}{M_a M_b} F_{ab2}^{h_{1L}^\perp \cdot \hat{l}_{1T}^\perp} \end{split}$$

Structure functions of σ_{LT}

$$\begin{split} F_{LT}^{\cos(q,-\phi_h)} &= \frac{P_T}{m} F_0^{g_{11},i_{1L}^h} + \frac{P_T}{M_b} F_{b1}^{g_{11},i_{1L}^h} \\ F_{LT}^{\cos(q,-\phi_h)} &= \frac{q_T}{M_b} F_{b2}^{g_{11},i_{1L}^h} \\ F_{LT}^{\cos(q,-\phi_h)} &= -\frac{P_T q_T^2}{2mM_a M_b} F_{ab2}^{h_{1L}^h,i_{1T}^h} \\ F_{LT}^{\cos(2\phi+\phi_h)} &= -\frac{P_T q_T^2}{2mM_a M_b} F_{ab2}^{h_{1L}^h,i_{1T}^h} \\ F_{LT}^{\cos(2\phi+\phi_h)} &= \frac{q_T^3}{2M_a M_b^2} F_{abb3}^{h_{1L}^h,i_{1T}^h} \\ F_{LT}^{\cos(2\phi+\phi_h-\phi_h)} &= \frac{P_T q_T^2}{2m^2 M_a} F_{a1}^{h_{1L}^h,i_{1T}^h} \\ F_{LT}^{\cos(2\phi+\phi_h-\phi_h)} &= \frac{P_T^2 q_T}{2m^2 M_a} F_{a1}^{h_{1L}^h,i_{1T}^h} \\ F_{LT}^{\cos(2\phi+\phi_h-\phi_h)} &= \frac{P_T^2 q_T}{2m^2 M_a} F_{ab}^{h_{1L}^h,i_{1T}^h} \\ F_{LT}^{\cos(2\phi+\phi_h-\phi_h)} &= \frac{P_T^2 q_T}{2m^2 M_a} F_{ab}^{h_{1L}^h,i_{1T}^h} \\ F_{LT}^{\cos(2\phi+\phi_h-\phi_h)} &= \frac{P_T^2 q_T}{2m^2 M_a} F_{a2}^{h_{1L}^h,i_{1T}^h} \\ F_{LT}^{\cos(2\phi+\phi_h-\phi_h)} &= \frac{P_T^2 q_T}{2m^2 M_a} F_{a2}^{h_{1L}^h,i_{1T}^h} \\ F_{LT}^{\cos(2\phi+\phi_h-\phi_h)} &= \frac{P_T^2 q_T}{2m^2 M_a} F_{a2}^{h_{1L}^h,i_{1T}^h} \\ F_{LT}^{\cos(2\phi+\phi_h-\phi_h)} &= \left(\frac{P_T q_T}{M_a} F_{a1}^{h_{1L}^h,i_{1T}^h} + \frac{P_T^2 q_T}{2m^2 M_a} F_{a1}^{h_{1L}^h,i_{1T}^h} \\ + \frac{P_T q_T^2}{2m^2 M_a} F_{a2}^{h_{1L}^h,i_{1T}^h} \\ + \frac{P_T q_T^2}{2m^2 M_a} F_{a2}^{h_{1L}^h,i_{1T}^h} \\ + \frac{P_T q_T^2}{2m^2 M_a} F_{a2}^{h_{1L}^h,i_{1T}^h} \\ + \frac{P_T q_T^2 q_T}{2m^2 M_a} F_{a2}^{h_{1L}^h,i_{1T}^h} \\ + \frac{P_T q_T^2 q_T}{2m M_a M_b} F_{a2}^{h_{1L}^h,i_{1T}^h} \\ + \frac{P_T q_T^2 q_T}{2m M_a M_b} F_{abb5}^{h_{1L}^h,i_{1T}^h} \\ + \frac{P_T q_T^2 q_T}{2m M_a M_b} F_{abb6}^{h_{1L}^h,i_{1T}^h} \\ + \frac{P_T q_T^2 q_T}{2m M_a M_b} F_{abb6}^{h_{1L}^h$$

Structure functions of σ_{TU}

$$\begin{split} F_{TU}^{\sin\left(\phi_{a}-\phi_{h}\right)} &= -\frac{P_{T}}{M_{a}} F_{a1}^{f_{1T}^{\perp}\cdot\hat{u}_{1}} - \frac{P_{T}q_{T}^{2}}{2mM_{a}M_{b}} F_{ab2}^{s_{1T}\cdot\hat{u}_{1L}^{\perp h}} - \frac{P_{T}}{mM_{a}M_{b}} F_{ab4}^{s_{1T}\cdot\hat{u}_{1L}^{\perp h}} \\ F_{TU}^{\sin\left(\phi_{a}\right)} &= -\frac{q_{T}}{M_{a}} F_{a2}^{f_{1T}^{\perp}\cdot\hat{u}_{1}} + \frac{P_{T}^{2}q_{T}}{2mM_{a}M_{b}} F_{ab3}^{s_{1T}\cdot\hat{u}_{1L}^{\perp h}} \\ F_{TU}^{\sin\left(\phi_{a}+\phi_{h}\right)} &= \frac{P_{T}q_{T}^{2}}{2mM_{a}M_{b}} F_{ab2}^{s_{1T}\cdot\hat{u}_{1L}^{\perp h}} \\ F_{TU}^{\sin\left(\phi_{a}-2\phi_{h}\right)} &= -\frac{P_{T}^{2}q_{T}}{2mM_{a}M_{b}} F_{ab3}^{s_{1T}\cdot\hat{u}_{1L}^{\perp h}} \\ F_{TU}^{\sin\left(2\phi-\phi_{a}-\phi_{h}\right)} &= -\frac{P_{T}}{M_{b}} F_{b1}^{h_{1}\cdot\hat{u}_{1T}^{\perp}} - \frac{P_{T}}{m} F_{0}^{h_{1}\cdot\hat{u}_{1L}^{\perp h}} \\ F_{TU}^{\sin\left(2\phi-\phi_{a}\right)} &= -\frac{q_{T}F_{b2}^{h_{1}\cdot\hat{u}_{1T}^{\perp}}}{M_{b}} \\ F_{TU}^{\sin\left(2\phi+\phi_{a}-3\phi_{h}\right)} &= -\frac{P_{T}^{2}q_{T}}{2mM_{a}^{2}} F_{aa1}^{h_{1}^{\perp}\cdot\hat{u}_{1T}^{\perp}} - \frac{P_{T}^{2}q_{T}^{2}}{2M_{a}^{2}M_{b}} F_{aab4}^{h_{1}^{\perp}\cdot\hat{u}_{1T}^{\perp}} \\ F_{TU}^{\sin\left(2\phi+\phi_{a}-3\phi_{h}\right)} &= -\frac{P_{T}^{2}q_{T}}{2mM_{a}^{2}} F_{aa2}^{h_{1}^{\perp}\cdot\hat{u}_{1T}^{\perp}} - \frac{P_{T}^{2}q_{T}^{2}}{2M_{a}^{2}M_{b}} F_{aab4}^{h_{1}^{\perp}\cdot\hat{u}_{1T}^{\perp}} \\ F_{TU}^{\sin\left(2\phi+\phi_{a}-2\phi_{h}\right)} &= -\frac{P_{T}^{2}q_{T}}{2mM_{a}^{2}} F_{aab2}^{h_{1}^{\perp}\cdot\hat{u}_{1T}^{\perp}} \\ F_{TU}^{\sin\left(2\phi+\phi_{a}-2\phi_{h}\right)} &= -\frac{P_{T}^{2}q_{T}}{2M_{a}^{2}M_{b}} F_{aab2}^{h_{1}^{\perp}\cdot\hat{u}_{1T}^{\perp}} \\ F_{TU}^{\sin\left(2\phi+\phi_{a}-2\phi_{h}\right)} &= -\frac{P_{T}^{2}q_{T}}{2M_{a}^{2}M_{b}} F_{aab2}^{h_{1}^{\perp}\cdot\hat{u}_{1T}^{\perp}} \\ F_{TU}^{\sin\left(2\phi+\phi_{a}-2\phi_{h}\right)} &= -\frac{Q_{T}^{2}q_{T}}{2M_{a}^{2}M_{b}} F_{aab2}^{h_{1}^{\perp}\cdot\hat{u}_{1T}^{\perp}} \\ F_{TU}^{\sin\left(2\phi+\phi_{a}-2\phi_{h}\right)} &= -\frac{Q_{T}^{2}q_{T}}{2M_{a}^{2}M_{b}} F_{aab3}^{h_{1}^{\perp}\cdot\hat{u}_{1T}^{\perp}} \\ F_{TU}^{\sin\left(2\phi+\phi_{a}-2\phi_{h}\right)} &= -\frac{Q_{T}^{2}q_{T}}{2M_{a}^{2}M_{b}} F_{aab3}^{h_{1}^{\perp}\cdot\hat{u}_{1T}^{\perp}} \\ F_{TU}^{\sin\left(2\phi+\phi_{a}\right)} &= -\frac{$$

Structure functions of σ_{TL}

$$\begin{split} F_{TL}^{\cos(\phi_{a}-\phi_{h})} &= \frac{P_{T}}{M_{a}} F_{a1}^{\beta_{1}T \cdot \hat{l}_{1L}} - \frac{P_{T}q_{T}^{2}}{2mM_{a}M_{b}} F_{ab2}^{f_{1}T \cdot \hat{u}_{1L}^{\perp h}} - \frac{P_{T}}{mM_{a}M_{b}} F_{ab4}^{f_{1}T \cdot \hat{u}_{1L}^{\perp h}} \\ F_{TL}^{\cos(\phi_{a})} &= \frac{q_{T}}{M_{a}} F_{a2}^{\beta_{1}T \cdot \hat{l}_{1L}} + \frac{P_{T}^{2}q_{T}}{2mM_{a}M_{b}} F_{ab3}^{f_{1}T \cdot \hat{u}_{1L}^{\perp h}} \\ F_{TL}^{\cos(\phi_{a}+\phi_{h})} &= \frac{P_{T}q_{T}^{2}}{2mM_{a}M_{b}} F_{ab2}^{f_{1}T \cdot \hat{u}_{1L}^{\perp h}} \\ F_{TL}^{\cos(\phi_{a}-2\phi_{h})} &= -\frac{P_{T}^{2}q_{T}}{2mM_{a}M_{b}} F_{ab3}^{f_{1}T \cdot \hat{u}_{1L}^{\perp h}} \\ F_{TL}^{\cos(2\phi+\phi_{a}-3\phi_{h})} &= \frac{P_{T}^{2}q_{T}}{2mM_{a}^{2}} F_{aa1}^{h_{1}T \cdot \hat{l}_{1}^{\perp}T} + \frac{P_{T}^{3}}{2M_{a}^{2}M_{b}} F_{aab1}^{h_{1}T \cdot \hat{l}_{1}^{\perp}T} \\ F_{TL}^{\cos(2\phi+\phi_{a}-2\phi_{h})} &= \frac{P_{T}^{2}q_{T}}{2M_{a}^{2}M_{b}} F_{aab2}^{h_{1}T \cdot \hat{l}_{1}^{\perp}T} \\ F_{TL}^{\cos(2\phi+\phi_{a}-2\phi_{h})} &= \frac{q_{T}^{3}}{2M_{a}^{2}M_{b}} F_{aab2}^{h_{1}T \cdot \hat{l}_{1}^{\perp}T} \\ F_{TL}^{\cos(2\phi+\phi_{a}-2\phi_{h})} &= \frac{q_{T}^{3}}{2M_{a}^{2}M_{b}} F_{aab2}^{h_{1}T \cdot \hat{l}_{1}^{\perp}T} \\ F_{TL}^{\cos(2\phi+\phi_{a}-2\phi_{h})} &= \frac{q_{T}^{3}}{2M_{a}^{2}M_{b}} F_{aab2}^{h_{1}T \cdot \hat{l}_{1}^{\perp}T} \\ F_{TL}^{\cos(2\phi-\phi_{a}-\phi_{h})} &= \frac{q_{T}}{M_{b}} F_{b1}^{h_{1} \cdot \hat{l}_{1}^{\perp}T} \\ F_{TL}^{\cos(2\phi-\phi_{a}-\phi_{h})} &= \frac{q_{T}}{M_{b}} F_{b1}^{h_{1} \cdot \hat{l}_{1}^{\perp}T} \\ F_{TL}^{\cos(2\phi-\phi_{a})} &= \frac{q_{T}}{M_{b}} F_{b1}^{h_{1} \cdot \hat{l}_{1}^{\perp}T} \\ F_{TL}^{\cos(2\phi-\phi_{a})} &= \frac{q_{T}}}{M_{b}} F_{b1}^{h_{1} \cdot \hat{l}_{1}^{\perp}T} \\ F_{TL}^{\cos(2\phi-\phi_{a})} &= \frac{q_{T}}{M_{b}} F_{b2}^{h_{1} \cdot \hat{l}_{1}^{\perp}T} \\ F_{TL}^{\cos(2\phi-\phi_{a})} &= \frac{q_{T}}}{M_{b}} F_{b2}^{h_{1} \cdot \hat{l}_{1}^{\perp}T} \\ F_{TL}^{\cos(2\phi-\phi_{a})} \\ F_{TL}^{\cos(2\phi-\phi_{a})} &= \frac{q_{T}}}{M_{b}} F_{b2}^{h_{1} \cdot \hat{l}_{1}^{\perp}T} \\ F_{TL}^{\cos(2\phi-\phi_{a})} \\ F_{TL}^{\cos(2\phi-$$

Structure functions σ_{TT}

$$\begin{split} F_{TT}^{\cos(q_{0}-q_{0})} &= \begin{pmatrix} -\frac{p_{T}^{2}}{2m_{M}} F_{al}^{\dagger 1}^{\dagger 1$$

ECT*,Trento, Italy. Sep 26 – 30, 2022

Aram Kotzinian

58