SIDIS in Hall C at Higher Energies

Dave Gaskell
Opportunities With JLab Energy and Luminosity Upgrade September 26-30, 2022

1. Hall C 6 and 12 GeV SIDIS Results/Program
2. Measurements at Higher Energy

SIDIS with Modest Acceptance

Hall C uses magnetic focusing spectrometers with moderate acceptance

Optimal program:
\rightarrow Targeted measurements in specific regions of phase space (i.e., low rate processes)
\rightarrow Absolute cross sections, L-T separations, charge ratios

Complementary to large acceptance devices that can access large phase space all at once

Excellent control of point-to-point systematic uncertainties required for precise L-T separations

Identical acceptance for positive and negative polarity
\rightarrow Precision measurement of charged meson ratios
\rightarrow Ideally suited for focusing spectrometers
\rightarrow One of the drivers for SHMS design

SHMS and HMS in Experimental Hall C

Spectrometer properties

HMS: Electron arm
Nominal capabilities:
$\mathrm{d} \Omega \sim 6 \mathrm{msr}, P_{0}=0.5-7 \mathrm{GeV} / \mathrm{c}$
$\theta_{0}=10.5$ to 80 degrees
e ID via calorimeter and gas
Cherenkov
SHMS: Pion arm
Nominal capabilities:
$\mathrm{d} \Omega \sim 4 \mathrm{msr}, P_{0}=1-11 \mathrm{GeV} / \mathrm{c}$
$\theta_{0}=5.5$ to 40 degrees
m:K:p separation via heavy gas
Cherenkov and aerogel
detectors

Neutral Particle Spectrometer (NPS)

Calorimeter + sweeper magnet adds capability to detect neutral particles: γ and π^{0}
\rightarrow NPS mounted on SHMS carriage - allows easy angle changes
\rightarrow In addition to broadening SIDIS program, enables DVCS, DVMP $\left(\pi^{0}\right)$, WACS measurements

π^{0} avoids complications from vector meson decay, smaller radiative tails from exclusive pion production

NPS installation will begin in spring 2023

Hall C SIDIS Results from 6 GeV

E10-008: SIDIS $\pi+/ \pi-$ cross sections and ratios

T. Navasardyan et al. PRL 98, 022001

Surprisingly consistent with expectations from higher energy experiments

R. Asaturyan et al. Phys. Rev. C 85, 015202

Hall C SIDIS Results from 6 GeV

Hall C experiment E00-108 (6 GeV):
\rightarrow Measured P_{T} dependent cross sections in semiinclusive pion production
\rightarrow Measured both $\pi+$ and π -
\rightarrow Proton and deuteron (neutron) targets
\rightarrow Combination allows (in principle) disentanglement of quark and fragmentation widths

Simple model, with several assumptions:
\rightarrow factorization valid
\rightarrow fragmentation functions do not depend on quark flavor
\rightarrow transverse momentum widths of quark and fragmentation functions are Gaussian and can be added in quadrature
\rightarrow more ...

Hall C @ 12 GeV- P_{T} Dependent Cross Sections

E12-09-017: P_{T} Dependance of $\pi^{\dagger-}$ Production

$$
\sigma=\sum_{q} e_{q}^{2} f(x) \otimes D(z)
$$

Precise cross section measurements with HMS and SHMS
\rightarrow Demonstrate understanding of reaction mechanism, test factorization
\rightarrow Able to carry out precise comparisons of charge states, $\pi+/ \pi-$
\rightarrow Can do meaningful measurements at low p_{T} (down to 0.05 GeV) due to excellent momentum and angle resolutions!

HMS-SHMS P_{T} / ϕ acceptance

Simulated, from P_{T}-SIDIS experiment $(11 \mathrm{GeV})$

Full ϕ coverage over limited P_{T} range \rightarrow larger P_{T} covers narrow range in ϕ

11 GeV SIDIS Preliminary Analysis

Multpilicites
\rightarrow Data with and without diffractive ρ subtraction
\rightarrow Curves: DSS FF w/cteq PDFs

11 GeV SIDIS Preliminary Analysis

P_{T} widths

\rightarrow Data with and without diffractive ρ subtraction
\rightarrow Curves:
$\left\langle\mathrm{P}_{\mathrm{T}^{2}}\right\rangle=\left\langle\mathrm{pt}^{2}\right\rangle+\mathrm{z}^{2}\left\langle\mathrm{k}_{\mathrm{T}}{ }^{2}\right\rangle$
$\left\langle\mathrm{P}_{\mathrm{T}}{ }^{2}\right\rangle$ and $\left\langle\mathrm{k}_{\mathrm{T}}{ }^{2}\right\rangle$ taken to be $0.2 \mathrm{GeV}^{2}$

$$
y=M_{0} b e^{-b p_{T}^{2}}\left(1+A p_{T} \cos \phi\right)
$$

11 GeV SIDIS Preliminary Analysis

Cos(phi) term:
\rightarrow Data with and without diffractive ρ subtraction
\rightarrow "A" generally close to zero or positive
\rightarrow Cahn effect would give A<0

Analysis from Peter Bosted

$$
y=M_{0} b e^{-b p_{T}^{2}}\left(1+A p_{T} \cos \phi\right)
$$

Hall C @ 12 GeV - Precise π^{+} / π^{r} Ratios (low P_{T})

E12-09-002: Charge Symmetry Violating Quark Distributions via π^{+} / π in SIDIS

Ratio of π^{+} / π cross sections sensitive to CSV quark distributions

$$
R_{Y}(x, z)=\frac{Y^{D \pi^{-}}(x, z)}{Y^{D \pi^{+}}(x, z)} \quad \begin{aligned}
& \delta d-\delta u \quad \text { where } \\
& \delta d=d^{p}-u^{n} \text { and } \delta u=u^{p}-d^{n}
\end{aligned}
$$

$\frac{\mathrm{H}\left(\pi^{+}+\pi^{-}\right)}{\mathrm{D}\left(\pi^{+}+\pi^{-}\right)}$

Hall C 12 GeV: $R=\sigma_{L} / \sigma_{T}$ in SIDIS

$$
\begin{aligned}
\frac{d \sigma}{d x d y d \psi d z d \phi_{h} d P_{h, t}^{2}}=\frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right)\left\{F_{U U, T}+\varepsilon F_{U U, L}+\right. \\
\left.\sqrt{2 \varepsilon(1+\varepsilon)} \cos \phi_{h} F_{U U}^{\cos \phi_{h}}+\varepsilon \cos \left(2 \phi_{h}\right) F_{U U}^{\cos \left(2 \phi_{h}\right)}+\lambda_{e} \sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{h} F_{L U}^{\sin \phi_{h}}\right\}
\end{aligned}
$$

\rightarrow integrate over ϕ, unpolarized beam, only L and T terms remain DIS $\rightarrow F\left(x, Q^{2}\right) \quad$ SIDIS $\rightarrow F\left(x, Q^{2}, z, P_{T}\right)$

Knowledge of $R=\sigma_{L} / \sigma_{T}$ in SIDIS is essentially non-existing!
Integrated over z, p_{T}, hadron species $R_{S I D / S} \rightarrow R_{D / S}$
$\rightarrow R_{\text {SIDIS }}$ may vary with z, p_{T}
\rightarrow Is $R_{\text {SIDIS }}$ the same for $\pi^{+}, \pi^{-}\left(\mathrm{K}^{+}, \mathrm{K}^{-}\right)$? H and D ?
$\rightarrow R_{S I D I S}=R_{D I S}$ a test of quark fragmentation
\rightarrow How does R transition from SIDIS to exclusive?

Hall C 12 GeV SIDIS Program - L-T Separations

E12-06-104: Measurement of the Ratio $\mathrm{R}=\sigma_{\mathrm{L}} / \sigma_{T}$ in Semi-Inclusive Deep-Inelastic Scattering

Precise measurements of $R_{\text {SIDIS }}$ in

$$
e+p \rightarrow e^{\prime}+\pi^{+/-+} X, e+D \rightarrow e^{\prime}+\pi^{+/-+X}
$$

$L-T$ separation requires excellent understanding of acceptance, control of point-to-point systematic errors
\rightarrow ideally suited to Hall C equipment at 12 GeV

1. Scans in z at $Q^{2}=2.0(x=0.2)$ and $4.0 \mathrm{GeV}^{2}(x$ $=0.4) \rightarrow$ behavior of σ_{L} / σ_{T} for large z.
2. Cover $Q^{2}=1.5-5.0 \mathrm{GeV}^{2}, \rightarrow$ both H and D at $Q^{2}=2 \mathrm{GeV}^{2}$
3. P_{T} up to $\sim 1 \mathrm{GeV}$. Coverage in ϕ is excellent (o.k.) up to $P_{T}=0.2(0.4) \mathrm{GeV}$.

$\mathbf{R}=\sigma_{\mathrm{L}} / \sigma_{\mathrm{T}}$ in SIDIS (ep $\rightarrow \mathrm{e}^{\prime} \pi^{+/-\mathrm{X}}$)

\leadsto

12 GeV Hall C SIDIS Program - HMS+SHMS

Accurate cross sections for validation of SIDIS
factorization framework and for L/T separations

12 GeV Hall C SIDIS Program - HMS+SHMS+NPS

Accurate cross sections for validation of SIDIS
factorization framework and for L/T separations

Charged pions:

\square E12-06-104
L / T scan in ($\mathrm{z}, \mathrm{P}_{\mathrm{T}}$) No scan in Q^{2} at fixed x : $\mathrm{R}_{\mathrm{DIS}}\left(\mathrm{Q}^{2}\right)$ known

- E12-09-017

Scan in (x, z, P_{T})

+ scan in Q^{2} at fixed x

E12-09-002

+ scans in z

22 GeV Hall C SIDIS Phase Space - HMS+SHMS

Assumptions: HMS + SHMS minimum angle constraints unchanged
\rightarrow Increase in HMS maximum momentum (higher field magnets)
\rightarrow Smaller HMS angle may be possible, but would require special bender like SHMS

6 GeV
phase
space

18 GeV phase
space
22 GeV phase
space

Possible Measurements
\rightarrow Additional L-T
separations: expanded x / Q^{2}
\rightarrow Large P_{T}, cross sections and ratios in particular phase space
\rightarrow Measurements of cross sections and ratios at largest Q^{2} and x

Measurements at 22 GeV : Parallel Kinematics

HMS+SHMS has excellent momentum/angle resolution
\rightarrow Complete ϕ coverage at low P_{T}

x	$Q 2$	z
0.26	7	$0.4-0.7$
0.37	10	$0.4-0.7$
0.38	12	$0.36-0.64$
0.51	17	$0.33-0.58$
0.54	15	$0.4-0.7$

$P_{T}=0-0.5$
$W^{\prime}>2 \mathrm{GeV}$ for
all settings

~ 45 days
assuming $70 \mu \mathrm{~A}$

No modifications to either HMS or SHMS needed for these measurements

Projections from Peter Bosted

Hall C SIDIS Phase Space - Smaller HMS angle

Measurements at 22 GeV : Large P_{T}

Access to large P_{T} by rotating SHMS away from q-vector \rightarrow Interference term contribution difficult to constrain \rightarrow Complicates possible L-T separations

This $\mathrm{x} / \mathrm{Q}^{2}$ assumes upgraded HMS
$\frac{d \sigma}{d x d y d z d p_{T}^{2} d \phi}=\frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\epsilon)}\left[F_{T}+\epsilon F_{L}+\sqrt{2 \epsilon(1+\epsilon)} \cos \phi F_{L T}+\epsilon \cos 2 \phi F_{T T}\right]$

Jefferson Lab
Projected rates
$\rightarrow 10 \mathrm{~cm}$ LH2 target
$\rightarrow 80 \mu \mathrm{~A}$
$\rightarrow 40 \mathrm{MeV}$ bins in P_{T}
$\Delta \varepsilon=0.36$ possible if L-T separation desired

Hall C Program at Higher Energy

- Higher energy capabilities extends 12 GeV program to larger x, Q^{2}
- Precision cross sections
- L/T separations
- Low rate processes \rightarrow large P_{T}
- Precision ratios ($\pi+/ \pi$-, and more)
- Excellent $\pi / K / p$ separation
- Neutral particle capabilities w/calorimeter (NPS)
- Upgraded equipment ?
- Program could be carried out at 22 GeV w/existing HMS and SHMS (and NPS)
- Higher momentum capability for electron arm (upgraded HMS?) would be beneficial
- Smaller angle capability \rightarrow needed for access to lower x, anti-shadowing region

SHMS and SBS?

Super Big Bite Spectrometer built and being used in Hall A
\rightarrow Dipole with large gap and large area detector stack
\rightarrow Can be positioned a various positions/distances from the pivot
\rightarrow Access very small angle by pushing the spectrometer far from pivot

$$
\begin{aligned}
& \Delta \Omega=12 \mathrm{msr} \text { at } 5 \text { degrees } \\
& \Delta \Omega=72 \mathrm{msr} \text { at } 15 \text { degrees } \\
& \mathrm{P}=2-10 \mathrm{GeV} / \mathrm{c}
\end{aligned}
$$

SBS could be paired with SHMS in Hall C \rightarrow need new or raised stand \rightarrow Not ideal for L/T separations, but cross sections, ratios still accessible

EXTRA

Jefferson Lab

E12-09-017 Kinematics (proposal)

Hall C SIDIS Results from 6 GeV

Used P_{T} dependence of unpolarized cross sections to place constraints on up/down quark, favored/unfavored FF widths

R. Asaturyan et al. Phys. Rev. C 85, 015202

Frag. Function widths

Transverse Momentum Dependence of SIDIS

Unpolarized k_{T}-dependent SIDIS: in framework of Anselmino et al [hep-ph/0608048], described in terms of convolution of quark distributions f and (one or more) fragmentation functions D, each with own characteristic (Gaussian) width

$$
\begin{aligned}
& f_{1}^{q}\left(x, k_{T}\right)=f_{1}(x) \frac{1}{\pi \mu_{0}^{2}} \exp \left(-\frac{k_{T}^{2}}{\mu_{0}^{2}}\right)^{4} \longleftarrow \mu_{0} \text { describes transverse momentum of quarks } \\
& D_{1}^{q}\left(z, p_{T}\right)=D_{1}(z) \frac{1}{\pi \mu_{D}^{2}} \exp \left(-\frac{p_{T}^{2}}{\mu_{D}^{2}}\right) \longleftarrow \mu_{D} \text { describes } p_{T} \text { dependence of Frag. Func. }
\end{aligned}
$$

(assuming $\mu_{0, \mathrm{u}}=\mu_{0, \mathrm{~d}}$)

$$
\left[1+(1-y)^{2}-4(2-y) \sqrt{1-y} \frac{z \mu_{0}^{2}\left|\mathbf{P}_{h T}\right|}{Q\left(\mu_{D}^{2}+\mu_{0}^{2} z^{2}\right)} \cos \varphi_{h}\right] \frac{\exp \left(-\frac{\mathbf{P}_{h T}^{2}}{\mu_{D}^{2}+\mu_{0}^{2} z^{2}}\right)}{\mu_{D}^{2}+\mu_{0}^{2} z^{2}} \sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{q}^{h}(z)
$$

Possibility to constrain k_{T} dependence of up and down quarks separately by combination of π^{+}and π^{-}final states, proton and deuteron targets

$R=\sigma_{L} / \sigma_{T}$ in SIDIS (ep $\left.\rightarrow \mathrm{e}^{\prime} \pi \mathrm{X}\right)$

Cornell data of 70's

Conclusion: "data both consistent with $R=0$ and $R=" R_{D I S}$ "

Some hint of large R at large z in Cornell data?

11 GeV SIDIS Preliminary Analysis

Cross sections fit to the form:
$y=M_{0} b e^{-b p_{T}^{2}}\left(1+A p_{T} \cos \phi\right)$

