SIDIS in Hall C at Higher Energies

Dave Gaskell

Opportunities With JLab Energy and Luminosity Upgrade September 26-30, 2022

- 1. Hall C 6 and 12 GeV SIDIS Results/Program
- 2. Measurements at Higher Energy

SIDIS with Modest Acceptance

Hall C uses magnetic focusing spectrometers with moderate acceptance

Optimal program:

→ Targeted measurements in specific regions of phase space (i.e., low rate processes)

→ Absolute cross sections, L-T separations, charge ratios

Complementary to large acceptance devices that can access large phase space all at once

Excellent control of point-to-point systematic uncertainties required for precise L-T separations → Ideally suited for focusing spectrometers → One of the drivers for SHMS design

Identical acceptance for positive and negative polarity \rightarrow Precision measurement of charged meson ratios

SHMS and HMS in Experimental Hall C

Spectrometer properties

HMS: Electron arm <u>Nominal capabilities:</u> $d\Omega \sim 6 \text{ msr}, P_0 = 0.5 - 7 \text{ GeV/c}$ $\theta_0 = 10.5 \text{ to } 80 \text{ degrees}$ e ID via calorimeter and gas Cherenkov

SHMS: Pion arm <u>Nominal capabilities:</u> $d\Omega \sim 4 \text{ msr}, P_0 = 1 - 11 \text{ GeV/c}$ $\theta_0 = 5.5 \text{ to } 40 \text{ degrees}$ $\pi:K:p$ separation via heavy gas Cherenkov and aerogel detectors

Neutral Particle Spectrometer (NPS)

Calorimeter + sweeper magnet adds capability to detect neutral particles: γ and π^0

→ NPS mounted on SHMS carriage – allows easy angle changes

→ In addition to broadening SIDIS program, enables DVCS, DVMP (π^0), WACS measurements

reson decay smaller radiative tails rom ecclusive pion production

Hall C SIDIS Results from 6 GeV

T. Navasardyan et al. PRL 98, 022001

Surprisingly consistent with expectations from higher energy experiments

R. Asaturyan et al. Phys. Rev. C 85, 015202

Hall C SIDIS Results from 6 GeV

Hall C experiment E00-108 (6 GeV):

 \rightarrow Measured P_T dependent cross sections in semiinclusive pion production

 \rightarrow Measured both π + and π -

 \rightarrow Proton and deuteron (neutron) targets

 \rightarrow Combination allows (in principle) disentanglement of quark and fragmentation widths

Simple model, with several assumptions:

 \rightarrow factorization valid

→ fragmentation functions do not depend on quark flavor

→ transverse momentum widths of quark and fragmentation functions are Gaussian and can be added in quadrature

 \rightarrow more ...

Hall C @ 12 GeV– P_T Dependent Cross Sections

E12-09-017: P_T Dependance of $\pi^{+/-}$ Production

- →Demonstrate understanding of reaction mechanism, test factorization
- →Able to carry out precise comparisons of charge states, π +/ π -
- → Can do meaningful measurements at low p_T (down to 0.05 GeV) due to excellent momentum and angle resolutions!

$$\boldsymbol{\sigma} = \sum_{q} e_{q}^{2} \boldsymbol{f}(\boldsymbol{x}) \otimes \boldsymbol{D}(\boldsymbol{z})$$

HMS-SHMS P_T / ϕ acceptance

Simulated, from P_T -SIDIS experiment (11 GeV)

Full ϕ coverage over limited P_T range \rightarrow larger P_T covers narrow range in ϕ

Multpilicites

- → Data with and without diffractive ρ subtraction
- → Curves: DSS FF w/cteq PDFs

$$y = M_0 b e^{-bp_T^2} (1 + Ap_T \cos \phi)$$

 P_T widths

→ Data with and without diffractive ρ subtraction

→ Curves: $< P_T^2 > = < pt^2 > + z^2 < k_T^2 >$

 $<P_T^2>$ and $<k_T^2>$ taken to be 0.2 GeV²

$$y = M_0 b e^{-bp_T^2} (1 + Ap_T \cos \phi)$$

Analysis from Peter Bosted

Cos(phi) term:

- Data with and without diffractive ρ subtraction
- → "A" generally close to zero or positive
- → Cahn effect would give A<0</p>

Analysis from Peter Bosted

$$y = M_0 b e^{-bp_T^2} (1 + Ap_T \cos \phi)$$

Hall C @ 12 GeV – Precise π^*/π Ratios (low P_T)

E12-09-002: Charge Symmetry Violating Quark Distributions via π^+/π^- in SIDIS

Ratio of π^{+}/π cross sections sensitive to CSV quark distributions

δd-δu where *δd=d^p-uⁿ* and *δu=u^p-dⁿ*

Shuo Jia: E12-09-002

Hall C 12 GeV: $R = \sigma_L / \sigma_T$ in SIDIS

$$\frac{d\sigma}{dxdyd\psi dzd\phi_h dP_{h,t}^2} = \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{F_{UU,T} + \varepsilon F_{UU,L} + \frac{\gamma^2}{2}\right\}$$

 $\sqrt{2\varepsilon(1+\varepsilon)}\cos\phi_{h}F_{UU}^{\cos\phi_{h}}+\varepsilon\cos(2\phi_{h})F_{UU}^{\cos(2\phi_{h})}+\lambda_{e}\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{h}F_{LU}^{\sin\phi_{h}}\big\}$

→integrate over ϕ , unpolarized beam, only L and T terms remain DIS → $F(x,Q^2)$ SIDIS → $F(x,Q^2,z,P_T)$

Knowledge of $R = \sigma_L / \sigma_T$ *in SIDIS is essentially non-existing!*

Integrated over z, p_{T} , hadron species $R_{SIDIS} \rightarrow R_{DIS}$

- $\rightarrow R_{SIDIS}$ may vary with z, p_T
- → Is R_{SIDIS} the same for π^+ , π^- (K⁺, K⁻)? H and D?
- $\rightarrow R_{SIDIS} = R_{DIS}$ a test of quark fragmentation
- \rightarrow How does *R* transition from SIDIS to exclusive?

Hall C 12 GeV SIDIS Program – L-T Separations

E12-06-104: Measurement of the Ratio R= σ_L/σ_T in Semi-Inclusive Deep-Inelastic Scattering

Precise measurements of R_{SIDIS} in

 $e+p \rightarrow e'+\pi^{+/-}+X$, $e+D \rightarrow e'+\pi^{+/-}+X$

L-T separation requires excellent understanding of acceptance, control of point-to-point systematic errors

→ ideally suited to Hall C equipment at 12 GeV

- 1. Scans in z at $Q^2 = 2.0$ (x = 0.2) and 4.0 GeV² (x = 0.4) \rightarrow behavior of σ_L/σ_T for large z.
- 2. Cover $Q^2 = 1.5 5.0 \text{ GeV}^2$, \rightarrow both H and D at $Q^2 = 2 \text{ GeV}^2$
- 3. P_T up to ~ 1 GeV. Coverage in ϕ is excellent (o.k.) up to $P_T = 0.2$ (0.4) GeV.

R = σ_L/σ_T in SIDIS (ep \rightarrow e' $\pi^{+/-}X$)

12 GeV Hall C SIDIS Program – HMS+SHMS

Accurate cross sections for validation of SIDIS factorization framework and for L/T separations

Courtesy R. Ent

12 GeV Hall C SIDIS Program – HMS+SHMS+NPS

Charged pions:

- E12-06-104 L/T scan in (z,P_T) No scan in Q² at fixed x: R_{DIS}(Q²) known
- E12-09-017
 Scan in (x,z,P_T)
 + scan in Q²
 at fixed x
- E12-09-002 + scans in z

Courtesy R. Ent

22 GeV Hall C SIDIS Phase Space – HMS+SHMS

Assumptions: HMS + SHMS minimum angle constraints unchanged

 \rightarrow Increase in HMS maximum momentum (higher field magnets)

 \rightarrow Smaller HMS angle may be possible, but would require special bender like SHMS

son Lab

Jeffe

Measurements at 22 GeV: Parallel Kinematics

HMS+SHMS has excellent momentum/angle resolution

 \rightarrow Complete ϕ coverage at low P_T

x	Q2	z	
0.26	7	0.4-0.7	W' > 2 GeV for all settings
0.37	10	0.4-0.7	
0.38	12	0.36-0.64	
0.51	17	0.33-0.58	~45 days assuming 70 μA
0.54	15	0.4-0.7	

No modifications to either HMS or SHMS needed for these measurements

Projections from Peter Bosted

Hall C SIDIS Phase Space – Smaller HMS angle

Measurements at 22 GeV: Large P_T

Access to large P_T by rotating SHMS away from q-vector

 \rightarrow Interference term contribution difficult to constrain

constrain This x/Q² assumes upgraded HMS

 \rightarrow Complicates possible L-T separations

$$\frac{d\sigma}{dxdydzdp_T^2d\phi} = \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\epsilon)} \left[F_T + \epsilon F_L + \sqrt{2\epsilon(1+\epsilon)}\cos\phi F_{LT} + \epsilon\cos 2\phi F_{TT}\right]$$
SHMS +12
$$\int_{\text{degrees from q-vector}} \frac{1}{4} \int_{\text{degrees from q-vector}} \frac{1}{4} \int_{\text{degree from$$

20

Hall C Program at Higher Energy

- Higher energy capabilities extends 12 GeV program to larger x, Q^2
 - Precision cross sections
 - L/T separations
 - Low rate processes \rightarrow large P_T
 - Precision ratios (π +/ π -, and more)
 - Excellent $\pi/K/p$ separation
 - Neutral particle capabilities w/calorimeter (NPS)
- Upgraded equipment ?
 - Program could be carried out at 22 GeV w/existing HMS and SHMS (and NPS)
 - Higher momentum capability for electron arm (upgraded HMS?) would be beneficial
 - Smaller angle capability \rightarrow needed for access to lower x, anti-shadowing region

SHMS and SBS?

Super Big Bite Spectrometer built and being used in Hall A

- → Dipole with large gap and large area detector stack
- → Can be positioned a various positions/distances from the pivot
- → Access very small angle by pushing the spectrometer far from pivot

 $\Delta \Omega$ = 12 msr at 5 degrees $\Delta \Omega$ = 72 msr at 15 degrees P = 2-10 GeV/c

SBS could be paired with SHMS in Hall C \rightarrow need new or raised stand \rightarrow Not ideal for L/T separations, but cross sections, ratios still accessible

E12-09-017 Kinematics (proposal)

25

Hall C SIDIS Results from 6 GeV

Used P_T dependence of unpolarized cross sections to place constraints on up/down quark, favored/unfavored FF widths

R. Asaturyan et al. Phys. Rev. C 85, 015202

Transverse Momentum Dependence of SIDIS

<u>Unpolarized k_T -dependent SIDIS</u>: in framework of Anselmino et al [hep-ph/0608048], described in terms of convolution of quark distributions *f* and (one or more) fragmentation functions *D*, each with own characteristic (Gaussian) width

 $f_1^q(x,k_T) = f_1(x) \frac{1}{\pi \mu_0^2} \exp\left(-\frac{k_T^2}{\mu_0^2}\right) \leftarrow \mu_0 \text{ describes transverse momentum of quarks}$ $D_1^q(z,p_T) = D_1(z) \frac{1}{\pi \mu_D^2} \exp\left(-\frac{p_T^2}{\mu_D^2}\right) \leftarrow \mu_0 \text{ describes } p_T \text{ dependence of Frag. Func.}$

(assuming
$$\mu_{0,u} = \mu_{0,d}$$
)

$$\left[1 + (1-y)^2 - 4(2-y)\sqrt{1-y}\frac{z\mu_0^2|\mathbf{P}_{hT}|}{Q(\mu_D^2 + \mu_0^2 z^2)}\cos\varphi_h\right]\frac{\exp\left(-\frac{\mathbf{P}_{hT}^2}{\mu_D^2 + \mu_0^2 z^2}\right)}{\mu_D^2 + \mu_0^2 z^2}\sum_q e_q^2 f_1^q(x) D_q^h(z)$$

Possibility to constrain k_T dependence of up and down quarks *separately* by combination of π^+ and π^- final states, proton and deuteron targets

Conclusion: "data both consistent with R = 0 and $R = "R_{DIS}"$

