Hall-B Studies with JLab20+

Marco Contalbrigo – INFN Ferrara

Opportunities with JLab Energy and Luminosity Upgrade - ECT* 26-30 September 2022

HERA Legacy and Perturbative QCD

Parton Content

Still Surprising Proton

Is there a collective motion in small systems ?

Can QCD be a precision science ?

Should not be confused with pQCD, which already can, but is not touching the intimate nature of the strong interaction

Single Spin Asymmetries

Proton Spin Budget

3D Imaging

Parton Correlators

Beauty and complexity of the unique strong-interacting world

quark polarisation

quark polarisation

N/q	U	L	Т
U	D_1		H_1^\perp

SIDIS Landscape

SIDIS Cross-Section

TMD Probes

SIDIS Cross-Section

CLAS12 @ JLab

CLAS12 wide coverage, excellent PID, various polarized targets, high luminosity

Year	Period	Run	Target	Polarization	Beam	
2018	Spring-Fall	RGA	Proton	-	10.6	GeV
	Fall	RGK	Proton	-	6.5-7.5	GeV
2019	Spring	RGA	Proton	0-11	10.6	GeV
2019	Spring-Fall	RGB	Deuteron	-	10.6	GeV
2020	Spring-Fall	RGF	Deuteron		10.6	GeV
2021	Fall	RGM	Nuclear		Several	GeV
2022	Spring-Fall	RGC	NH ₃ -ND ₃	Longitudinal	10.6	GeV
> 2022		RGH	NH ₃ -ND ₃	Transverse	10.6	GeV
> 2022			³ He	Longitudinal	10.6	GeV
> 2022		RGG	⁷ LiD, ⁶ LiH	Longiudinal	10.6	GeV

Contalbrigo M.

CLAS12 Features

Large-acceptance comprehensive detector

Forward Tagger

Contalbrigo M.

(low-θ spectrometer) Bethe-Heitler Low-Q²

Forward Detector current region

Central Detector Exclusivity Fracture functions Target region

Beam Spin Asymmetry @ CLAS12

CLAS12 proton data (RGA) S. Diehl et al., e-Print: 2101.03544

$$F_{LU}^{\sin\phi} = \frac{2M}{Q} \mathcal{C} \left[-\frac{\hat{h} \cdot k_T}{M_h} \left(x_B e H_1^{\perp} + \frac{M_h}{M} f_1 \frac{\tilde{G}^{\perp}}{z} \right) + \frac{\hat{h} \cdot P_T}{M} \left(x_B g^{\perp} D_1 + \frac{M_h}{M} h_1^{\perp} \frac{\tilde{E}}{z} \right) \right]$$
86.9±2.6%

Fragmentation @ CLAS12

Multiplicities @ CLAS12

Transverse momentum dependence and phase space

JLab Future

Extend the reach in Q^2 and p_T to exploit an unique facility at the intensity frontier

Energy increase to 20++ GeV

SOLID and CLAS12+

Positron source

TMD Regimes

The perturbative part should be under control before accessing the non-perturbative

The Q² Game

Wide leverage (at given x) to:

isolate higher-twists probe evolution disentangle x dependence

Keep Q² moderate to:

avoid perturbative dilution

TMDs Description

The sensitivity on the relevant parameters changes with center of mass energy

TMD Evolution

$$F_{UT}^{\sin(\phi_h - \phi_S)} = \sum_{q} e_q^2 |C_V(Q)|^2 \int \frac{d^2b}{(2\pi)^2} e^{i(b \cdot P_T)/z} \mathcal{R}(Q, b, \mu_0) f_{1T}^{\perp q}(x, b; \mu_0) D_1^q(z, b; \mu_0)$$

Collins-Soper non-perturbative evolution kernel

Complementarity in Q² and b coverage

A. Vladimirov @ APCTP22 workshop

Fracture Functions

- .
- Fracture function $\hat{l}_1^{\perp h}$ depends on ζ . $\mathcal{F}_{LU}^{\sin(\Delta\phi)} = \frac{|p_{\pi^+}^{\perp}||p_P^{\perp}|}{m_P m_{\pi^+}} \mathcal{C} \left[w_5 \hat{l}_1^{\perp h} D_1 \right]$ Fragmentation function D_1 depends on z_{π} . $\zeta = E_P / E$ $z_{\pi} = E_{\pi} / \nu$

DVCS Cross Section

 $+\mathcal{I})$

Informations on the real and imaginary part of the QCD scattering amplitude

$$\frac{d^4\sigma}{dQ^2\,dx_B\,dt\,d\phi} \quad \propto \quad (|\mathcal{T}_{\rm DVCS}|^2 + |\mathcal{T}_{\rm BH}|^2$$

DVCS Cross Section

Informations on the real and imaginary part of the QCD scattering amplitude

$$\frac{d^4\sigma}{dQ^2\,dx_B\,dt\,d\phi} \quad \propto \quad \left(|\mathcal{T}_{\rm DVCS}|^2 + |\mathcal{T}_{\rm BH}|^2 + \mathcal{I}\right)$$

Sensitivity change with c.m. energy and Q². At JLab20+ range extended towartds low-x

GPDs Description

JLab20+ can cover most relevant range for quarks and initiate probing gluons

Meson Electro-production

Enhanced sensitivity to peculiar GPDs

- 4 chiral-even GPDs: $H, E, \tilde{H}, \tilde{E}$
- 4 chiral-odd GPDs: H_T , E_T , \tilde{H}_T , \tilde{E}_T

Meson Electro-production

@ 10.6 GeV beam energy

@ 22 GeV beam energy

Spectroscopy

Stable states are a probe of QCD confinement (non perturbative QCD features) Several new states with possible exotic contribution in the charmonium mass spectrum

Photoproduction as alternate production mechanism for a complete description

Contalbrigo M.

Conclusions

The last decade provided many evidences that correlation of partonic transverse degrees of freedom in the nucleon do exist and manifest in hadronic interactions

Next step: Moving from phenomenology to rigorous treatment (predictive power)

New data coming from Jlab++ at high-luminosity and EIC at high-energy should allow to:

- Constrain models in the valence and sea region
- Test factorization, universality and evolution
- Study higher twist effects
- Investigate non-perturbative to perturbative transition (along P_T)
- Flavor separation via proton and deuteron targets and hadron ID
- Test of Lattice QCD calculations

A comprehensive study provides access to the peculiar dynamics of the QCD confined world