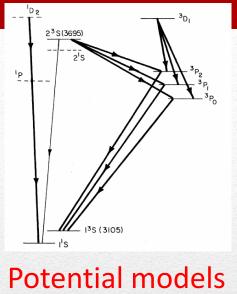

Opportunities for hadron spectroscopy @JLab hi-lumi/hi-energy


Alessandro Pilloni

Opportunities for Jlab upgrade, ECT*, September 26th, 1922

(meaningful when $M_O \rightarrow \infty$)

 $V(r) = -\frac{C_F \alpha_S}{r} + \sigma r$ (Cornell potential)

Solve NR Schrödinger eq. → spectrum

Effective theories

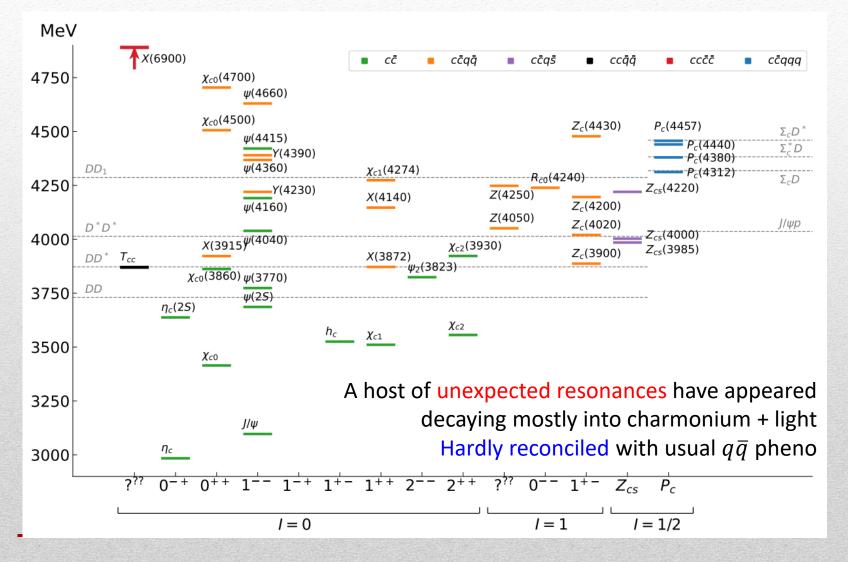
(HQET, NRQCD, pNRQCD...)

Integrate out heavy DOF

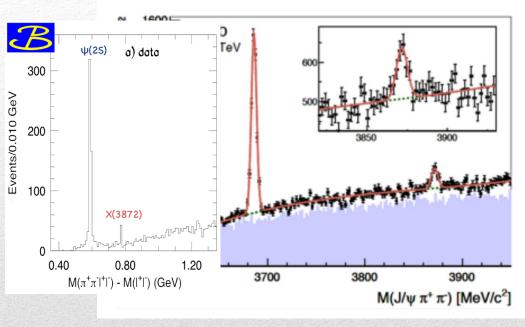
(spectrum), decay & production rates

EVENTS / 25 MeV

Multiscale system


 $m_0 \gg m_0 v \gg m_0 v^2$ Systematically integrate $m_b \sim 5 \text{ GeV}, m_c \sim 1.5 \text{ GeV}$ out the heavy scale, $v_h^2 \sim 0.1, v_c^2 \sim 0.3$ $m_0 \gg \Lambda_{OCD}$ Full QCD ----> NRQCD ----> pNRQCD 3.5 BELLE data: √s = 10.6 GeV 60 GeV < W < 240 GeV dơ/dp_T(pp→J/γ+X) × B(J/γ→μμ) [nb/GeV] ATLAS data: √s = 7 TeV 0.8 10 0.3 < z < 0.9CS+CO, NLO: Butenschön et al. |y| < 0.75 3 $Q^2 < 2.5 \text{ GeV}^2$ dσ(ep→J/ψ+X)/dp² [nb/GeV²] 0.6 10 CDF data: √s = 1.96 TeV √s = 319 GeV 2.5 2 2 [dd] (X+/n/)(← 9+0)Ω 1 0.4 10 |y| < 0.60.2 $\lambda_{\theta}(p_T)$ 10^{-2} ŦŦ Ŧ 10 0 Į -0.2 10-2 10⁻³ -0.4 1 10^{-3} $p\bar{p} \rightarrow J/\psi + X$, helicity frame H1 data: HERA1 10-4 -0.6 H1 data: HERA2 CDF data: $\sqrt{s} = 1.96$ TeV, |y| < 0.60.5 10 -0.8 CS+CO, NLO: Butenschön et al. S+CO, NLO: Butenschön et al. +CO, NLO: Butenschön et al 10^{-t} 0 10² 40 25 35 10 15 20 10 15 20 25 30 (b)¹ (**d**) (a)10 (c) $p_T^2 [GeV^2]$ p_T [GeV] p_T [GeV]

Factorization (to be proved) of universal LDMEs


Good description of many production channels, some known puzzles (polarizations)

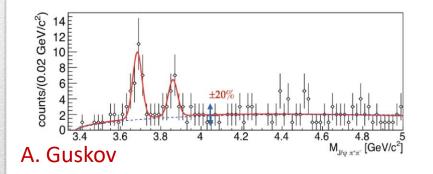
Exotic landscape in $c\bar{c}$

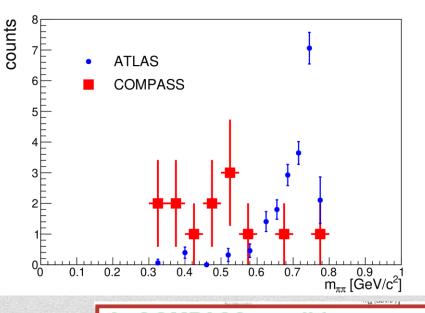
Esposito, AP, Polosa, Phys.Rept. 668 JPAC, arXiv:2112.13436

X(3872)

Sizeable prompt production at hadron colliders, $\sim 5\%$ of $\psi(2S)$

• Discovered in $B \to K X \to K J/\psi \pi \pi$


- Quantum numbers 1⁺⁺
- Very close to DD* threshold
- Too narrow for an abovetreshold charmonium
- Isospin violation too big $\frac{\Gamma(X \to J/\psi \ \omega)}{\Gamma(X \to J/\psi \ \rho)} \sim 1.1 \pm 0.4$
- Mass prediction not compatible with $\chi_{c1}(2P)$


 $M = 3871.65 \pm 0.06 \text{ MeV}$ $M_X - M_{DD^*} = -44 \pm 120 \text{ keV}$ $\Gamma = 1.19 \pm 0.19 \text{ MeV}$

Another \tilde{X} ?

$\widetilde{X}(3872)$ as a new state

 $m_{\tilde{X}(3872)} = (3860.0 \pm 10.4) MeV/c^2$ $\Gamma_{\tilde{X}(3872)} < 51 MeV/c^2 (CL=90\%)$ Significance (including systematics) is 4.1 σ C=-1 (?)

A. Guskov

COMPASS claimed the existence of a state degenerate with the X(3872), but with C = 1

Large photoproduction cross section

At COMPASS conditions: $\sigma_{\mu N} \approx \sigma_{\gamma N} / 300$ EIC L=10³⁴ cm⁻² s⁻¹ $e^{-}N \rightarrow e^{-}\widetilde{X}(3872)\pi^{\pm}N' \rightarrow$ $\rightarrow e^{-}J/\psi\pi^{+}\pi^{-}\pi^{\pm}N' \rightarrow e^{-}\mu^{+}\mu^{-}\pi^{+}\pi^{-}\pi^{\pm}N'$

~10 events per day

Vector Y states

- Lots of unexpected J^{PC} = 1⁻⁻ states found in ISR/direct production (and nowhere else!)
- Seen in few final states, scarce consistency in different channels
- Large HQSS violation

4300

mass (MeV)

200 E

180

160

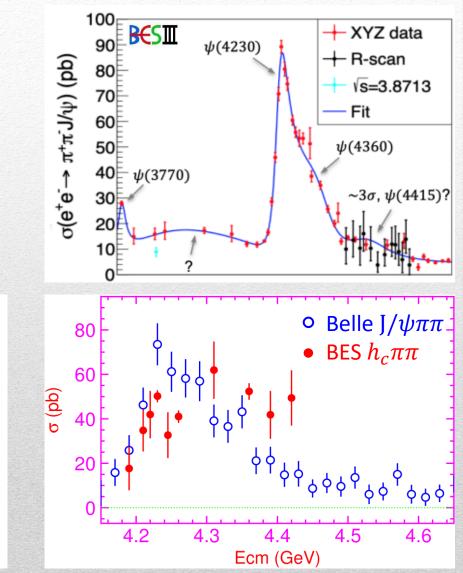
140

120

100

80 60

40


20

n

4200

4250

width (MeV)

4350

BESIII: µ+µ-

BESIII: ηJ/ψ

BESIII: ωχ_o

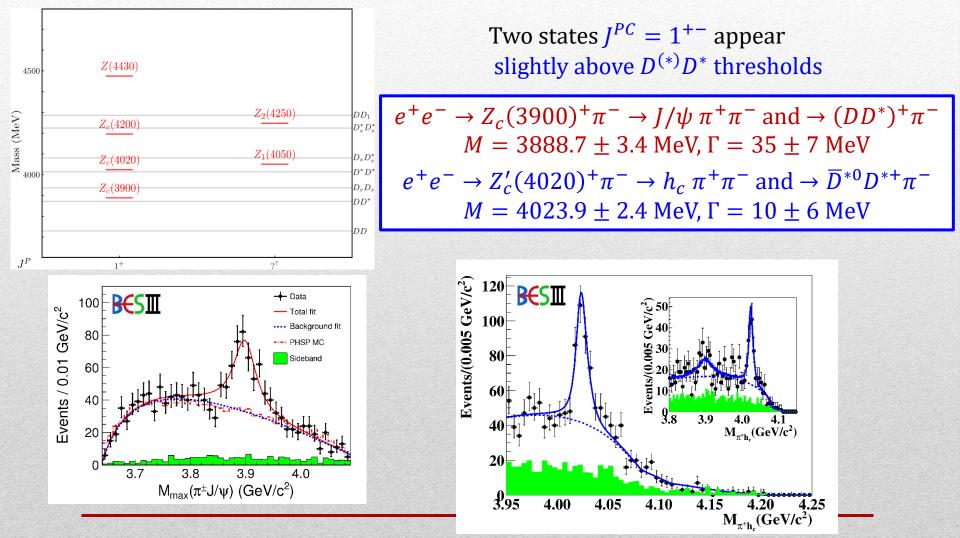
BESIII: $\pi^+D^0D^-$ + c.c.

BESIII: γχ_(3872)

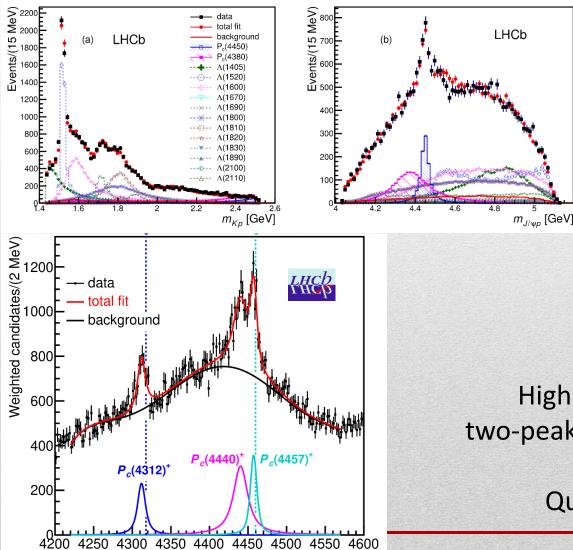
BESIII: π⁺π⁻J/ψ

BESIII: π⁺π⁻h_c

BESIII: π*π⁻ψ(2S)


Ŧ

4400


BESIII: $\pi^0\pi^0 J/\psi$

Charged *Z* states: $Z_c(3900), Z'_c(4020)$

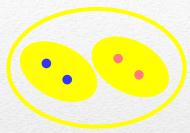
Charged quarkonium-like resonances have been found, 4q needed

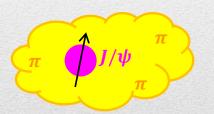
Pentaquarks!

LHCb, PRL 115, 072001 LHCb, PRL 122, 222001

Three narrow states seen in $\Lambda_b \rightarrow (J/\psi p) K^-$, Plus a possible broad one

One narrow strange state in $B^- \rightarrow (J/\psi \Lambda) \ \bar{p}$,


Higher statistics analysis revealed a two-peak structure of the narrow state, plus a new lighter one Quantum numbers still unknown


Models

Compact

Extended

Hybrids Containing gluonic degrees of freedom Multiquark Several (cluster) of valence quarks

Hadroquarkonium

Heavy core interacting with a light cloud via Van der Waals forces

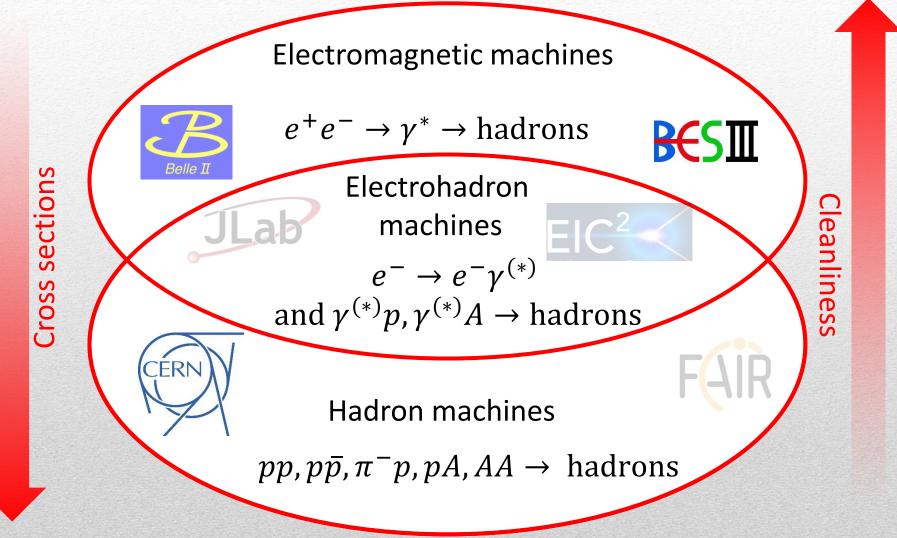
Rescattering effects

Structures generated by cross-channel rescattering, very process-dependent

Molecule

Bound or virtual state generated by long-range exchange forces

Exotic landscape


Broad mesons seen in *b* decay: *X*(4140), *Z*(4430), *Z*_{cs}(4000)...

Scarce consistency between various production mechanisms

Narrow structures seen in b decay: $X(3872), P_c, (P_{cs})$

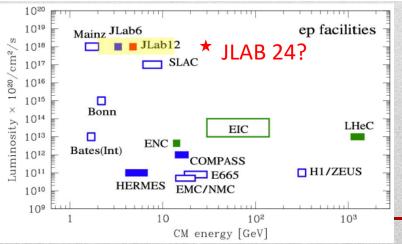
Narrow structures seen in e^+e^- : X(3872), Y(4260), $Z_{c,b}^{(\prime)}$

Where XYZ?

Why photoproduction?

- It's new: no XYZ state has been uncontroversially seen so far
- It is free from rescattering mechanisms that could mimic resonances in multibody decays
- The framework is (relatively) clean from a theory point of view
- Radiative decays offer another way of discerning the nature of the states

XYZ at Jefferson Lab


XYZP spectroscopy at a charm photoproduction factory

M. Albaladejo,¹ M. Battaglieri,^{2,3} A. Esposito,⁴ C. Fernández-Ramírez,⁵ A. N. Hiller Blin,¹ V. Mathieu,⁶ W. Melnitchouk,¹ M. Mikhasenko,⁷ V. I. Mokeev,² A. Pilloni,^{3,8,*} A. D. Polosa,⁹ J.-W. Qiu,¹ A. P. Szczepaniak,^{1,10,11} and D. Winney^{10,11}

Lol RF7_RF0_120

arXiv:2112.00060

Physics with CEBAF at 12 GeV and Future Opportunities

J. Arrington¹, M. Battaglieri^{2,15}, A. Boehnlein², S.A. Bogacz², W.K. Brooks¹⁰, E. Chudakov², I. Cloët³, R. Ent², H. Gao⁴, J. Grames², L. Harwood², X. Ji^{5,6}, C. Keppel², G. Krafft², R. D. McKeown^{2,8,*}, J. Napolitano⁷, J.W. Qiu^{2,8}, P. Rossi^{2,14}, M. Schram², S. Stepanyan², J. Stevens⁸, A.P. Szczepaniak^{12,13,2}, N. Toro⁹, X. Zheng¹¹

arXiv:2203.08290

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

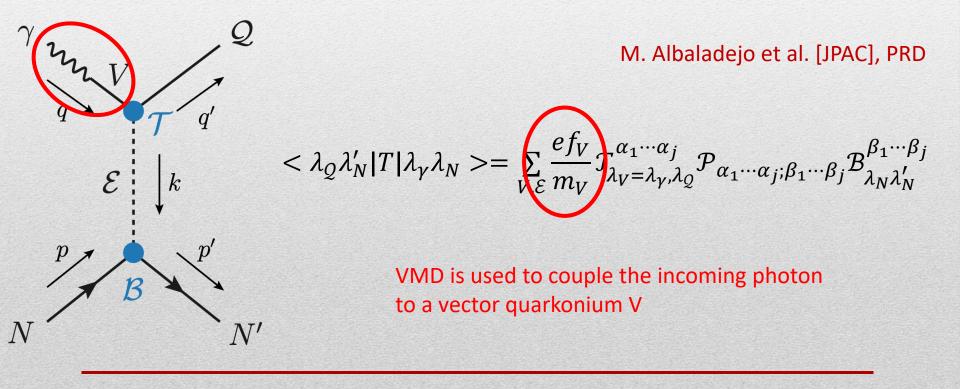
Hadron Spectroscopy in Photoproduction

Miguel Albaladejo¹, Łukasz Bibrzycki², Sean Dobbs³, César Fernández-Ramírez^{4,5}, Astrid N. Hiller Blin⁶, Vincent Mathieu^{7,8}, Alessandro Pilloni^{9,10}, Justin Stevens¹¹, Adam P. Szczepaniak^{12,13,14}, and Daniel Winney^{13,14,15,16}

Explore the complementarity wrt the forthcoming Electron Ion Collider

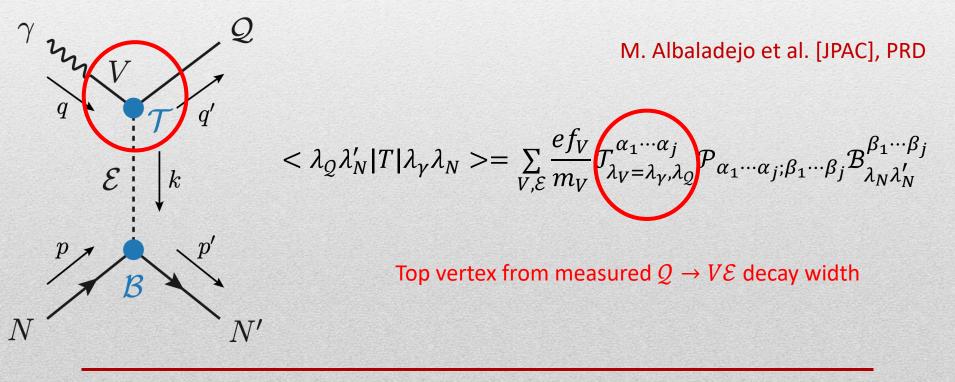
JLab vs. EIC

- Variety of target species, polarization
- Detectors well known (zero-angle cal required)
- High intensity
- Smaller acceptance

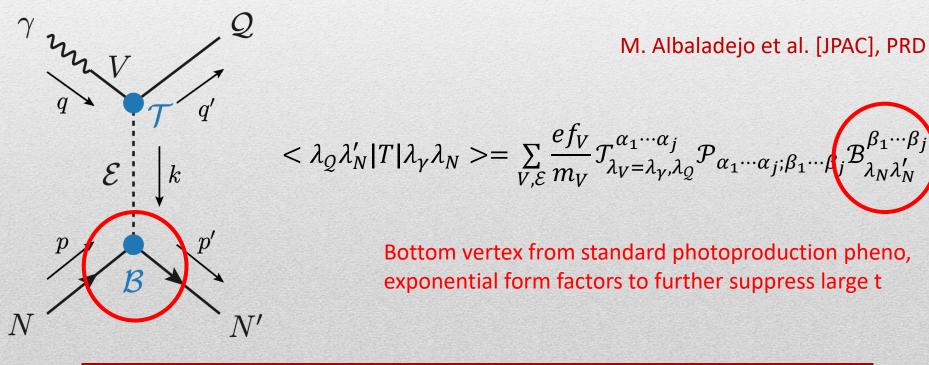


- Variety of beam species, polarization
- Big «if» on timescale, accelerator and detector performances
- Low intensity

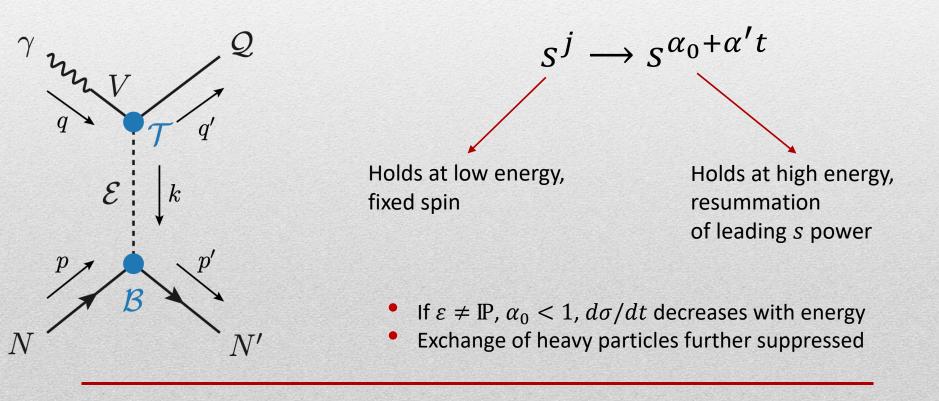
High acceptance


Exclusive (quasi-real) photoproduction

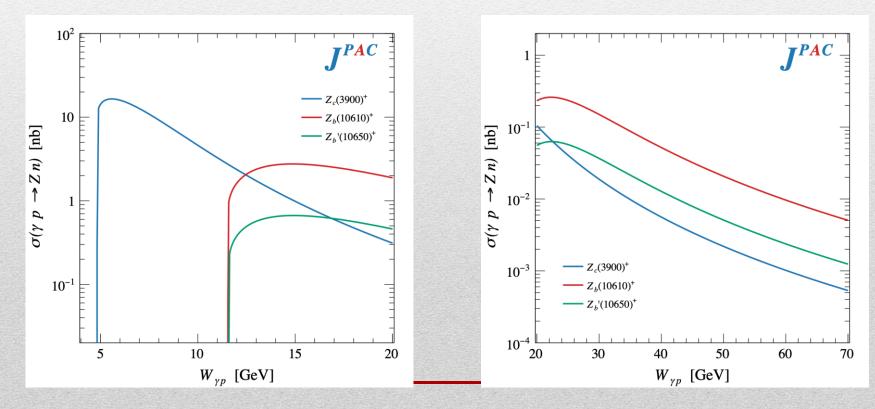
- XYZ have so far not been seen in photoproduction: independent confirmation
- Not affected by 3-body dynamics: determination of resonant nature
- Experiments with high luminosity in the appropriate energy range are promising
- We study near-threshold (LE) and high energies (HE)
- Couplings extracted from data as much as possible, not relying on the nature of XYZ


Exclusive (quasi-real) photoproduction

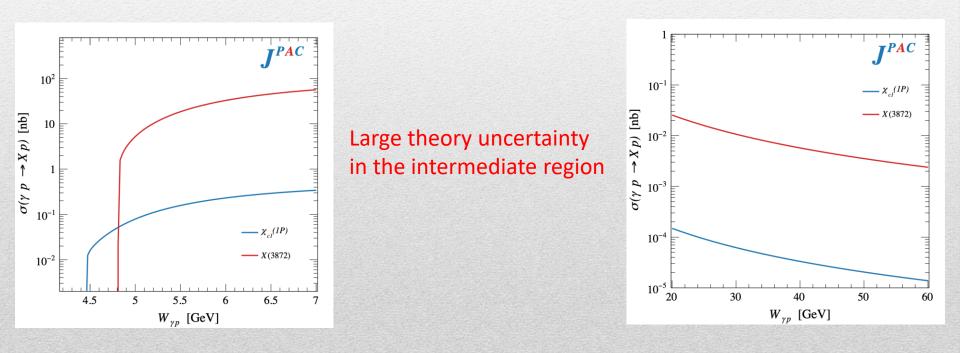
- XYZ have so far not been seen in photoproduction: independent confirmation
- Not affected by 3-body dynamics: determination of resonant nature
- Experiments with high luminosity in the appropriate energy range are promising
- We study near-threshold (LE) and high energies (HE)
- Couplings extracted from data as much as possible, not relying on the nature of XYZ


Exclusive (quasi-real) photoproduction

- XYZ have so far not been seen in photoproduction: independent confirmation
- Not affected by 3-body dynamics: determination of resonant nature
- Experiments with high luminosity in the appropriate energy range are promising
- We study near-threshold (LE) and high energies (HE)
- Couplings extracted from data as much as possible, not relying on the nature of XYZ


Threshold vs. high energy

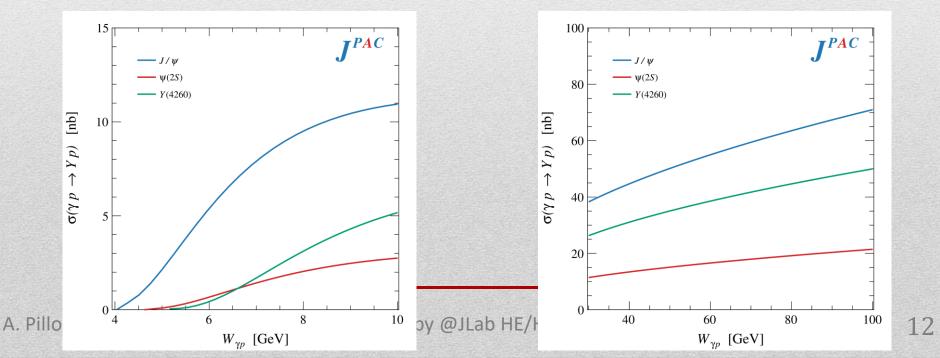
- Fixed-spin exchanges expected to hold in the low energy region
- t channel grows as s^j, exceeding unitarity bound, Regge physics kicks in: Reggeized tower of particles with arbitrary spin at HE


Z photoproduction

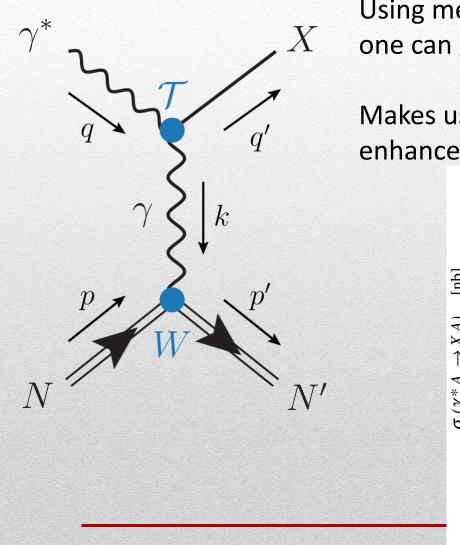
- The Zs are charged charmoniumlike 1⁺⁻ states close to open flavor thresholds
- Focus on $Z_c(3900)^+ \rightarrow J/\psi \pi^+$, $Z_b(10610)^+$, $Z_b'(10650)^+ \rightarrow \Upsilon(nS) \pi^+$
- The pion is exchanged in the t-channel

X photoproduction

- Focus on the famous $1^{++} X(3872) \rightarrow J/\psi \rho, \omega$
- ω and ρ exchanges give main contributions:

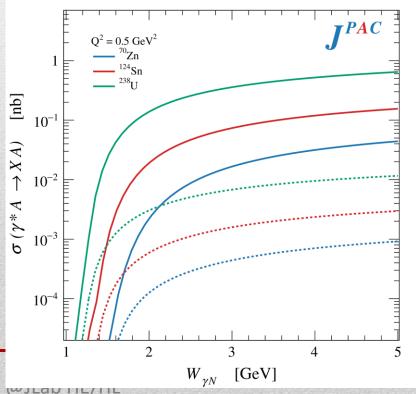


Diffractive production, dominated by Pomeron (2-gluon) exchange

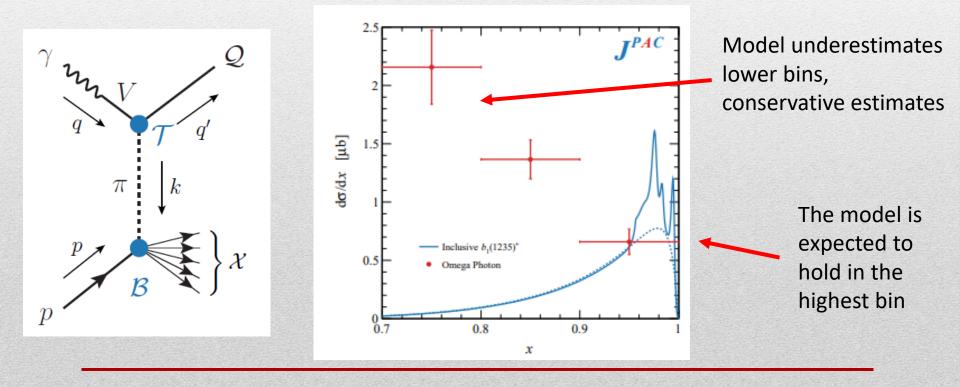

$$R_Y = \frac{ef_{\psi}}{m_{\psi}} \sqrt{\frac{g^2(Y \to \psi \pi \pi)}{g^2(\psi \to \psi g g)}} \frac{g^2(\psi' \to \psi g g)}{g^2(\psi' \to \psi \pi \pi)}$$

Existing data allow to put a 95% upper limit on the ratio of $\psi'/Y(4260)$ yields

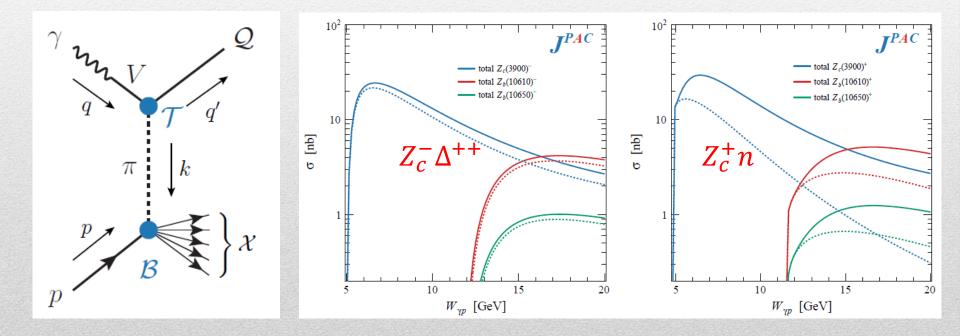
Assuming previous formula, one gets: $\Gamma_{ee}^{Y} = 930 \ eV$ (cfr. hep-ex/0603024, 2002.05641) $BR(Y \rightarrow J/\psi\pi\pi) = 0.96\%$ $R_{Y} = 0.84$


Primakoff X photoproduction

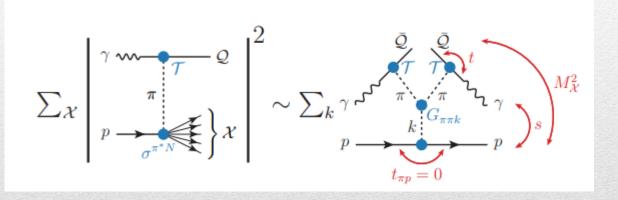
A. Pilloni – Opportunities for hadron spectroscopy


Using measurement of $\Gamma(X \rightarrow \gamma \gamma^*)$ from Belle, one can get predictions for Primakoff

Makes use of ion targets, enhancement of cross sections as Z^2


Semi-inclusive photoproduction

- Semi-inclusive cross sections are typically larger
- For small t and large x, one can assume the process to be dominated by pion exchange
- The bottom vertex depends on the (known) pion-proton total cross section
- The pion is exchanged in the t-channel
- Model benchmarked on b_1 production


Semi-inclusive photoproduction

For the Z_c^+ , the inclusive cross section is sizably larger than the exclusive process

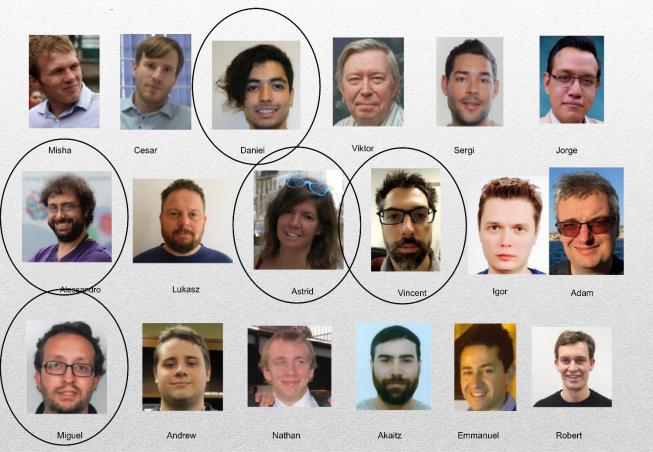
Semi-inclusive photoproduction

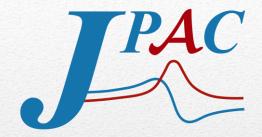
At higher energies the triple Regge regime is reached, cross sections saturate

$\sigma(\gamma p \to \mathcal{Q}^{\pm} \mathcal{X}) [pb]$			$\sigma(\gamma p \to Q^+ n)$ [pb]		
$30{ m GeV}$	$60 \mathrm{GeV}$	90 GeV	$30 \mathrm{GeV}$	$60\mathrm{GeV}$	$90~{ m GeV}$
$60 \cdot 10^3$	$60 \cdot 10^3$	$61 \cdot 10^3$	43	2.3	$< 10^{-8}$
187	146	140	19	1.0	$< 10^{-8}$
163	15	5	150	10	$< 10^{-8}$
40	4	1	37	2.4	$< 10^{-8}$
	$30 { m GeV}$ $60 \cdot 10^3$ 187 163	$\begin{array}{c cccc} 30 {\rm GeV} & 60 {\rm GeV} \\ \hline 60 \cdot 10^3 & 60 \cdot 10^3 \\ 187 & 146 \\ 163 & 15 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	30 GeV 60 GeV 90 GeV 30 GeV 60 GeV $60 \cdot 10^3$ $60 \cdot 10^3$ $61 \cdot 10^3$ 43 2.3 187 146 140 19 1.0 163 15 5 150 10

Some thoughts about high intensity

- At current energies, the only heavy exotic accessible are pentaquarks, negative results from JLab pose a conundrum:
 - Rescattering mechanisms proposed so far are not doing a good job in describing all the peaks
 - All models point to direct-channel physics: must see in photoproduction! Need estimates of BR that go beyond VMD
- Light spectroscopy notoriously requires complicated PWA, high statistics can be a blessing and a curse
 - Looking for rare channels simpler to reconstruct of interest, ex.: radiative decays of (hybrid) mesons?
 Requires more theory effort

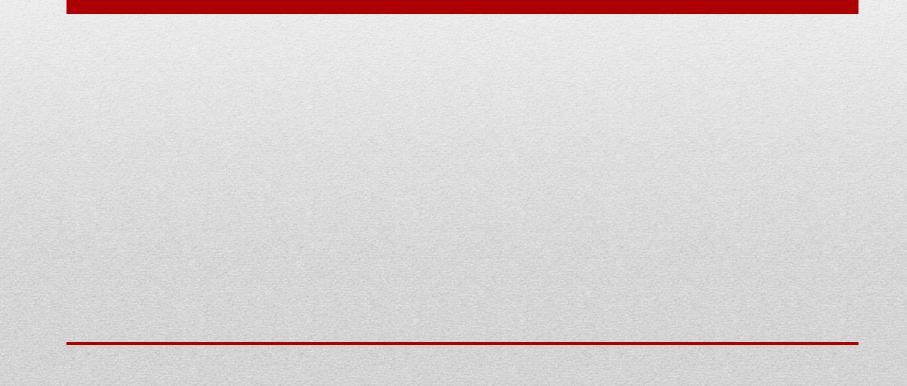

Conclusions


- Photoproduction is a valuable tool to study exotic states
- Complementary infomation to other mechanisms
- Facilities to study photoproduction at low energies are very welcome to pursue this program

See also talks by M. Battaglieri and D. Glazier

Thank you!

Joint Physics Analysis Center


Exclusive reactions: 2008.01001

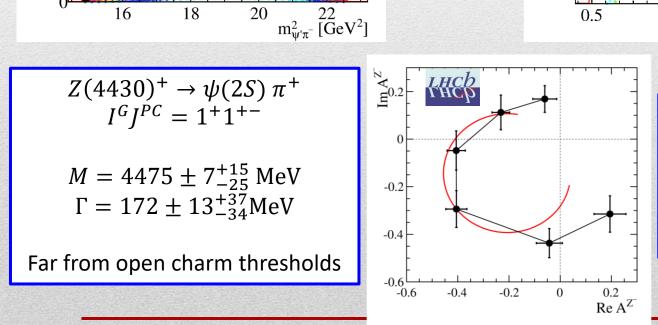
Inclusive reactions: 2209.05882

Code available on https://github.com/ dwinney/jpacPhoto

See talk by D. Glazier Tue 11:30

BACKUP

Candidates / (0.2 GeV²) 000 000 Candidates / (0.02 GeV^2)

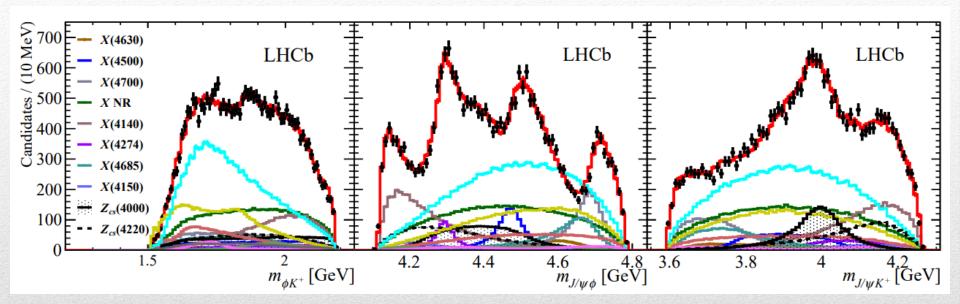

20

18

Charged Z states: Z(4430)

HCh

16

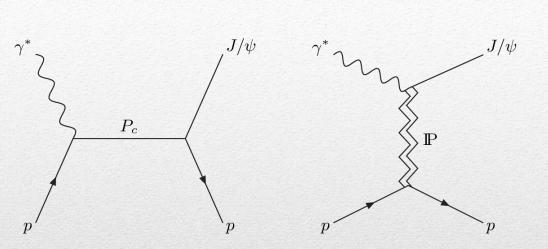

If the amplitude is a free complex number, in each bin of $m_{\psi'\pi^-}^2$, the resonant behaviour appears as well

1.5

0.5

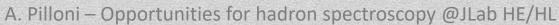
 $\frac{2}{m_{K^+\pi^-}^2} \frac{2.5}{[GeV^2]}$

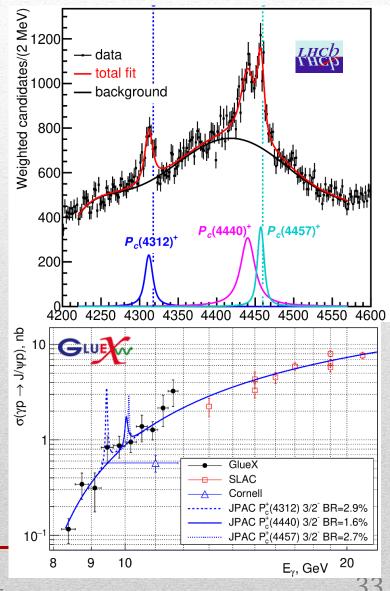
Tetraquarks: the $B^+ \rightarrow J/\psi \phi K^+$ decay

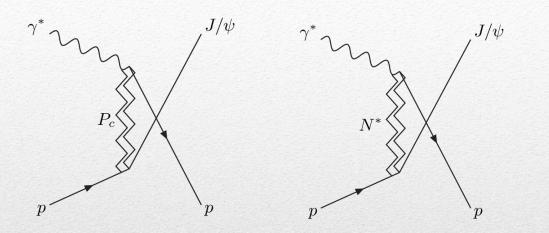

In
$$J/\psi \phi$$
:

$$\begin{cases}
1 \times 1^{-+} \\
2 \times 0^{++} \\
3 \times 1^{++} \\
In J/\psi K^{+}: 2 \times 1^{+}
\end{cases}$$

Widths from 50 to 230 MeV




Exclusive P_c photoproduction


At Jlab12 measurements of direct P_c production are being performed

Using VMD, BR($P_c \rightarrow J/\psi p$) ~ 1%

Polarized P_c photoproduction

 $\sim s^{\alpha(u)}$

- s channel resonances significant at low energies: u channel dominates at high energies
- Main background from N(*) trajectories
- Estimated P_c coupling upper bound of same order of magnitude as $N^{(*)}$ coupling
- Reggeization suppresses P_c due to larger mass (smaller trajectory intercept)
- We estimate that the P_c trajectories will hardly be visible at the EIC
- *P*_b searches still possible: *s* channel at higher energies!

Cao et al., Phys.Rev. D 101, 074010 (2020) E. Paryev, arXiv:2007.01172 [nucl-th] (2020)

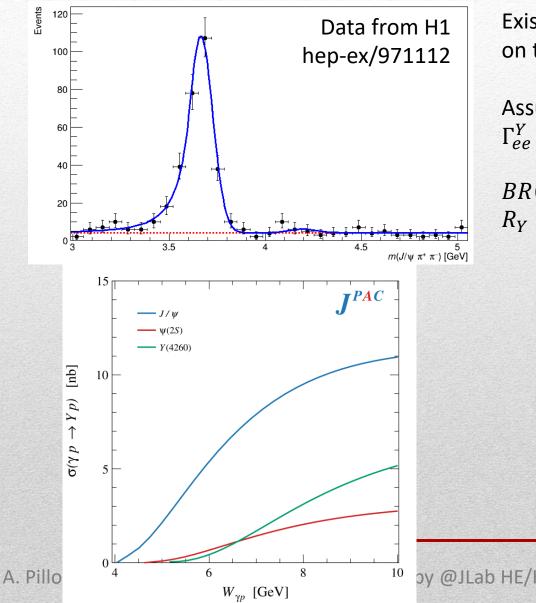
• Focus on the $1^{--} Y(4260) \rightarrow J/\psi \pi^+\pi^-$, check with $\psi' \rightarrow J/\psi \pi^+\pi^-$

- Diffractive production, dominated by Pomeron (2-gluon) exchange
- Good candidates for EIC: diffractive production increases with energy!
- We have $\gamma\psi$ -pomeron coupling from our analyses 1606.08912, 1907.09393

How to rescale from J/ψ to ψ' ?

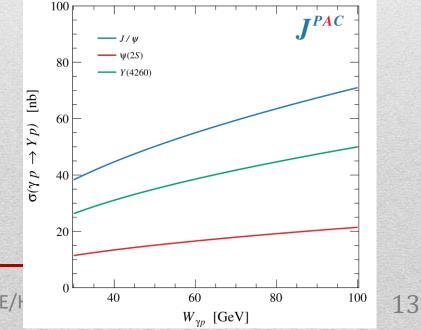
$$R_{\psi'} = \sqrt{\frac{g^2(\psi' \to \gamma gg)}{g^2(\psi \to \gamma gg)}} \sim 0.55 \qquad g^2(\psi \to \gamma gg) = \frac{6m_{\psi}\mathcal{B}(\psi \to \gamma gg)\Gamma_{\psi}}{PS(\psi \to \gamma gg)}$$

• Focus on the $1^{--} Y(4260) \rightarrow J/\psi \pi^+\pi^-$, check with $\psi' \rightarrow J/\psi \pi^+\pi^-$


- Diffractive production, dominated by Pomeron (2-gluon) exchange
- Good candidates for EIC: diffractive production increases with energy!
- We have $\gamma\psi$ -pomeron coupling from our analyses 1606.08912, 1907.09393

How to rescale from J/ψ to Y(4260) ?

We assume VMD and $g^2(Y \to \psi \pi \pi) = g^2(Y \to \psi gg) \times g^2(gg \to \pi \pi)$ (Novikov & Shifman)


$$R_Y = \frac{ef_{\psi}}{m_{\psi}} \sqrt{\frac{g^2(Y \to \psi \pi \pi)}{g^2(\psi \to \gamma gg)}} \frac{g^2(\psi' \to \psi gg)}{g^2(\psi' \to \psi \pi \pi)}$$

Caveat : $BR(Y \rightarrow \psi \pi \pi)$ only known times the leptonic width Γ_{ee}^{Y}

Existing data allow to put a 95% upper limit on the ratio of $\psi'/Y(4260)$ yields

Assuming previous formula, one gets: $\Gamma_{ee}^{Y} = 930 \ eV$ (cfr. hep-ex/0603024, 2002.05641) $BR(Y \rightarrow J/\psi\pi\pi) = 0.96\%$ $R_{Y} = 0.84$

Semi-inclusive *X* production

For large Q^2 one can invoke NRQCD factorization to describe quarkonium(-like) production

$$d\sigma(e^- + p \to H + X) = \sum d\sigma(e^- + p \to Q\overline{Q}(n) + X) \langle \mathcal{O}^H(n) \rangle$$

Н

X

n

Perturbative partonic matrix element, calculable

> Nonperturbative transition matrix element $Q\overline{Q} \rightarrow H$ fitted from data

X. Yao

Semi-inclusive X production

One can assume the same NRQCD factorization for exotics, independent of their internal structure

$$\sigma[X(3872)] = \sum_{n} \hat{\sigma}[c\bar{c}_{n}] \langle \mathcal{O}_{n}^{X} \rangle.$$

 $Br[X \to J/\psi \pi^{+}\pi^{-}] \left(\langle \mathcal{O}_{8}^{X}(^{3}S_{1}) \rangle + 0.159 \ \langle \mathcal{O}_{8}^{X}(^{1}S_{0}) \rangle + 0.085 \ \langle \mathcal{O}_{1}^{X}(^{1}S_{0}) \rangle \right.$ $\left. + 0.00024 \ \langle \mathcal{O}_{1}^{X}(^{3}S_{1}) \rangle \right) = (2.7 \pm 0.6) \times 10^{-4} \text{ GeV}^{3}$ Artoisenet and Braaten, PRD81, 114018 from Tevatron data

If one consider the first term only, it leads to

$$Br[X \to J/\psi \pi^+ \pi^-] \sigma(X(3872), Q^2 > 1 \text{ GeV}) \approx 2.6 \text{ pb}$$
 $\sqrt{s} = 100 \text{ GeV}$

X. Yao