3D STRUCTURE: BEAUTY AND THE BEAST

Alessandro Bacchetta

SOME INTRODUCTION

Wigner distributions (Fourier transform of GTMDs = Generalized Transverse Momentum Distributions)

see, e.g., C. Lorcé, B. Pasquini, M. Vanderhaeghen, JHEP 1105 (11)

_	1	1	1	 -
F				1
F				1
F				1
F				1
				1
				1

With present data

With present data With 10x data

With present data With 10x data

With 100x data

With present data With 10x data

Present data

Present data

+ JLab 20

Present data

+ JLab 20

Present data

+ JLab 20

Twist-2 TMDs

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

Twist-2 TMDs

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

TWIST-3 TMD TABLE

quark pol.

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

Mulders-Tangerman, NPB 461 (96) Boer-Mulders, PRD 57 (98) Bacchetta, Mulders, Pijlman, hep-ph/0405154 Goeke, Metz, Schlegel, hep-ph/0504130

TWIST-3 TMD TABLE

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

> Mulders-Tangerman, NPB 461 (96) Boer-Mulders, PRD 57 (98) Bacchetta, Mulders, Pijlman, hep-ph/0405154 Goeke, Metz, Schlegel, hep-ph/0504130

hard factor

The W term, dominates at low transverse momentum $q_T = P_{hT}/z \ll Q$ So far, the Y term has been neglected in TMD extractions

THE "MATCHING" PROCEDURE

TMDS

The analysis is usually done in Fourier-transformed space

The analysis is usually done in Fourier-transformed space TMDs depend on two scales, but they are set to be equal for convenience.

TMD STRUCTURE

$$\hat{f}_1^a(x, |\boldsymbol{b}_T|; \boldsymbol{\mu}, \boldsymbol{\zeta}) = \int d^2 \boldsymbol{k}_\perp \, e^{i\boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a(x, \boldsymbol{k}_\perp^2; \boldsymbol{\mu}, \boldsymbol{\zeta})$$

$$\hat{f}_{1}^{a}(x, b_{T}^{2}; \mu_{f}, \zeta_{f}) = [C \otimes f_{1}](x, \mu_{b_{*}}) \ e^{\int_{\mu_{b_{*}}}^{\mu_{f}} \frac{d\mu}{\mu} \left(\gamma_{F} - \gamma_{K} \ln \frac{\sqrt{\zeta_{f}}}{\mu}\right)} \left(\frac{\sqrt{\zeta_{f}}}{\mu_{b_{*}}}\right)^{K_{\text{resum}} + g_{K}} f_{1 NP}(x, b_{T}^{2}; \zeta_{f}, Q_{0})$$

$$\mu_{b_*} = \frac{2e^{-\gamma_E}}{b_*}$$

see, e.g., Collins, "Foundations of Perturbative QCD" (11)

TMD STRUCTURE

$$\hat{f}_{1}^{a}(x, |\boldsymbol{b}_{T}|; \boldsymbol{\mu}, \boldsymbol{\zeta}) = \int d^{2}\boldsymbol{k}_{\perp} e^{i\boldsymbol{b}_{T}\cdot\boldsymbol{k}_{\perp}} f_{1}^{a}(x, \boldsymbol{k}_{\perp}^{2}; \boldsymbol{\mu}, \boldsymbol{\zeta})$$

$$perturbative Sudakov form factor$$

$$\hat{f}_{1}^{a}(x, b_{T}^{2}; \boldsymbol{\mu}_{f}, \boldsymbol{\zeta}_{f}) = [C \otimes f_{1}](x, \boldsymbol{\mu}_{b_{*}}) e^{\int_{\boldsymbol{\mu}_{b_{*}}}^{\boldsymbol{\mu}_{f}} \frac{d\boldsymbol{\mu}}{\boldsymbol{\mu}}} (\gamma_{F} - \gamma_{K} \ln \frac{\sqrt{\zeta_{f}}}{\boldsymbol{\mu}_{b_{*}}}) \left(\frac{\sqrt{\zeta_{f}}}{\boldsymbol{\mu}_{b_{*}}}\right)^{K_{\text{resum}} + g_{K}} f_{1NP}(x, b_{T}^{2}; \boldsymbol{\zeta}_{f}, Q_{0})$$

$$\mu_{b_{*}} = \frac{2e^{-\gamma_{E}}}{b_{*}} \quad \text{collinear PDF}$$

$$matching \text{ coefficients} (perturbative) \quad \text{collins-Soper kernel} (perturbative) \quad \text{nonperturbative part of TMD}$$
TMD GLOBAL FITS

	Accuracy	HERMES	COMPASS	DY fixed target	DY collider	N of points	χ^2/N_{points}
Pavia 2017 <mark>arXiv:1703.10157</mark>	NLL	•	~	~	~	8059	1.55
SV 2019 arXiv:1912.06532	N ³ LL ⁻	•	~	~	~	1039	1.06
MAP22 arXiv:2206.07598	N ³ LL-	•	~	~	~	2031	1.06

x-Q² COVERAGE

MAP Collaboration Bacchetta, Bertone, Bissolotti, Bozzi, Cerutti, Piacenza, Radici, Signori, arXiv:2206.07598

Scimemi, Vladimirov, arXiv:1912.06532

x-Q² COVERAGE

MAP Collaboration Bacchetta, Bertone, Bissolotti, Bozzi, Cerutti, Piacenza, Radici, Signori, arXiv:2206.07598

Scimemi, Vladimirov, arXiv:1912.06532

 $f_{1NP}(x, b_T^2) \propto \text{F.T. of} \left(e^{-\frac{k_T^2}{g_1}} + \lambda^2 k_T^2 e^{-\frac{k_T^2}{g_{1B}}} + \lambda_2^2 e^{-\frac{k_T^2}{g_{1C}}} \right)$

• •

$$f_{1NP}(x, b_T^2) \propto \text{F.T. of} \left(e^{-\frac{k_T^2}{g_1}} + \lambda^2 k_T^2 e^{-\frac{k_T^2}{g_{1B}}} + \lambda_2^2 e^{-\frac{k_T^2}{g_{1C}}} \right)$$

.

$$g_1(x) = N_1 \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}}$$

$$f_{1NP}(x, b_T^2) \propto \text{F.T. of} \left(e^{-\frac{k_T^2}{g_1}} + \lambda^2 k_T^2 e^{-\frac{k_T^2}{g_{1B}}} + \lambda_2^2 e^{-\frac{k_T^2}{g_{1C}}} \right)$$

.

$$g_1(x) = N_1 \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}}$$

$$g_K(b_T^2) = -\frac{g_2^2}{2}b_T^2$$

$$f_{1NP}(x, b_T^2) \propto \text{F.T. of} \left(e^{-\frac{k_T^2}{g_1}} + \lambda^2 k_T^2 e^{-\frac{k_T^2}{g_{1B}}} + \lambda_2^2 e^{-\frac{k_T^2}{g_{1C}}} \right)$$

$$g_1(x) = N_1 \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}}$$

$$g_K(b_T^2) = -\frac{g_2^2}{2}b_T^2$$

11 parameters for TMD PDF + 1 for NP evolution +9 for FF = 21 free parameters

EXAMPLE OF RESULTING TMDS

FIG. 13: The TMD PDF of the up quark in a proton at $\mu = \sqrt{\zeta} = Q = 2$ GeV (left panel) and 10 GeV (right panel) as a function of the partonic transverse momentum $|\mathbf{k}_{\perp}|$ for x = 0.001, 0.01 and 0.1. The uncertainty bands represent the 68% CL.

EXAMPLE OF RESULTING TMDS

FIG. 13: The TMD PDF of the up quark in a proton at $\mu = \sqrt{\zeta} = Q = 2$ GeV (left panel) and 10 GeV (right panel) as a function of the partonic transverse momentum $|\mathbf{k}_{\perp}|$ for x = 0.001, 0.01 and 0.1. The uncertainty bands represent the 68% CL.

As usual, the rigidity of the functional form plays a role and probably leads to underestimated bands

EXAMPLE OF RESULTING TMDS

FIG. 13: The TMD PDF of the up quark in a proton at $\mu = \sqrt{\zeta} = Q = 2$ GeV (left panel) and 10 GeV (right panel) as a function of the partonic transverse momentum $|\mathbf{k}_{\perp}|$ for x = 0.001, 0.01 and 0.1. The uncertainty bands represent the 68% CL.

As usual, the rigidity of the functional form plays a role and probably leads to underestimated bands

RESULTING COLLINS-SOPER KERNEL

Bermudez Martinez, Vladimirov, arXiv:2206.01105

RESULTING COLLINS-SOPER KERNEL

Bermudez Martinez, Vladimirov, arXiv:2206.01105

see talk on Wednesday

TMD at large x

see talk on Wednesday

TMD at large x

BEAST 1: NORMALIZATION

PROBLEMS WITH LOW TRANSVERSE MOMENTUM

COMPASS multiplicities (one of many bins)

The description considerably worsens at higher orders

PROBLEMS WITH LOW TRANSVERSE MOMENTUM

COMPASS multiplicities (one of many bins)

The description considerably worsens at higher orders

PROBLEMS WITH HIGH TRANSVERSE MOMENTUM

Gonzalez-Hernandez, Rogers, Sato, Wang arXiv:1808.04396

At high q_T , the collinear formalism should be valid, but large discrepancies are observed

PROBLEMS WITH HIGH TRANSVERSE MOMENTUM

Gonzalez-Hernandez, Rogers, Sato, Wang arXiv:1808.04396

At high q_T , the collinear formalism should be valid, but large discrepancies are observed

BEAST 2: TMD REGION

MAP22 TMD DATA SELECTION

MAP22 TMD DATA SELECTION

Number of points: 2031

Boglione, Diefenthaler, Dolan, Gamberg, Melnitchouk, arXiv:2201.12197

Boglione, Diefenthaler, Dolan, Gamberg, Melnitchouk, arXiv:2201.12197

Boglione, Diefenthaler, Dolan, Gamberg, Melnitchouk, arXiv:2201.12197

0.55

The MAP22 cut is already considered to be "generous", but the physics seems to be the same for a much wider $P_{\rm T}$

The MAP22 cut is already considered to be "generous", but the physics seems to be the same for a much wider $P_{\rm T}$

BEAST 3: HIGHER TWIST

TWIST-3 TMD TABLE

quark pol.

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

Mulders-Tangerman, NPB 461 (96) Boer-Mulders, PRD 57 (98) Bacchetta, Mulders, Pijlman, hep-ph/0405154 Goeke, Metz, Schlegel, hep-ph/0504130

TWIST-3 TMD TABLE

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

> Mulders-Tangerman, NPB 461 (96) Boer-Mulders, PRD 57 (98) Bacchetta, Mulders, Pijlman, hep-ph/0405154 Goeke, Metz, Schlegel, hep-ph/0504130

TWIST-3 CORRELATORS

TWIST-3 CORRELATORS

$$i\Phi_F^{\alpha}(x,x') = \int \frac{d\xi^- d\eta^-}{(2\pi)^2} e^{ik\cdot\xi} e^{i(k'-k)\cdot\eta} \delta_T^{\alpha\rho}$$
$$\times \langle P|\overline{\psi}(0) \mathcal{W}_{(0,\eta)}^v ig F^{+\alpha}(\eta) \mathcal{W}_{(\eta,\xi)}^v \psi(\xi)|P\rangle \Big|_{\substack{\xi^+ = \xi_T = 0\\\eta^+ = \eta_T = 0}}$$

Bacchetta, Boer, Diehl, Mulders, arXiv:0803.0227

Bacchetta, Boer, Diehl, Mulders, arXiv:0803.0227

Not all of them are easy to access at EIC due to: x-range, twist, evolution, prefactors

There are at least four possibilities:

BEAM-SPIN ASYMMETRY AT CLAS12

arXiv:2101.03544

THE SIVERS CASE

$\hat{f}_1^a(x, b_T^2; Q, Q) = [C \otimes f_1](x, \mu_{b_*}) S_{\text{pert}} f_{1NP}(x, b_T^2; Q, Q_0),$

$\hat{f}_{1T}^{\perp(1)}(x, b_T^2; Q, Q) = [C \otimes T_F](x, \mu_{b_*}) S_{\text{pert}} f_{1T NP}^{\perp}(x, b_T^2; Q, Q_0),$

THE SIVERS CASE

$\hat{f}_1^a(x, b_T^2; Q, Q) = [C \otimes f_1](x, \mu_{b_*}) S_{\text{pert}} f_{1NP}(x, b_T^2; Q, Q_0),$

 $\hat{f}_{1T}^{\perp(1)}(x, b_T^2; Q, Q) = \begin{bmatrix} C \otimes T_F \end{bmatrix} (x, \mu_{b_*}) S_{\text{pert}} f_{1T NP}^{\perp}(x, b_T^2; Q, Q_0),$

Twist-3 collinear PDF: its evolution is not known exactly

BEAM-SPIN ASYMMETRY

$$F_{LU}^{\sin\phi} = \frac{2M}{Q} C \left[-\frac{\hat{\mathbf{h}} \cdot \mathbf{k}_T}{M_h} \left(x_B e H_1^{\perp} + \frac{M_h}{M} f_1 \frac{\tilde{G}^{\perp}}{z} \right) + \frac{\hat{\mathbf{h}} \cdot \mathbf{p}_T}{M} \left(x_B g^{\perp} D_1 + \frac{M_h}{M} h_1^{\perp} \frac{\tilde{E}}{z} \right) \right],$$

accessible from other observables
and partially known

Bacchetta, Bozzi, Echevarria, Pisano, Prokudin, arXiv:1906.07037 Vladimirov, Moos, arXiv:21109.09771 Ebert, Gao, Stewart, arXiv:2112.07680

BEAM-SPIN ASYMMETRY

Bacchetta, Bozzi, Echevarria, Pisano, Prokudin, arXiv:1906.07037 Vladimirov, Moos, arXiv:21109.09771 Ebert, Gao, Stewart, arXiv:2112.07680

BEAM-SPIN ASYMMETRY

$$F_{LU}^{\sin\phi} = \frac{2M}{Q} \mathcal{C} \left[-\frac{\hat{\mathbf{h}} \cdot \mathbf{k}_T}{M_h} \left(x_B e H_1^{\perp} + \frac{M_h}{M} f_1 \frac{\tilde{G}^{\perp}}{z} \right) + \frac{\hat{\mathbf{h}} \cdot \mathbf{p}_T}{M} \left(x_B g^{\perp} D_1 + \frac{M_h}{M} h_1^{\perp} \frac{\tilde{E}}{z} \right) \right],$$

$$W_{LU}^{\sin\phi_h} = \tilde{\mathcal{F}} \left\{ \mathcal{H}^{(1)} \left[\frac{2xM_N}{Q} \left(\frac{k_{Tx}}{M_N} \tilde{g}^{\perp} D_1 - \frac{p_{Tx}}{M_h} \tilde{e} H_1^{\perp} \right) - \frac{2M_h}{zQ} \left(\frac{p_{Tx}}{M_h} f_1 \tilde{G}^{\perp} - \frac{k_{Tx}}{M_N} h_1^{\perp} \tilde{E} \right) \right] \right\}.$$

Bacchetta, Bozzi, Echevarria, Pisano, Prokudin, arXiv:1906.07037 Vladimirov, Moos, arXiv:21109.09771 Ebert, Gao, Stewart, arXiv:2112.07680

. . .

.

.

We can obtain beautiful TMD extractions

- We can obtain beautiful TMD extractions
- JLab 20 can drastically decrease the uncertainties

- We can obtain beautiful TMD extractions
- JLab 20 can drastically decrease the uncertainties
- JLab and EIC can be complementary

- We can obtain beautiful TMD extractions
- JLab 20 can drastically decrease the uncertainties
- JLab and EIC can be complementary
- Several issues need to be sorted out, but they are opportunities, not problems

- We can obtain beautiful TMD extractions
- JLab 20 can drastically decrease the uncertainties
- JLab and EIC can be complementary
- Several issues need to be sorted out, but they are opportunities, not problems

- We can obtain beautiful TMD extractions
- JLab 20 can drastically decrease the uncertainties
- JLab and EIC can be complementary
- Several issues need to be sorted out, but they are opportunities, not problems

BACKUP SLIDES

LOW-b_T MODIFICATIONS

 $\log\left(Q^2 b_T^2\right) \to \log\left(Q^2 b_T^2 + 1\right)$

see, e.g., Bozzi, Catani, De Florian, Grazzini <u>hep-ph/0302104</u>

LOW-b_T MODIFICATIONS

see, e.g., Bozzi, Catani, De Florian, Grazzini <u>hep-ph/0302104</u>

 $\log\left(Q^2 b_T^2\right) \to \log\left(Q^2 b_T^2 + 1\right)$

$$b_*(b_c(b_{\rm T})) = \sqrt{\frac{b_{\rm T}^2 + b_0^2/(C_5^2 Q^2)}{1 + b_{\rm T}^2/b_{\rm max}^2 + b_0^2/(C_5^2 Q^2 b_{\rm max}^2)}}$$

$$b_{\min} \equiv b_*(b_c(0)) = \frac{b_0}{C_5 Q} \sqrt{\frac{1}{1 + b_0^2 / (C_5^2 Q^2 b_{\max}^2)}}$$

Collins et al. arXiv:1605.00671

LOW-b_T MODIFICATIONS

 $\log\left(Q^2 b_T^2\right) \to \log\left(Q^2 b_T^2 + 1\right)$

see, e.g., Bozzi, Catani, De Florian, Grazzini <u>hep-ph/0302104</u>

 $b_*(b_c(b_{\rm T})) = \sqrt{\frac{b_{\rm T}^2 + b_0^2/(C_5^2 Q^2)}{1 + b_{\rm T}^2/b_{\rm max}^2 + b_0^2/(C_5^2 Q^2 b_{\rm max}^2)}} \qquad b_{\rm min} \equiv b_*(b_c(0)) = \frac{b_0}{C_5 Q} \sqrt{\frac{1}{1 + b_0^2/(C_5^2 Q^2 b_{\rm max}^2)}}$

Collins et al. <u>arXiv:1605.00671</u>

- The justification is to recover the integrated result ("unitarity constraint")
- Modification at low b_T is allowed because resummed calculation is anyway unreliable there

PAVIA 2019 b $_{\ast}$ PRESCRIPTION

.

$$b_* \equiv \frac{b_T}{\sqrt{1 + b_T^2 / b_{\max}^2}}$$

Collins, Soper, Sterman, NPB250 (85)

PAVIA 2019 b $_{\ast}$ PRESCRIPTION

.

$$\mu_0 = 1 \,\mathrm{GeV}$$

$$b_* \equiv \frac{b_T}{\sqrt{1 + b_T^2 / b_{\max}^2}}$$

Collins, Soper, Sterman, NPB250 (85)

PAVIA 2019 b $_{\ast}$ PRESCRIPTION

$$\mu_0 = 1 \, \text{GeV}$$

$$b_* \equiv \frac{b_T}{\sqrt{1 + b_T^2 / b_{\max}^2}}$$

Collins, Soper, Sterman, NPB250 (85)

$$\mu_b = 2e^{-\gamma_E}/b_* \qquad \bar{b}_* \equiv b_{\max} \left(\frac{1 - e^{-b_T^4/b_{\max}^4}}{1 - e^{-b_T^4/b_{\min}^4}}\right)^{1/4} \qquad b_{\max} = 2e^{-\gamma_E}$$

.

$$b_{\min} = \frac{2e^{-\gamma_E}}{Q}$$

PAVIA 2019 b_* PRESCRIPTION

$$\mu_0 = 1 \, \mathrm{GeV}$$

$$b_* \equiv \frac{b_T}{\sqrt{1 + b_T^2 / b_{\max}^2}}$$

Collins, Soper, Sterman, NPB250 (85)

$$\mu_b = 2e^{-\gamma_E}/b_* \qquad \bar{b}_* \equiv b_{\max} \left(\frac{1 - e^{-b_T^4/b_{\max}^4}}{1 - e^{-b_T^4/b_{\min}^4}}\right)^{1/4} \qquad b_{\max} = 2e^{-\gamma_E}$$
$$b_{\min} = \frac{2e^{-\gamma_E}}{Q}$$

These are all choices that should be at some point checked/challenged

$$\hat{f}_1^q(x, b_T; \mu^2) = \sum_i \left(C_{qi} \otimes f_1^i \right)(x, b_*; \mu_b) e^{\tilde{S}(b_*; \mu_b, \mu)} e^{g_K(b_T) \ln \frac{\mu}{\mu_0}} \hat{f}_{\rm NP}^q(x, b_T)$$

$$\mu_0 = 1 \,\mathrm{GeV}$$

$$b_* \equiv \frac{b_T}{\sqrt{1 + b_T^2 / b_{\max}^2}}$$

Collins, Soper, Sterman, NPB250 (85)

$$\mu_{b} = 2e^{-\gamma_{E}}/b_{*} \qquad \bar{b}_{*} \equiv b_{\max} \left(\frac{1 - e^{-b_{T}^{4}/b_{\max}^{4}}}{1 - e^{-b_{T}^{4}/b_{\min}^{4}}}\right)^{1/4} \qquad b_{\max} = 2e^{-\gamma_{E}}$$
$$b_{\min} = \frac{2e^{-\gamma_{E}}}{Q}$$

These are all choices that should be at some point checked/challenged

EFFECTS OF b_* PRESCRIPTION

$$\mu_b = 2e^{-\gamma_E}/b_* \qquad \bar{b}_* \equiv b_{\max} \left(\frac{1 - e^{-b_T^4/b_{\max}^4}}{1 - e^{-b_T^4/b_{\min}^4}}\right)^{1/4} \qquad b_{\max} = 2e^{-\gamma_E}$$

$$b_{\min} = \frac{2e^{-\gamma_E}}{Q}$$

EFFECTS OF b $_{\ast}$ **PRESCRIPTION**

$$\mu_b = 2e^{-\gamma_E}/b_* \qquad \bar{b}_* \equiv b_{\max} \left(\frac{1 - e^{-b_T^4/b_{\max}^4}}{1 - e^{-b_T^4/b_{\min}^4}}\right)^{1/4} \qquad b_{\max} = 2e^{-\gamma_E}$$

No significant effect at high Q, but large effect at low Q (inhibits perturbative contribution)

NONMIXED TERMS IN COLLINEAR SIDIS CROSS SECTION

$$\begin{split} \frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\mathrm{d}Q^{2}\mathrm{d}z}\bigg|_{\mathcal{O}(\alpha_{s}^{1})} &= \sigma_{0}\sum_{ff'}\frac{e_{f}^{2}}{z^{2}}\left(\delta_{f'f} + \delta_{f'g}\right)\frac{\alpha_{s}}{\pi}\bigg\{\left[D_{1}^{h/f'}\otimes C_{1}^{f'f}\otimes f_{1}^{f/N}\right](x, z, Q) \\ &+ \frac{1-y}{1+\left(1-y\right)^{2}}\left[D_{1}^{h/f'}\otimes C_{L}^{f'r}\otimes f_{1}^{f/N}\right](x, z, Q)\bigg\}, \\ C_{1}^{qq} &= \frac{C_{F}}{2}\bigg\{-8\delta(1-x)\delta(1-z) \\ &+ \delta(1-x)\left[P_{qq}(z)\ln\frac{Q^{2}}{\mu_{F}^{2}} + L_{1}(z) + L_{2}(z) + (1-z)\right] \\ &+ \delta(1-z)\left[P_{qq}(x)\ln\frac{Q^{2}}{\mu^{2}} + L_{1}(x) - L_{2}(x) + (1-x)\right] \\ &+ 2\frac{1}{(1-x)_{+}}\frac{1}{(1-z)_{+}} - \frac{1+z}{(1-x)_{+}}\frac{1+x}{(1-z)_{+}} + 2(1+xz)\bigg\}, \end{split}$$

SOME JUSTIFICATION: INITIAL SITUATION

SOLUTION 1: RESTRICT TMD REGION

SOLUTION 2: ENHANCE TMD CONTRIBUTIONS

