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W term

The W term, dominates at low transverse momentum  

So far, the Y term has been neglected in TMD extractions

qT = PhT/z ≪ Q
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The analysis is usually done in Fourier-transformed space
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TMDs depend on two scales, but they are set to be equal for convenience.

The analysis is usually done in Fourier-transformed space
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expressed as a convolution over the partonic transverse momenta of two TMD PDFs:
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In the above equation, HDY is the hard factor, which can be computed order by order in the strong coupling ↵s

and is equal to 1 at leading order.3 This function encodes the virtual part of the hard scattering and depends on
the hard scale Q and on the renormalisation scale µ. The unpolarized TMDs are denoted by f1. They depend
on the renormalization scale µ and the rapidity scale ⇣. The rapidity scales must obey the relation ⇣A⇣B = Q

4.
Throughout the paper, we will set µ2 = ⇣A = ⇣B = Q

2.
The following definition of the Fourier transform of the TMD PDFs has been used:4
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The structure of the TMD PDFs will be addressed in details in Sec. II C. The transverse momentum of the
active quark and antiquark are denoted as k?A,B . At low transverse momenta, the two variables xA,B take the
values:

xA =
Qp
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e
y
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e
�y
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The summation over a in Eq. (4) runs over the active quarks and antiquarks at the scale Q, and ca(Q2) are
the respective electroweak charges given by
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where ea, Va, and Aa are the electric, vector, and axial charges of the flavor a, respectively; V` and A` are the
vector and axial charges of the lepton `; sin ✓W is the weak mixing angle; MZ and �Z are mass and width of
the Z boson.

As discussed in Sec. III and summarized in Tab. II, for DY production the observable provided by the
experimental collaborations is the (normalized) cross section di↵erential with respect to |qT |. For each bin
delimited by the initial (i) and final (f) values of kinematical variables, the experimental values are compared
with the following theoretical quantity:
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where the
�

symbol represents the integral divided by the width of the integration range. Hence, Eq. (10)
corresponds to the cross section in Eq. (3) averaged over the transverse momentum and integrated over rapidity
and invariant mass of the exchanged boson. The normalized cross section is obtained by dividing both sides of
Eq. (10) by the appropriate fiducial cross section, which is computed by employing the DYNNLO code [35, 36].5

3 In the present work, we follow the definition of Ref. [34].
4 Notice that in Ref. [5] the Fourier transform was defined with an extra 1/(2⇡) factor.
5 See https://www.physik.uzh.ch/en/groups/grazzini/research/Tools.html
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and is equal to 1 at leading order.3 This function encodes the virtual part of the hard scattering and depends on
the hard scale Q and on the renormalisation scale µ. The unpolarized TMDs are denoted by f1. They depend
on the renormalization scale µ and the rapidity scale ⇣. The rapidity scales must obey the relation ⇣A⇣B = Q

4.
Throughout the paper, we will set µ2 = ⇣A = ⇣B = Q

2.
The following definition of the Fourier transform of the TMD PDFs has been used:4
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The structure of the TMD PDFs will be addressed in details in Sec. II C. The transverse momentum of the
active quark and antiquark are denoted as k?A,B . At low transverse momenta, the two variables xA,B take the
values:
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s
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y
, xB =
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e
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. (6)

The summation over a in Eq. (4) runs over the active quarks and antiquarks at the scale Q, and ca(Q2) are
the respective electroweak charges given by
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where ea, Va, and Aa are the electric, vector, and axial charges of the flavor a, respectively; V` and A` are the
vector and axial charges of the lepton `; sin ✓W is the weak mixing angle; MZ and �Z are mass and width of
the Z boson.

As discussed in Sec. III and summarized in Tab. II, for DY production the observable provided by the
experimental collaborations is the (normalized) cross section di↵erential with respect to |qT |. For each bin
delimited by the initial (i) and final (f) values of kinematical variables, the experimental values are compared
with the following theoretical quantity:
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where the
�

symbol represents the integral divided by the width of the integration range. Hence, Eq. (10)
corresponds to the cross section in Eq. (3) averaged over the transverse momentum and integrated over rapidity
and invariant mass of the exchanged boson. The normalized cross section is obtained by dividing both sides of
Eq. (10) by the appropriate fiducial cross section, which is computed by employing the DYNNLO code [35, 36].5

3 In the present work, we follow the definition of Ref. [34].
4 Notice that in Ref. [5] the Fourier transform was defined with an extra 1/(2⇡) factor.
5 See https://www.physik.uzh.ch/en/groups/grazzini/research/Tools.html

f̂a
1 (x, b

2
T ;µf , ⇣f ) = [C ⌦ f1](x, µb⇤) e

R µf
µb⇤

dµ
µ

�
�F��K ln

p
⇣f
µ

� ✓p
⇣f

µb⇤

◆Kresum+gK

f1NP (x, b
2
T ; ⇣f , Q0) ,

<latexit sha1_base64="cI6SJEVqAQSixdopizjqBZ+NHnM="></latexit>

µb⇤ =
2e��E

b⇤<latexit sha1_base64="SPx62PRKBO7i3/d1gGmNYidtjZA="></latexit>



TMD GLOBAL FITS

14

Accuracy HERMES COMPASS
DY


fixed 
target

DY 
collider

N of 
points χ2/Npoints

Pavia 2017

arXiv:1703.10157 NLL ✔ ✔ ✔ ✔ 8059 1.55

SV 2019

arXiv:1912.06532 N3LL- ✔ ✔ ✔ ✔ 1039 1.06

MAP22

arXiv:2206.07598 N3LL- ✔ ✔ ✔ ✔ 2031 1.06

http://arxiv.org/abs/arXiv:1703.10157
http://www.arxiv.org/abs/1912.06532
https://arxiv.org/abs/2206.07598


x-Q2 COVERAGE

15

Scimemi, Vladimirov, 
arXiv:1912.06532

MAP Collaboration 
Bacchetta, Bertone, Bissolotti, Bozzi, Cerutti, 
Piacenza, Radici, Signori, arXiv:2206.07598

PHENIX

E288
E605
E772

LHCb
CDF, D0

ATLAS
CMS

ATLAS(116<Q<150)

ATLAS(46<Q<66)

HERMES

COMPASS

Total:
457 DY points
582 SIDIS points

10-4 10-3 10-2 10-1 1

1

10

30

60

100

150

10-4 10-3 10-2 10-1 1

1

10

30

60

100

150

x
Q
[G

e
V
]

Figure 5. Density of data in the plane (Q, x) (a darker color corresponds to a higher density).

The kinematic region in x and Q covered by the data set and thus contributing to the deter-
mination of TMDPDF is shown in fig. 5. The boxes enclose the sub-regions covered by the single
data sets. Looking at fig. 5, it is possible to distinguish two main clusters of data: the “low-energy
experiments”, i.e. E288, E605, E772, PHENIX, COMPASS and HERMES that place themselves
at invariant-mass energies between 1 and 18 GeV, and the “high-energy experiments”, i.e. all those
from Tevatron and LHC, that are instead distributed around the Z-peak region. From this plot we
observe that, kinematic ranges of SIDIS and DY data do not overlap.

As a final comment of this section let us mention that our data selection is particularly conser-
vative because it drops points that could potentially be described by TMD factorization (see e.g.
ref. [18] where a less conservative choice of cuts is used). However, our fitted data set guarantees
that we operate well within the range of validity of TMD factorization. In sec. 7 we show that
unexpectedly our extraction can describe a larger set of data as well.

4 Fit procedure

The experimental data are usually provided in a form specific for each setup. In order to extract
valuable information for the TMD extraction, one has to detail the methodology that has been
followed, and this is the purpose of this section. Finally, we also provide a suitable definition of the
�2 that allows for a correct exploitation of experimental uncertainties.

4.1 Treatment of nuclear targets and charged hadrons

The data from E288, E605 (Cu), E772, COMPASS, (part of) HERMES (isoscalar targets) come
from nuclear target processes. In these cases, we perform the iso-spin rotation of the corresponding
TMDPDF that simulates the nuclear-target effects. For example, we replace u-, and d-quark
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FIG. 3: The x vs. Q
2 coverage spanned by the experimental data considered in this analysis (see also Tab. II and

Tab. III).

A. Drell-Yan

Our analysis is based on TMD factorization, which is applicable only in the region |qT | ⌧ Q. Therefore, in
agreement with the choices of Refs. [7, 22] we impose the following cut

|qT | < 0.2Q . (53)

Table II summarizes all the DY datasets included in our analysis. For some DY datasets the experimental
observable is given within a fiducial region. This means that kinematic cuts on transverse momentum pT ` and
pseudo–rapidity ⌘` of the single final-state leptons are enforced (values reported in the next–to–last column
of Tab. II). For more details we refer the reader to Ref. [7]. The second column of Tab. II reports, for each
experiment, the number of data points (Ndat) that survive the kinematic cuts. The total number of DY data
points considered in this work is 484. Note that for E605 and E288 at 400 GeV we have excluded the bin in
Q containing the ⌥ resonance (Q ' 9.5 GeV).

As can be seen in Tab. II, the cross sections are released in di↵erent forms: some of them are normalized to the
total (fiducial) cross section while others are not. When necessary, the required total cross section � is computed
using the code DYNNLO [35, 36] with the MMHT14 collinear PDF set, consistently with the perturbative order
of the di↵erential cross section (see also Tab. I). More precisely, the total cross section is computed at NLO for
NNLL accuracy, and NNLO for N3LL� accuracy. The values of the total cross sections at di↵erent orders can
be found in Table 3 of Ref. [7]. For the ATLAS dataset at 13 TeV, the value of the fiducial cross section is
694.3 pb at NLO and 707.3 pb at NNLO.

B. SIDIS

The identification of the TMD region in SIDIS is not a trivial task and may be subject to revision as new
data appears and the theoretical description is improved, as discussed in dedicated studies [38, 94, 95].

First of all, a cut in the virtuality Q of the exchanged photon is necessary to respect the condition Q � ⇤QCD

needed for perturbation theory to be applicable. In this way also mass corrections and higher twist corrections
can be neglected. In this work, we require that Q > 1.4 GeV. Studies of SIDIS in collinear kinematics employ
similar cuts [29, 96].

In order to restrict ourselves to the SIDIS current fragmentation region and interpret the observables in terms
of parton distribution and fragmentation functions, we apply a cut in the kinematic variable z by requiring
0.2 < z < 0.7. The lower limit is the same used in the study of collinear fragmentation functions [29, 96]. We
used a slightly more restrictive upper limit, to avoid contributions from exclusive channels and to focus on a
region where the collinear fragmentation functions have small relative uncertainties.

For what concerns the cut on transverse momentum, our baseline choice is

|PhT | < min
⇥
min[c1 Q, c2 zQ] + c3 GeV, zQ

⇤
, (54)
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The kinematic region in x and Q covered by the data set and thus contributing to the deter-
mination of TMDPDF is shown in fig. 5. The boxes enclose the sub-regions covered by the single
data sets. Looking at fig. 5, it is possible to distinguish two main clusters of data: the “low-energy
experiments”, i.e. E288, E605, E772, PHENIX, COMPASS and HERMES that place themselves
at invariant-mass energies between 1 and 18 GeV, and the “high-energy experiments”, i.e. all those
from Tevatron and LHC, that are instead distributed around the Z-peak region. From this plot we
observe that, kinematic ranges of SIDIS and DY data do not overlap.

As a final comment of this section let us mention that our data selection is particularly conser-
vative because it drops points that could potentially be described by TMD factorization (see e.g.
ref. [18] where a less conservative choice of cuts is used). However, our fitted data set guarantees
that we operate well within the range of validity of TMD factorization. In sec. 7 we show that
unexpectedly our extraction can describe a larger set of data as well.

4 Fit procedure

The experimental data are usually provided in a form specific for each setup. In order to extract
valuable information for the TMD extraction, one has to detail the methodology that has been
followed, and this is the purpose of this section. Finally, we also provide a suitable definition of the
�2 that allows for a correct exploitation of experimental uncertainties.

4.1 Treatment of nuclear targets and charged hadrons

The data from E288, E605 (Cu), E772, COMPASS, (part of) HERMES (isoscalar targets) come
from nuclear target processes. In these cases, we perform the iso-spin rotation of the corresponding
TMDPDF that simulates the nuclear-target effects. For example, we replace u-, and d-quark
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Tab. III).

A. Drell-Yan

Our analysis is based on TMD factorization, which is applicable only in the region |qT | ⌧ Q. Therefore, in
agreement with the choices of Refs. [7, 22] we impose the following cut

|qT | < 0.2Q . (53)

Table II summarizes all the DY datasets included in our analysis. For some DY datasets the experimental
observable is given within a fiducial region. This means that kinematic cuts on transverse momentum pT ` and
pseudo–rapidity ⌘` of the single final-state leptons are enforced (values reported in the next–to–last column
of Tab. II). For more details we refer the reader to Ref. [7]. The second column of Tab. II reports, for each
experiment, the number of data points (Ndat) that survive the kinematic cuts. The total number of DY data
points considered in this work is 484. Note that for E605 and E288 at 400 GeV we have excluded the bin in
Q containing the ⌥ resonance (Q ' 9.5 GeV).

As can be seen in Tab. II, the cross sections are released in di↵erent forms: some of them are normalized to the
total (fiducial) cross section while others are not. When necessary, the required total cross section � is computed
using the code DYNNLO [35, 36] with the MMHT14 collinear PDF set, consistently with the perturbative order
of the di↵erential cross section (see also Tab. I). More precisely, the total cross section is computed at NLO for
NNLL accuracy, and NNLO for N3LL� accuracy. The values of the total cross sections at di↵erent orders can
be found in Table 3 of Ref. [7]. For the ATLAS dataset at 13 TeV, the value of the fiducial cross section is
694.3 pb at NLO and 707.3 pb at NNLO.

B. SIDIS

The identification of the TMD region in SIDIS is not a trivial task and may be subject to revision as new
data appears and the theoretical description is improved, as discussed in dedicated studies [38, 94, 95].

First of all, a cut in the virtuality Q of the exchanged photon is necessary to respect the condition Q � ⇤QCD

needed for perturbation theory to be applicable. In this way also mass corrections and higher twist corrections
can be neglected. In this work, we require that Q > 1.4 GeV. Studies of SIDIS in collinear kinematics employ
similar cuts [29, 96].

In order to restrict ourselves to the SIDIS current fragmentation region and interpret the observables in terms
of parton distribution and fragmentation functions, we apply a cut in the kinematic variable z by requiring
0.2 < z < 0.7. The lower limit is the same used in the study of collinear fragmentation functions [29, 96]. We
used a slightly more restrictive upper limit, to avoid contributions from exclusive channels and to focus on a
region where the collinear fragmentation functions have small relative uncertainties.

For what concerns the cut on transverse momentum, our baseline choice is

|PhT | < min
⇥
min[c1 Q, c2 zQ] + c3 GeV, zQ

⇤
, (54)
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from the presence of components of the quark wave function with angular momentum
L = 1 [67–71]. Similar features occur in models of fragmentation functions [38, 67, 72].

The Gaussian width of the TMD distributions may depend on the parton flavor
a [23, 38, 73]. In the present analysis, however, we assume they are flavor independent.
The justification for this choice is that most of the data we are considering are not suffi-
ciently sensitive to flavor differences, leading to unclear results. We will devote attention
to this issue in further studies.

Finally, we assume that the Gaussian width of the TMD depends on the fractional
longitudinal momentum x according to

g1(x) = N1
(1− x)α xσ

(1− x̂)α x̂σ
, (2.38)

where α, σ, and N1 ≡ g1(x̂) with x̂ = 0.1, are free parameters. Similarly, for fragmentation
functions we have

g3,4(z) = N3,4
(zβ + δ) (1− z)γ

(ẑβ + δ) (1− ẑ)γ
, (2.39)

where β, γ, δ, and N3,4 ≡ g3,4(ẑ) with ẑ = 0.5 are free parameters.
The average transverse momentum squared for the distributions in eq. (2.36) and (2.37)

can be computed analytically:

〈
k2
⊥
〉
(x) =

g1(x) + 2λg21(x)

1 + λg1(x)
,

〈
P 2
⊥
〉
(z) =

g23(z) + 2λF g34(z)

g3(z) + λF g24(z)
. (2.40)

3 Data analysis

The main goals of our work are to extract information about intrinsic transverse momenta,
to study the evolution of TMD parton distributions and fragmentation functions over a large
enough range of energy, and to test their universality among different processes. To achieve
this we included measurements taken from SIDIS, Drell-Yan and Z boson production from
different experimental collaborations at different energy scales. In this section we describe
the data sets considered for each process and the applied kinematic cuts.

Table 1 refers to the data sets for SIDIS off proton target (Hermes experiment) and
presents their kinematic ranges. The same holds for table 2, table 3, table 4 for SIDIS
off deuteron (Hermes and Compass experiments), Drell-Yan events at low energy and
Z boson production respectively. If not specified otherwise, the theoretical formulas are
computed at the average values of the kinematic variables in each bin.

3.1 Semi-inclusive DIS data

The SIDIS data are taken from Hermes [74] and Compass [75] experiments. Both data
sets have already been analyzed in previous works, e.g., refs. [23, 76], however they have
never been fitted together, including also the contributions deriving from TMD evolution.

The application of the TMD formalism to SIDIS depends on the capability of identifying
the current fragmentation region. This task has been recently discussed in ref. [39], where
the authors point out a possible overlap among different fragmentation regions when the
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FIG. 12: Graphical representation of the correlation matrix for the fitted parameters.
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FIG. 13: The TMD PDF of the up quark in a proton at µ =
p
⇣ = Q = 2 GeV (left panel) and 10 GeV (right panel) as

a function of the partonic transverse momentum |k?| for x = 0.001, 0.01 and 0.1. The uncertainty bands represent the
68% CL.

Fig. 3). Future data from the Electron-Ion Collider (EIC) are expected to play an important role in getting a
better description of the TMD PDFs at low x [107, 108].

In Fig. 14, we show the TMD FF for the up quark fragmenting into a ⇡
+ at µ =

p
⇣ = Q = 2 GeV (left

panel) and 10 GeV (right panel) as a function of the pion transverse momentum |P?| (with respect to the
fragmenting quark axis) for two di↵erent values of z = 0.3 and 0.6. As in the previous figure, the uncertainty
bands correspond to the 68% CL. In both left and right panels, an additional structure clearly emerges at
intermediate P?, especially at z = 0.3, which is induced by the weighted Gaussian in Eq. (39). Further
investigations on this topic are needed, and data from electron-positron annihilations would be valuable to
better explore these features.

We stress that the error bands displayed in Figs. 13-14 reflect the uncertainty on the fitted parameters (see
Eqs. (38)-(39)) that are determined by taking into account the uncertainty on the collinear PDFs and FFs as
discussed in Sec. III C. However, since the fits are performed using the central set of the collinear distributions,
all TMD replicas have the same integral in k? (i.e., their values at bT = 0 are the same). As a consequence,
the plots in Figs. 13-14 only partially account for the error of the collinear distributions.
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Fig. 3). Future data from the Electron-Ion Collider (EIC) are expected to play an important role in getting a
better description of the TMD PDFs at low x [107, 108].

In Fig. 14, we show the TMD FF for the up quark fragmenting into a ⇡
+ at µ =

p
⇣ = Q = 2 GeV (left

panel) and 10 GeV (right panel) as a function of the pion transverse momentum |P?| (with respect to the
fragmenting quark axis) for two di↵erent values of z = 0.3 and 0.6. As in the previous figure, the uncertainty
bands correspond to the 68% CL. In both left and right panels, an additional structure clearly emerges at
intermediate P?, especially at z = 0.3, which is induced by the weighted Gaussian in Eq. (39). Further
investigations on this topic are needed, and data from electron-positron annihilations would be valuable to
better explore these features.

We stress that the error bands displayed in Figs. 13-14 reflect the uncertainty on the fitted parameters (see
Eqs. (38)-(39)) that are determined by taking into account the uncertainty on the collinear PDFs and FFs as
discussed in Sec. III C. However, since the fits are performed using the central set of the collinear distributions,
all TMD replicas have the same integral in k? (i.e., their values at bT = 0 are the same). As a consequence,
the plots in Figs. 13-14 only partially account for the error of the collinear distributions.

As usual, the rigidity of the functional form plays a role  
and probably leads to underestimated bands
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Fig. 3). Future data from the Electron-Ion Collider (EIC) are expected to play an important role in getting a
better description of the TMD PDFs at low x [107, 108].

In Fig. 14, we show the TMD FF for the up quark fragmenting into a ⇡
+ at µ =

p
⇣ = Q = 2 GeV (left

panel) and 10 GeV (right panel) as a function of the pion transverse momentum |P?| (with respect to the
fragmenting quark axis) for two di↵erent values of z = 0.3 and 0.6. As in the previous figure, the uncertainty
bands correspond to the 68% CL. In both left and right panels, an additional structure clearly emerges at
intermediate P?, especially at z = 0.3, which is induced by the weighted Gaussian in Eq. (39). Further
investigations on this topic are needed, and data from electron-positron annihilations would be valuable to
better explore these features.

We stress that the error bands displayed in Figs. 13-14 reflect the uncertainty on the fitted parameters (see
Eqs. (38)-(39)) that are determined by taking into account the uncertainty on the collinear PDFs and FFs as
discussed in Sec. III C. However, since the fits are performed using the central set of the collinear distributions,
all TMD replicas have the same integral in k? (i.e., their values at bT = 0 are the same). As a consequence,
the plots in Figs. 13-14 only partially account for the error of the collinear distributions.

As usual, the rigidity of the functional form plays a role  
and probably leads to underestimated bands
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FIG. 2. Comparison of CS kernels extracted from differ-

ent combinations of the pseudo-data. The top plot shows all

possible (twelve) combinations of pseudo-data with different

kinematics, listed in the table I. The bottom plot show ex-

tractions made with different input collinear PDFs. The solid

lines are the central values. The shaded areas are the statis-

tical uncertainty. The oscillations at b ⇠ 4� 6GeV
�1

are due

to the finite bin size in the qT -space. The gray dashed line in

the lower plot shows the effect of incomplete cancellation of

parton’s momentum if PDFs in the comparing cross-section

are different (here, CT18 vs. CASCADE).

tions of CS kernel is shown in fig.3. The CASCADE
extraction lightly disagrees with the perturbative curve
(b < 1GeV�1), but in agreement with the SV19 [10] and
Pavia17 [7] for 1 < b < 3GeV�1.

The fit of the large-b part by a polynomial gives

D(b, µ) ⇠ [(0.069± 0.031)GeV]⇥ b, (11)

with a negligible quadratic part. We conclude that the
CASCADE suggests a linear asymptotic, which was also
used in the SV19 series of fits [9, 10, 37], and supported
by theoretical estimations [14, 38]

Conclusions. We have presented the method of di-
rect extraction of the CS kernel from the data, using the
proper combination of cross-sections with different kine-
matics. For explicitness, we considered the case of the
Drell-Yan process, but the method can be easily gener-
alized to other processes such as SIDIS, semi-inclusive
annihilation, Z/W-boson production, and their polarized
versions.
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FIG. 3. Comparison of the CS kernels obtained in different

approaches. CASCADE curve is obtained in this work. The

curves SV19, MAP22, Pavia19 and Pavia17 are obtained from

the fits of Drell-Yan and SIDIS data in refs. [39], [10], [11],

and [7], correspondingly. Dots represent the computations of

CS kernel on the lattice, with SVZES, ETMC/PKU, SVZ,

LPC20 and LPC22 corresponding to refs.[16], [40], [17], [41],

and [42].

The method is tested using the pseudo-data gener-
ated by the CASCADE event generator, and the corre-
sponding CS kernel is extracted. Amazingly, all expected
properties of the CS kernel (such as universality) are ob-
served in the CASCADE generator. This non-trivially
supports both the TMD factorization and the PB ap-
proaches and solves an old-stated problem of comparison
between non-perturbative distributions extracted within
these approaches [43, 44].

The procedure can be applied to the real experimental
data without modifications. In this case, the uncertain-
ties of extraction will be dominated by the statistical un-
certainties of measurements since many systematic uncer-
tainties cancel in the ratio. Thus the method is feasible
for modern and future experiments, such JLab [45, 46],
LHC [47], and EIC [48, 49]. They can be applied to al-
ready collected data after a rebinning. Importantly, the
procedure is model-independent and provides access to
the CS kernel based on the first principles.
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FIG. 3: The x vs. Q
2 coverage spanned by the experimental data considered in this analysis (see also Tab. II and

Tab. III).

A. Drell-Yan

Our analysis is based on TMD factorization, which is applicable only in the region |qT | ⌧ Q. Therefore, in
agreement with the choices of Refs. [7, 22] we impose the following cut

|qT | < 0.2Q . (53)

Table II summarizes all the DY datasets included in our analysis. For some DY datasets the experimental
observable is given within a fiducial region. This means that kinematic cuts on transverse momentum pT ` and
pseudo–rapidity ⌘` of the single final-state leptons are enforced (values reported in the next–to–last column
of Tab. II). For more details we refer the reader to Ref. [7]. The second column of Tab. II reports, for each
experiment, the number of data points (Ndat) that survive the kinematic cuts. The total number of DY data
points considered in this work is 484. Note that for E605 and E288 at 400 GeV we have excluded the bin in
Q containing the ⌥ resonance (Q ' 9.5 GeV).

As can be seen in Tab. II, the cross sections are released in di↵erent forms: some of them are normalized to the
total (fiducial) cross section while others are not. When necessary, the required total cross section � is computed
using the code DYNNLO [35, 36] with the MMHT14 collinear PDF set, consistently with the perturbative order
of the di↵erential cross section (see also Tab. I). More precisely, the total cross section is computed at NLO for
NNLL accuracy, and NNLO for N3LL� accuracy. The values of the total cross sections at di↵erent orders can
be found in Table 3 of Ref. [7]. For the ATLAS dataset at 13 TeV, the value of the fiducial cross section is
694.3 pb at NLO and 707.3 pb at NNLO.

B. SIDIS

The identification of the TMD region in SIDIS is not a trivial task and may be subject to revision as new
data appears and the theoretical description is improved, as discussed in dedicated studies [38, 94, 95].

First of all, a cut in the virtuality Q of the exchanged photon is necessary to respect the condition Q � ⇤QCD

needed for perturbation theory to be applicable. In this way also mass corrections and higher twist corrections
can be neglected. In this work, we require that Q > 1.4 GeV. Studies of SIDIS in collinear kinematics employ
similar cuts [29, 96].

In order to restrict ourselves to the SIDIS current fragmentation region and interpret the observables in terms
of parton distribution and fragmentation functions, we apply a cut in the kinematic variable z by requiring
0.2 < z < 0.7. The lower limit is the same used in the study of collinear fragmentation functions [29, 96]. We
used a slightly more restrictive upper limit, to avoid contributions from exclusive channels and to focus on a
region where the collinear fragmentation functions have small relative uncertainties.

For what concerns the cut on transverse momentum, our baseline choice is

|PhT | < min
⇥
min[c1 Q, c2 zQ] + c3 GeV, zQ

⇤
, (54)
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A. Drell-Yan

Our analysis is based on TMD factorization, which is applicable only in the region |qT | ⌧ Q. Therefore, in
agreement with the choices of Refs. [7, 22] we impose the following cut

|qT | < 0.2Q . (53)

Table II summarizes all the DY datasets included in our analysis. For some DY datasets the experimental
observable is given within a fiducial region. This means that kinematic cuts on transverse momentum pT ` and
pseudo–rapidity ⌘` of the single final-state leptons are enforced (values reported in the next–to–last column
of Tab. II). For more details we refer the reader to Ref. [7]. The second column of Tab. II reports, for each
experiment, the number of data points (Ndat) that survive the kinematic cuts. The total number of DY data
points considered in this work is 484. Note that for E605 and E288 at 400 GeV we have excluded the bin in
Q containing the ⌥ resonance (Q ' 9.5 GeV).

As can be seen in Tab. II, the cross sections are released in di↵erent forms: some of them are normalized to the
total (fiducial) cross section while others are not. When necessary, the required total cross section � is computed
using the code DYNNLO [35, 36] with the MMHT14 collinear PDF set, consistently with the perturbative order
of the di↵erential cross section (see also Tab. I). More precisely, the total cross section is computed at NLO for
NNLL accuracy, and NNLO for N3LL� accuracy. The values of the total cross sections at di↵erent orders can
be found in Table 3 of Ref. [7]. For the ATLAS dataset at 13 TeV, the value of the fiducial cross section is
694.3 pb at NLO and 707.3 pb at NNLO.

B. SIDIS

The identification of the TMD region in SIDIS is not a trivial task and may be subject to revision as new
data appears and the theoretical description is improved, as discussed in dedicated studies [38, 94, 95].

First of all, a cut in the virtuality Q of the exchanged photon is necessary to respect the condition Q � ⇤QCD

needed for perturbation theory to be applicable. In this way also mass corrections and higher twist corrections
can be neglected. In this work, we require that Q > 1.4 GeV. Studies of SIDIS in collinear kinematics employ
similar cuts [29, 96].

In order to restrict ourselves to the SIDIS current fragmentation region and interpret the observables in terms
of parton distribution and fragmentation functions, we apply a cut in the kinematic variable z by requiring
0.2 < z < 0.7. The lower limit is the same used in the study of collinear fragmentation functions [29, 96]. We
used a slightly more restrictive upper limit, to avoid contributions from exclusive channels and to focus on a
region where the collinear fragmentation functions have small relative uncertainties.

For what concerns the cut on transverse momentum, our baseline choice is

|PhT | < min
⇥
min[c1 Q, c2 zQ] + c3 GeV, zQ

⇤
, (54)
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A. Drell-Yan

Our analysis is based on TMD factorization, which is applicable only in the region |qT | ⌧ Q. Therefore, in
agreement with the choices of Refs. [7, 22] we impose the following cut

|qT | < 0.2Q . (53)

Table II summarizes all the DY datasets included in our analysis. For some DY datasets the experimental
observable is given within a fiducial region. This means that kinematic cuts on transverse momentum pT ` and
pseudo–rapidity ⌘` of the single final-state leptons are enforced (values reported in the next–to–last column
of Tab. II). For more details we refer the reader to Ref. [7]. The second column of Tab. II reports, for each
experiment, the number of data points (Ndat) that survive the kinematic cuts. The total number of DY data
points considered in this work is 484. Note that for E605 and E288 at 400 GeV we have excluded the bin in
Q containing the ⌥ resonance (Q ' 9.5 GeV).

As can be seen in Tab. II, the cross sections are released in di↵erent forms: some of them are normalized to the
total (fiducial) cross section while others are not. When necessary, the required total cross section � is computed
using the code DYNNLO [35, 36] with the MMHT14 collinear PDF set, consistently with the perturbative order
of the di↵erential cross section (see also Tab. I). More precisely, the total cross section is computed at NLO for
NNLL accuracy, and NNLO for N3LL� accuracy. The values of the total cross sections at di↵erent orders can
be found in Table 3 of Ref. [7]. For the ATLAS dataset at 13 TeV, the value of the fiducial cross section is
694.3 pb at NLO and 707.3 pb at NNLO.

B. SIDIS

The identification of the TMD region in SIDIS is not a trivial task and may be subject to revision as new
data appears and the theoretical description is improved, as discussed in dedicated studies [38, 94, 95].

First of all, a cut in the virtuality Q of the exchanged photon is necessary to respect the condition Q � ⇤QCD

needed for perturbation theory to be applicable. In this way also mass corrections and higher twist corrections
can be neglected. In this work, we require that Q > 1.4 GeV. Studies of SIDIS in collinear kinematics employ
similar cuts [29, 96].

In order to restrict ourselves to the SIDIS current fragmentation region and interpret the observables in terms
of parton distribution and fragmentation functions, we apply a cut in the kinematic variable z by requiring
0.2 < z < 0.7. The lower limit is the same used in the study of collinear fragmentation functions [29, 96]. We
used a slightly more restrictive upper limit, to avoid contributions from exclusive channels and to focus on a
region where the collinear fragmentation functions have small relative uncertainties.

For what concerns the cut on transverse momentum, our baseline choice is

|PhT | < min
⇥
min[c1 Q, c2 zQ] + c3 GeV, zQ

⇤
, (54)
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A. Drell-Yan

Our analysis is based on TMD factorization, which is applicable only in the region |qT | ⌧ Q. Therefore, in
agreement with the choices of Refs. [7, 22] we impose the following cut

|qT | < 0.2Q . (53)

Table II summarizes all the DY datasets included in our analysis. For some DY datasets the experimental
observable is given within a fiducial region. This means that kinematic cuts on transverse momentum pT ` and
pseudo–rapidity ⌘` of the single final-state leptons are enforced (values reported in the next–to–last column
of Tab. II). For more details we refer the reader to Ref. [7]. The second column of Tab. II reports, for each
experiment, the number of data points (Ndat) that survive the kinematic cuts. The total number of DY data
points considered in this work is 484. Note that for E605 and E288 at 400 GeV we have excluded the bin in
Q containing the ⌥ resonance (Q ' 9.5 GeV).

As can be seen in Tab. II, the cross sections are released in di↵erent forms: some of them are normalized to the
total (fiducial) cross section while others are not. When necessary, the required total cross section � is computed
using the code DYNNLO [35, 36] with the MMHT14 collinear PDF set, consistently with the perturbative order
of the di↵erential cross section (see also Tab. I). More precisely, the total cross section is computed at NLO for
NNLL accuracy, and NNLO for N3LL� accuracy. The values of the total cross sections at di↵erent orders can
be found in Table 3 of Ref. [7]. For the ATLAS dataset at 13 TeV, the value of the fiducial cross section is
694.3 pb at NLO and 707.3 pb at NNLO.

B. SIDIS

The identification of the TMD region in SIDIS is not a trivial task and may be subject to revision as new
data appears and the theoretical description is improved, as discussed in dedicated studies [38, 94, 95].

First of all, a cut in the virtuality Q of the exchanged photon is necessary to respect the condition Q � ⇤QCD

needed for perturbation theory to be applicable. In this way also mass corrections and higher twist corrections
can be neglected. In this work, we require that Q > 1.4 GeV. Studies of SIDIS in collinear kinematics employ
similar cuts [29, 96].

In order to restrict ourselves to the SIDIS current fragmentation region and interpret the observables in terms
of parton distribution and fragmentation functions, we apply a cut in the kinematic variable z by requiring
0.2 < z < 0.7. The lower limit is the same used in the study of collinear fragmentation functions [29, 96]. We
used a slightly more restrictive upper limit, to avoid contributions from exclusive channels and to focus on a
region where the collinear fragmentation functions have small relative uncertainties.

For what concerns the cut on transverse momentum, our baseline choice is

|PhT | < min
⇥
min[c1 Q, c2 zQ] + c3 GeV, zQ

⇤
, (54)
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2 coverage spanned by the experimental data considered in this analysis (see also Tab. II and

Tab. III).

A. Drell-Yan
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In order to restrict ourselves to the SIDIS current fragmentation region and interpret the observables in terms
of parton distribution and fragmentation functions, we apply a cut in the kinematic variable z by requiring
0.2 < z < 0.7. The lower limit is the same used in the study of collinear fragmentation functions [29, 96]. We
used a slightly more restrictive upper limit, to avoid contributions from exclusive channels and to focus on a
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2.1. Data from COMPASS 27
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Figure 2.1: These are the data from the COMPASS collaboration considered
in the following analysis, first in a linear plot and then with a logarithmic
scale on the y axis (log-plot).

a Gaussian noise with the same variance as the measurement. Each replica,
therefore, represents a possible outcome of an independent experimental mea-
surement. Here we chose to generate 60 replicas. The plot of the replicated
data is shown in Figure 2.2. In order to transfer the data in bT space,

Figure 2.2: The replicas of the data considered. The colors in the plot are
randomly assigned and indicate that on each error bar the point is shifted
every time of a different lenght.

since the Fourier transform of discrete points is not defined, we perform an
interpolation of the data in kT space. There are some restrictions that the
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2.2 Interpolations
Now we proceed with the interpolation of all the replicas: this operation is
done through a spline function. As an example, in Figure 2.3 we show the
interpolations of one replica3 and then the plot of the interpolations of all
the replicas.

(a)
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(b)

Figure 2.3: Interpolation of the replicas with spline functions: in (a) the
Logplot of the function that interpolates one set of replicas of the experimental
points is shown, while in (b) there is the Logplot interpolation of all the sets
of replicas; the error bars generated with the Monte Carlo approach are also
reported in the Logplot.

It is important to note, for future steps in the analysis, that the interpo-
lating functions depend on k

2
T and not kT , since we are considering our data

in |P2
h?| (and not in |Ph?|). This will influence the form of the expression

used for the Hankel transforms in Paragraph (2.3).
In particular, the variable in the interpolating function is the expression

used for the remapping in momentum space (2.2). Called CompInt the in-
terpolating function, its dependence would be:

CompInt = CompInt

 
4

r⇣
1� e

�(x
a)

4⌘
!

(2.5)

In this way we have trasformed the data from [0, 1] to the original interval,
after an interpolation with a function that goes to zero a infinity. We remind

the reader that 4

r⇣
1� e

�(x
a)

4⌘
is in kT space.

3 “One replica” in this case means that we randomly chose a set of points from all the
sets of replicas we generated.



FROM KT TO BT SPACE?

22

2.1. Data from COMPASS 27

0.2 0.4 0.6 0.8 1.0 1.2 kT
20.01

0.02

0.05

0.10

0.20

mr
h/2kT

0.2 0.4 0.6 0.8 1.0 1.2 kT
2

0.05

0.10

0.15

0.20

0.25

0.30
mr

h/2kT

Figure 2.1: These are the data from the COMPASS collaboration considered
in the following analysis, first in a linear plot and then with a logarithmic
scale on the y axis (log-plot).

a Gaussian noise with the same variance as the measurement. Each replica,
therefore, represents a possible outcome of an independent experimental mea-
surement. Here we chose to generate 60 replicas. The plot of the replicated
data is shown in Figure 2.2. In order to transfer the data in bT space,

Figure 2.2: The replicas of the data considered. The colors in the plot are
randomly assigned and indicate that on each error bar the point is shifted
every time of a different lenght.

since the Fourier transform of discrete points is not defined, we perform an
interpolation of the data in kT space. There are some restrictions that the

MSc thesis C. Bissolotti, 2016

2.1. Data from COMPASS 27

Figure 2.1: These are the data from the COMPASS collaboration considered
in the following analysis, first in a linear plot and then with a logarithmic
scale on the y axis (log-plot).

a Gaussian noise with the same variance as the measurement. Each replica,
therefore, represents a possible outcome of an independent experimental mea-
surement. Here we chose to generate 60 replicas. The plot of the replicated
data is shown in Figure 2.2. In order to transfer the data in bT space,

0.2 0.4 0.6 0.8 1.0 1.2 kT
2

0.005

0.010

0.050

0.100

mr
h/2kT

Figure 2.2: The replicas of the data considered. The colors in the plot are
randomly assigned and indicate that on each error bar the point is shifted
every time of a different lenght.

since the Fourier transform of discrete points is not defined, we perform an
interpolation of the data in kT space. There are some restrictions that the

2.2. Interpolations 29

2.2 Interpolations
Now we proceed with the interpolation of all the replicas: this operation is
done through a spline function. As an example, in Figure 2.3 we show the
interpolations of one replica3 and then the plot of the interpolations of all
the replicas.

(a)
0.2 0.4 0.6 0.8 1.0 1.2 kT

2
0.005

0.010

0.050

0.100

mr
h/2kT

(b)

Figure 2.3: Interpolation of the replicas with spline functions: in (a) the
Logplot of the function that interpolates one set of replicas of the experimental
points is shown, while in (b) there is the Logplot interpolation of all the sets
of replicas; the error bars generated with the Monte Carlo approach are also
reported in the Logplot.

It is important to note, for future steps in the analysis, that the interpo-
lating functions depend on k

2
T and not kT , since we are considering our data

in |P2
h?| (and not in |Ph?|). This will influence the form of the expression

used for the Hankel transforms in Paragraph (2.3).
In particular, the variable in the interpolating function is the expression

used for the remapping in momentum space (2.2). Called CompInt the in-
terpolating function, its dependence would be:

CompInt = CompInt

 
4

r⇣
1� e

�(x
a)

4⌘
!

(2.5)

In this way we have trasformed the data from [0, 1] to the original interval,
after an interpolation with a function that goes to zero a infinity. We remind

the reader that 4

r⇣
1� e

�(x
a)

4⌘
is in kT space.

3 “One replica” in this case means that we randomly chose a set of points from all the
sets of replicas we generated.

2.4. Fit in kT space 32
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Figure 2.5: The bundle of the Hankel transformed interpolating functions.
The function CompFT plotted depends on the index r of the replicas (r goes
from 1 to the number of replicas we have generated) and on b

2
T .
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New predictions (JAM18) @ NLO (DDS)
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At high qT, the collinear formalism should be valid, but large 
discrepancies are observed
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FIG. 1: Left: the TMD cross section (full line) from the fit in [13], when extended beyond the fit region, shows markedly
di↵erent behavior depending on the functional form chosen for b⇤ in Eq. (1): the dotted line is obtained with the square-root
form, while the dashed line with the exponential form of [34]); see Eqs. (3) and (4). In both cases, we choose bmax = 1.123 GeV�1.
The asymptotic curve is also plotted (at LO, to be consistent with the fit). Right: matched curve obtained from the same
TMD, with the procedure described in [35], Sec. IX: the full line is obtained with the damping function proposed in [35] (see
Eq. (5)), using the parameter ⌘ = 0.34 advocated in that paper. This choice enforces a transition to the pure LO prediction
between qT ' Q/4 and qT ' Q/2, and the result is insensitive to the TMD tail and to the choice of the b⇤ function. The dashed
and dotted curves instead show the e↵ect of a slight variation of the parameter ⌘ controlling the transition point, for our two
types of b⇤ prescriptions. For a larger value of ⌘ the matching to fixed order is not working due to the incomplete cancellation
between the TMD tails and the Y term. Data are taken from [38].

and the “exponential form”
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As can be seen in the left part of Fig. 1, the two forms lead to rather di↵erent predictions for the cross section beyond
qT = 2.5 GeV. We note that also the behavior of the Wpert and WNP for b ! 0 is expected to play a role here. All in
all, while on the one side the shape of the data seems to suggest that TMD physics is indeed involved in some form
up to transverse momenta as high as 2.5 GeV, one has to admit at the same time that presently there is not a good
understanding of the TMD formalism in this region. The TMD tail is largely a↵ected by nonperturbative elements,
such as the functional form of b⇤.

The procedure for the matching to fixed order is a✏icted by large uncertainties as well. This is shown in the right
part of Fig. 1, for which we include the matching based on the scheme proposed in Ref. [35]. Without entering into
details, we only mention that this procedure forces the use of pure fixed-order calculation at intermediate values of
qT , by suppressing the tail of the TMD cross section by multiplication with a damping function of the form

⌅

✓
qT
Q

, ⌘

◆
= exp

"
�

✓
qT
⌘Q

◆8
#
, (5)

where ⌘ is a parameter that controls the transition point to the fixed-order cross section. The figure exhibits two
examples of the e↵ect of using this damping function in our case, along with their interplay with the choice of the
form of b⇤. For larger values of ⌘, the influence of the TMD is e↵ectively extended toward higher qT . As may be seen,
the matching procedure fails then since the fixed-order result is not reached even at qT ⇠ Q. We note that alternative
matching procedures were proposed also in, e.g., Refs. [36, 37].

In conclusion, the two plots in Fig. 1 show that the Drell–Yan qT spectra at low invariant mass are presently not
understood beyond the region qT ⌧ Q typical of TMD fits. In the following, we will approach the problem from
high qT ⇠ Q, where collinear factorization is expected to o↵er a suitable framework for describing the cross section.
Undoubtedly the collinear-factorized cross section will be an important ingredient for a better understanding of the
regime qT . Q, where it will be especially important for carrying out the proper matching of the resummed cross
section.
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As can be seen in the left part of Fig. 1, the two forms lead to rather di↵erent predictions for the cross section beyond
qT = 2.5 GeV. We note that also the behavior of the Wpert and WNP for b ! 0 is expected to play a role here. All in
all, while on the one side the shape of the data seems to suggest that TMD physics is indeed involved in some form
up to transverse momenta as high as 2.5 GeV, one has to admit at the same time that presently there is not a good
understanding of the TMD formalism in this region. The TMD tail is largely a↵ected by nonperturbative elements,
such as the functional form of b⇤.

The procedure for the matching to fixed order is a✏icted by large uncertainties as well. This is shown in the right
part of Fig. 1, for which we include the matching based on the scheme proposed in Ref. [35]. Without entering into
details, we only mention that this procedure forces the use of pure fixed-order calculation at intermediate values of
qT , by suppressing the tail of the TMD cross section by multiplication with a damping function of the form
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where ⌘ is a parameter that controls the transition point to the fixed-order cross section. The figure exhibits two
examples of the e↵ect of using this damping function in our case, along with their interplay with the choice of the
form of b⇤. For larger values of ⌘, the influence of the TMD is e↵ectively extended toward higher qT . As may be seen,
the matching procedure fails then since the fixed-order result is not reached even at qT ⇠ Q. We note that alternative
matching procedures were proposed also in, e.g., Refs. [36, 37].

In conclusion, the two plots in Fig. 1 show that the Drell–Yan qT spectra at low invariant mass are presently not
understood beyond the region qT ⌧ Q typical of TMD fits. In the following, we will approach the problem from
high qT ⇠ Q, where collinear factorization is expected to o↵er a suitable framework for describing the cross section.
Undoubtedly the collinear-factorized cross section will be an important ingredient for a better understanding of the
regime qT . Q, where it will be especially important for carrying out the proper matching of the resummed cross
section.
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FIG. 3: The x vs. Q
2 coverage spanned by the experimental data considered in this analysis (see also Tab. II and

Tab. III).

A. Drell-Yan

Our analysis is based on TMD factorization, which is applicable only in the region |qT | ⌧ Q. Therefore, in
agreement with the choices of Refs. [7, 22] we impose the following cut

|qT | < 0.2Q . (53)

Table II summarizes all the DY datasets included in our analysis. For some DY datasets the experimental
observable is given within a fiducial region. This means that kinematic cuts on transverse momentum pT ` and
pseudo–rapidity ⌘` of the single final-state leptons are enforced (values reported in the next–to–last column
of Tab. II). For more details we refer the reader to Ref. [7]. The second column of Tab. II reports, for each
experiment, the number of data points (Ndat) that survive the kinematic cuts. The total number of DY data
points considered in this work is 484. Note that for E605 and E288 at 400 GeV we have excluded the bin in
Q containing the ⌥ resonance (Q ' 9.5 GeV).

As can be seen in Tab. II, the cross sections are released in di↵erent forms: some of them are normalized to the
total (fiducial) cross section while others are not. When necessary, the required total cross section � is computed
using the code DYNNLO [35, 36] with the MMHT14 collinear PDF set, consistently with the perturbative order
of the di↵erential cross section (see also Tab. I). More precisely, the total cross section is computed at NLO for
NNLL accuracy, and NNLO for N3LL� accuracy. The values of the total cross sections at di↵erent orders can
be found in Table 3 of Ref. [7]. For the ATLAS dataset at 13 TeV, the value of the fiducial cross section is
694.3 pb at NLO and 707.3 pb at NNLO.

B. SIDIS

The identification of the TMD region in SIDIS is not a trivial task and may be subject to revision as new
data appears and the theoretical description is improved, as discussed in dedicated studies [38, 94, 95].

First of all, a cut in the virtuality Q of the exchanged photon is necessary to respect the condition Q � ⇤QCD

needed for perturbation theory to be applicable. In this way also mass corrections and higher twist corrections
can be neglected. In this work, we require that Q > 1.4 GeV. Studies of SIDIS in collinear kinematics employ
similar cuts [29, 96].

In order to restrict ourselves to the SIDIS current fragmentation region and interpret the observables in terms
of parton distribution and fragmentation functions, we apply a cut in the kinematic variable z by requiring
0.2 < z < 0.7. The lower limit is the same used in the study of collinear fragmentation functions [29, 96]. We
used a slightly more restrictive upper limit, to avoid contributions from exclusive channels and to focus on a
region where the collinear fragmentation functions have small relative uncertainties.

For what concerns the cut on transverse momentum, our baseline choice is

|PhT | < min
⇥
min[c1 Q, c2 zQ] + c3 GeV, zQ

⇤
, (54)

Q2 > 1.4 GeV2 (1)

0.2 < z < 0.7 (2)

qT < 0.2Q (DY) (3)

PhT < min
⇥
min [0.2Q, 0.5zQ] + 0.3GeV, zQ

⇤
(SIDIS) (4)
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agreement with the choices of Refs. [7, 22] we impose the following cut

|qT | < 0.2Q . (53)

Table II summarizes all the DY datasets included in our analysis. For some DY datasets the experimental
observable is given within a fiducial region. This means that kinematic cuts on transverse momentum pT ` and
pseudo–rapidity ⌘` of the single final-state leptons are enforced (values reported in the next–to–last column
of Tab. II). For more details we refer the reader to Ref. [7]. The second column of Tab. II reports, for each
experiment, the number of data points (Ndat) that survive the kinematic cuts. The total number of DY data
points considered in this work is 484. Note that for E605 and E288 at 400 GeV we have excluded the bin in
Q containing the ⌥ resonance (Q ' 9.5 GeV).

As can be seen in Tab. II, the cross sections are released in di↵erent forms: some of them are normalized to the
total (fiducial) cross section while others are not. When necessary, the required total cross section � is computed
using the code DYNNLO [35, 36] with the MMHT14 collinear PDF set, consistently with the perturbative order
of the di↵erential cross section (see also Tab. I). More precisely, the total cross section is computed at NLO for
NNLL accuracy, and NNLO for N3LL� accuracy. The values of the total cross sections at di↵erent orders can
be found in Table 3 of Ref. [7]. For the ATLAS dataset at 13 TeV, the value of the fiducial cross section is
694.3 pb at NLO and 707.3 pb at NNLO.

B. SIDIS

The identification of the TMD region in SIDIS is not a trivial task and may be subject to revision as new
data appears and the theoretical description is improved, as discussed in dedicated studies [38, 94, 95].

First of all, a cut in the virtuality Q of the exchanged photon is necessary to respect the condition Q � ⇤QCD

needed for perturbation theory to be applicable. In this way also mass corrections and higher twist corrections
can be neglected. In this work, we require that Q > 1.4 GeV. Studies of SIDIS in collinear kinematics employ
similar cuts [29, 96].

In order to restrict ourselves to the SIDIS current fragmentation region and interpret the observables in terms
of parton distribution and fragmentation functions, we apply a cut in the kinematic variable z by requiring
0.2 < z < 0.7. The lower limit is the same used in the study of collinear fragmentation functions [29, 96]. We
used a slightly more restrictive upper limit, to avoid contributions from exclusive channels and to focus on a
region where the collinear fragmentation functions have small relative uncertainties.

For what concerns the cut on transverse momentum, our baseline choice is

|PhT | < min
⇥
min[c1 Q, c2 zQ] + c3 GeV, zQ

⇤
, (54)

Q2 > 1.4 GeV2 (1)
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Figure 12. A�nity to the TMD and collinear regions at Je↵erson Lab kinematics.

certain definition of this region is chosen, our a�nity algorithm can identify and correctly

map it, in exactly the same way as for the TMD and collinear regions.

In Figure 13 we show the TMD-collinear matching region for EIC kinematics, as de-

termined by the a�nity tool. As expected, it correctly covers the range of intermediate

values of qT , and turns out to be relevant at rather large values of Q2 corresponding to

moderate and large values of xBj.

4.4 Target and central regions

According to our estimates, at EIC kinematics only a relatively small number of bins is

expected to be associated with the target and central fragmentation regions. Indeed, only

15 bins for the target region and 457 bins for the central region exceed an a�nity of 5%.

The target and central fragmentation regions for the bins of EIC are shown in Figures 14

and 15.

As discussed in Section 2.1, partons that do not undergo an interaction with the

virtual photon hadronize and move predominantly in the direction of the nucleon. These

target fragmentation hadrons will be found in the region of positive rapidity, close to the

beam. While the experimental measurement of such hadrons is challenging, the study

of target fragmentation is important both phenomenologically and theoretically. These

processes are usually described in terms of fracture functions [14–17], which are conditional

– 20 –

|qT | = |PhT | /z ≪ Q
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certain definition of this region is chosen, our a�nity algorithm can identify and correctly

map it, in exactly the same way as for the TMD and collinear regions.

In Figure 13 we show the TMD-collinear matching region for EIC kinematics, as de-

termined by the a�nity tool. As expected, it correctly covers the range of intermediate

values of qT , and turns out to be relevant at rather large values of Q2 corresponding to

moderate and large values of xBj.

4.4 Target and central regions

According to our estimates, at EIC kinematics only a relatively small number of bins is

expected to be associated with the target and central fragmentation regions. Indeed, only

15 bins for the target region and 457 bins for the central region exceed an a�nity of 5%.

The target and central fragmentation regions for the bins of EIC are shown in Figures 14

and 15.

As discussed in Section 2.1, partons that do not undergo an interaction with the

virtual photon hadronize and move predominantly in the direction of the nucleon. These

target fragmentation hadrons will be found in the region of positive rapidity, close to the

beam. While the experimental measurement of such hadrons is challenging, the study

of target fragmentation is important both phenomenologically and theoretically. These

processes are usually described in terms of fracture functions [14–17], which are conditional
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Figure 12. A�nity to the TMD and collinear regions at Je↵erson Lab kinematics.

certain definition of this region is chosen, our a�nity algorithm can identify and correctly

map it, in exactly the same way as for the TMD and collinear regions.

In Figure 13 we show the TMD-collinear matching region for EIC kinematics, as de-

termined by the a�nity tool. As expected, it correctly covers the range of intermediate

values of qT , and turns out to be relevant at rather large values of Q2 corresponding to

moderate and large values of xBj.

4.4 Target and central regions

According to our estimates, at EIC kinematics only a relatively small number of bins is

expected to be associated with the target and central fragmentation regions. Indeed, only

15 bins for the target region and 457 bins for the central region exceed an a�nity of 5%.

The target and central fragmentation regions for the bins of EIC are shown in Figures 14

and 15.

As discussed in Section 2.1, partons that do not undergo an interaction with the

virtual photon hadronize and move predominantly in the direction of the nucleon. These

target fragmentation hadrons will be found in the region of positive rapidity, close to the

beam. While the experimental measurement of such hadrons is challenging, the study

of target fragmentation is important both phenomenologically and theoretically. These

processes are usually described in terms of fracture functions [14–17], which are conditional
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/Ndat for di↵erent configurations of the kinematic cut on SIDIS data sets (see text). The blue point

corresponds to the reference cut used in the present baseline fit.

In conclusion, from our analysis it emerges that the validity of the TMD formalism in the kinematic region
covered by COMPASS and HERMES seems to extend well beyond the customary cut |qT |/Q ⌧ 1.

This evidence justifies in a quantitative way our choice for the cut |qT |/Q in Eq. (54) for the baseline fit, and
explains why we obtain values of �2

/Ndat close to one also with less conservative cuts. Moreover, it suggests
that the applicability of TMD factorization in SIDIS might be defined in terms of |PhT | rather than |qT |, calling
for more extensive studies in this direction.
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positively charged hadrons o↵ a deuteron target at 1.3 < Q < 1.73 GeV, 0.02 < x < 0.032 and 0.3 < z < 0.4 as a
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included in the baseline fit. Lower panel: ratio between experimental data and theoretical results.

V. CONCLUSIONS AND OUTLOOK

In this article, we presented an extraction of unpolarized Transverse-Momentum Dependent Parton Distri-
bution Functions and Fragmentation Functions (TMD PDFs and TMD FFs, respectively), which we refer to as
MAPTMD22.
We analyzed 2031 data points collected by several experiments: 251 data points from Drell–Yan (DY) produc-

tion measured at Tevatron, LHC and RHIC, 233 points from fixed-target DY (see Tab. II) and 1547 data points
from Semi-Inclusive Deep Inelastic Scattering (SIDIS) measured by the HERMES and COMPASS collaborations
(see Tab. III).
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4

×
(
A7 + xA8

)
, (23)

gT (x,k
2
T ) =

∫
dσdτ δ(τ − xσ + x2M2 + k

2
T )

×
(
−A6 −

τ − xσ + x2M2

2M2
A8

)
. (24)

As anticipated, we see that Bi terms appear also in the
function g1L, which survives if the correlator is integrated
over kT .

B. Lorentz invariance relations

From the preceding discussion, using the techniques
discussed for example in Ref. [30], it is possible to derive
the so-called Lorentz invariance relation (LIR)

gT (x) = g1L(x) +
d

dx
g(1)1T (x) + ĝT (x) , (25)

where the function ĝT is given by

ĝT (x) =

∫
d2kT dσdτ δ(τ − xσ + x2M2 + k

2
T )

×
[
B11 + xB12 −

k2
T

2M2

(∂A7

∂x
+ x

∂A8

∂x

)]

+ π

∫
dσdτ δ(τ − xσ + x2M2 + k

2
T )k

2
T

×
σ − 2xM2

2M2

(
A7 + xA8

)∣∣∣∣
k
2
T→∞

k2
T
→0

. (26)

The proper operator definition for ĝT can be traced back
to Ref. [35] (see also [36, 37]), and requires the introduc-
tion of the twist-3 quark-gluon-quark correlator

iΦα
F (x, x

′) =

∫
dξ−dη−

(2π)2
eik·ξ ei(k

′−k)·η δαρT

× 〈P |ψ(0)Wv
(0,η) ig F

+α(η)Wv
(η,ξ) ψ(ξ)|P 〉

∣∣∣ξ+=ξT=0
η+=ηT=0

LC
=

∫
dξ−dη−

(2π)2
eik·ξ ei(k

′−k)·η

× 〈P |ψ(0) ig ∂+η Aα
T (η)ψ(ξ)|P 〉

∣∣∣ξ+=ξT=0
η+=ηT=0

,

(27)

where F+α is the gluon field strength tensor, k′ is the
gluon momentum, and x′ = k′ ·n−/P ·n−. Note that this
correlator has been discussed in slightly different forms
in Refs. [15, 38, 39, 40], for example. It can be expanded
in terms of four scalar functions GF , G̃F , HF and EF

according to [39, 40]

iΦα
F (x, x

′) =
M

4

[
GF (x, x

′)iεαρT STρ + G̃F (x, x
′)Sα

T γ5

+HF (x, x
′)SLγ5γ

α
T + EF (x, x

′) γαT

]
n/+ .

(28)

Hermiticity and parity invariance impose that these func-
tions are real and either odd or even under the inter-
change of x and x′ [40],

GF (x, x
′) = GF (x

′, x) , G̃F (x, x
′) = −G̃F (x

′, x) , (29)

EF (x, x
′) = EF (x

′, x) , HF (x, x
′) = −HF (x

′, x) . (30)

We can then express the function ĝT as

MSα
T ĝT (x) = −

∫
dx′ iΦ

α[γ+γ5]
F (x′, x)

(x− x′)2

= MSα
T P

∫
dx′ G̃F (x, x′)/(x− x′)

x− x′
, (31)

where P denotes the principal value integral. (The
need for the principal value was apparently overlooked
in Refs. [36, 37].) The imaginary part arising from the
pole at x = x′ cannot give a contribution to the LIR in
Eq. (25), but rather contributes to a LIR involving the

functions fT and f⊥(1)
1T , which we do not discuss here.

We note that ĝT is a “pure twist-3” function, being part
of the twist-3 correlator of Eq. (27). Since the integrand
in Eq. (31) is antisymmetric in x ↔ x′, one obtains the
nontrivial property

∫ 1

0
dx ĝT (x) = 0 . (32)

In some analyses [30, 41] ĝT was believed to van-
ish because (i) the Bi parton correlation functions were
not taken into account, (ii) the partial derivatives in
Eq. (26) were neglected since an explicit x-dependence
of the PCFs is generated only through the additional v-
dependence, (iii) the boundary terms like the last terms
in (26) were neglected. However, none of these assump-
tions is justified, as we show explicitly in a quark-target
perturbative calculation in Appendix B. We can fur-
ther draw some model-independent conclusions about the
boundary terms by comparing them with the expres-
sion for g1T in Eq. (23). Positivity bounds imply that
|k2

T g1T | ≤ M |kT |f1 [42], which is sufficient to guarantee
that the k2

T = 0 boundary term indeed vanishes. How-
ever, since g1T behaves as 1/k4

T at large kT [33], the
boundary term at k2

T = ∞ cannot be neglected.
If ĝT is nonetheless neglected, it is possible to ex-

press the twist-3 function gT in terms of the twist-2
functions g1L and g1T [19, 30]. Relations of this kind
have been often mistakenly called Lorentz invariance re-
lations [19, 30, 43], but should not be confused with the
correct Lorentz invariance relations such as in Eq. (25).
In the literature, model calculations have been used

to argue that the pure twist-3 terms are not necessarily
small [11, 44]. For example, ĝT can be computed per-
turbatively in the quark-target model of Refs. [37, 44].
Using Eqs. (38), (40) and (42) of Ref. [37] one finds

gT (x) − g1L(x) =
αs

2π
CF ln

Q2

µ2

[
2x− δ(1− x)

]
, (33)

g(1)1T (x) = −
αs

2π
CF ln

Q2

µ2
x(1 − x) , (34)
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low-qT calculation high-qT calculation

observable twist order power twist order power powers match

FUU,T 2 αs 1/q2
T 2 αs 1/q2

T yes

FUU,L 4 2 αs 1/Q2

F cos φh

UU 3 αs 1/(QqT ) 2 αs 1/(QqT ) yes

F cos 2φh

UU 2 αs 1/q4
T 2 αs 1/Q2 no

F sin φh

LU 3 α2
s 1/(QqT ) 2 α2

s 1/(QqT ) yes

F sin φh

UL 3 α2
s 1/(QqT )
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F sin φS

UT 3 αs 1/(Qq2
T ) 3 αs 1/(Qq2

T ) yes

F sin(2φh−φS)
UT 3 αs 1/(Qq2

T ) 3 αs 1/(Qq2
T ) yes

F cos(φh−φS)
LT 2 αs 1/q3

T

F cos φS

LT 3 αs 1/(Qq2
T )

F cos(2φh−φS)
LT 3 αs 1/(Qq2

T )

Table 2: Behavior of SIDIS structure functions in the intermediate region M ! qT ! Q. Empty
fields indicate that no calculation is available. The specification of twist 4 for FUU,L and F sin(φh−φS)

UT,L

reflects that these observables are zero when calculated at twist-two and twist-three accuracy.

given in (5.56) by Lcos 2φh

UU , and its high-qT approximation (4.26) by Hcos 2φh

UU . Since in the

intermediate region the two expressions describe distinct contributions to the cross section,

one may consider to use

F cos 2φh

UU ≈ Lcos 2φh

UU + Hcos 2φh

UU (6.17)

as an approximation for this observable. The quality of this approximation can be assessed

from the power behavior of its terms in the different regions:

Lcos 2φh

UU ∼ q2
T/M4 for qT <∼M , (6.18)

Lcos 2φh

UU ∼ M2/q4
T for qT $ M , (6.19)

Hcos 2φh

UU ∼ 1/Q2 for all qT , (6.20)

where the behavior in (6.18) reflects that Lcos 2φh

UU must vanish like q2
T for qT → 0 due to

angular momentum conservation [39]. In the intermediate region M ! qT ! Q both terms

– 41 –

“Cahn” - f⊥

“Boer-Mulders”

“Kotzinian-Mulders”

“Pretzelosity”

“Sivers”

“Collins”

“Worm gear”

“SIDIS FT”
“SIDIS FL”
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 and friendsfT
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low-qT calculation high-qT calculation

observable twist order power twist order power powers match

FUU,T 2 αs 1/q2
T 2 αs 1/q2

T yes

FUU,L 4 2 αs 1/Q2

F cos φh

UU 3 αs 1/(QqT ) 2 αs 1/(QqT ) yes

F cos 2φh

UU 2 αs 1/q4
T 2 αs 1/Q2 no

F sin φh

LU 3 α2
s 1/(QqT ) 2 α2

s 1/(QqT ) yes

F sin φh

UL 3 α2
s 1/(QqT )

F sin 2φh

UL 2 αs 1/q4
T

FLL 2 αs 1/q2
T 2 αs 1/q2

T yes

F cos φh

LL 3 αs 1/(QqT ) 2 αs 1/(QqT ) yes

F sin(φh−φS)
UT,T 2 αs 1/q3

T 3 αs 1/q3
T yes

F sin(φh−φS)
UT,L 4 3 αs 1/(Q2 qT )

F sin(φh+φS)
UT 2 αs 1/q3

T 3 αs 1/q3
T yes

F sin(3φh−φS)
UT 2 α2

s 1/q3
T 3 αs 1/(Q2 qT ) no

F sin φS

UT 3 αs 1/(Qq2
T ) 3 αs 1/(Qq2

T ) yes

F sin(2φh−φS)
UT 3 αs 1/(Qq2

T ) 3 αs 1/(Qq2
T ) yes

F cos(φh−φS)
LT 2 αs 1/q3

T

F cos φS

LT 3 αs 1/(Qq2
T )

F cos(2φh−φS)
LT 3 αs 1/(Qq2

T )

Table 2: Behavior of SIDIS structure functions in the intermediate region M ! qT ! Q. Empty
fields indicate that no calculation is available. The specification of twist 4 for FUU,L and F sin(φh−φS)

UT,L

reflects that these observables are zero when calculated at twist-two and twist-three accuracy.

given in (5.56) by Lcos 2φh

UU , and its high-qT approximation (4.26) by Hcos 2φh

UU . Since in the

intermediate region the two expressions describe distinct contributions to the cross section,

one may consider to use

F cos 2φh

UU ≈ Lcos 2φh

UU + Hcos 2φh

UU (6.17)

as an approximation for this observable. The quality of this approximation can be assessed

from the power behavior of its terms in the different regions:

Lcos 2φh

UU ∼ q2
T/M4 for qT <∼M , (6.18)

Lcos 2φh

UU ∼ M2/q4
T for qT $ M , (6.19)

Hcos 2φh

UU ∼ 1/Q2 for all qT , (6.20)

where the behavior in (6.18) reflects that Lcos 2φh

UU must vanish like q2
T for qT → 0 due to

angular momentum conservation [39]. In the intermediate region M ! qT ! Q both terms
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low-qT calculation high-qT calculation

observable twist order power twist order power powers match

FUU,T 2 αs 1/q2
T 2 αs 1/q2

T yes

FUU,L 4 2 αs 1/Q2

F cos φh

UU 3 αs 1/(QqT ) 2 αs 1/(QqT ) yes

F cos 2φh

UU 2 αs 1/q4
T 2 αs 1/Q2 no

F sin φh

LU 3 α2
s 1/(QqT ) 2 α2

s 1/(QqT ) yes

F sin φh

UL 3 α2
s 1/(QqT )

F sin 2φh

UL 2 αs 1/q4
T

FLL 2 αs 1/q2
T 2 αs 1/q2

T yes

F cos φh

LL 3 αs 1/(QqT ) 2 αs 1/(QqT ) yes

F sin(φh−φS)
UT,T 2 αs 1/q3

T 3 αs 1/q3
T yes

F sin(φh−φS)
UT,L 4 3 αs 1/(Q2 qT )

F sin(φh+φS)
UT 2 αs 1/q3

T 3 αs 1/q3
T yes

F sin(3φh−φS)
UT 2 α2

s 1/q3
T 3 αs 1/(Q2 qT ) no

F sin φS

UT 3 αs 1/(Qq2
T ) 3 αs 1/(Qq2

T ) yes

F sin(2φh−φS)
UT 3 αs 1/(Qq2

T ) 3 αs 1/(Qq2
T ) yes

F cos(φh−φS)
LT 2 αs 1/q3

T

F cos φS

LT 3 αs 1/(Qq2
T )

F cos(2φh−φS)
LT 3 αs 1/(Qq2

T )

Table 2: Behavior of SIDIS structure functions in the intermediate region M ! qT ! Q. Empty
fields indicate that no calculation is available. The specification of twist 4 for FUU,L and F sin(φh−φS)

UT,L

reflects that these observables are zero when calculated at twist-two and twist-three accuracy.

given in (5.56) by Lcos 2φh

UU , and its high-qT approximation (4.26) by Hcos 2φh

UU . Since in the

intermediate region the two expressions describe distinct contributions to the cross section,

one may consider to use

F cos 2φh

UU ≈ Lcos 2φh

UU + Hcos 2φh

UU (6.17)

as an approximation for this observable. The quality of this approximation can be assessed

from the power behavior of its terms in the different regions:

Lcos 2φh

UU ∼ q2
T/M4 for qT <∼M , (6.18)

Lcos 2φh

UU ∼ M2/q4
T for qT $ M , (6.19)

Hcos 2φh

UU ∼ 1/Q2 for all qT , (6.20)

where the behavior in (6.18) reflects that Lcos 2φh

UU must vanish like q2
T for qT → 0 due to

angular momentum conservation [39]. In the intermediate region M ! qT ! Q both terms
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Not all of them are easy 
to access at EIC due to:  
x-range, twist,  
evolution, prefactors

low-qT calculation high-qT calculation

observable twist order power twist order power powers match

FUU,T 2 αs 1/q2
T 2 αs 1/q2

T yes

FUU,L 4 2 αs 1/Q2

F cos φh

UU 3 αs 1/(QqT ) 2 αs 1/(QqT ) yes

F cos 2φh

UU 2 αs 1/q4
T 2 αs 1/Q2 no

F sin φh

LU 3 α2
s 1/(QqT ) 2 α2

s 1/(QqT ) yes

F sin φh

UL 3 α2
s 1/(QqT )

F sin 2φh

UL 2 αs 1/q4
T

FLL 2 αs 1/q2
T 2 αs 1/q2

T yes

F cos φh

LL 3 αs 1/(QqT ) 2 αs 1/(QqT ) yes

F sin(φh−φS)
UT,T 2 αs 1/q3

T 3 αs 1/q3
T yes

F sin(φh−φS)
UT,L 4 3 αs 1/(Q2 qT )

F sin(φh+φS)
UT 2 αs 1/q3

T 3 αs 1/q3
T yes

F sin(3φh−φS)
UT 2 α2

s 1/q3
T 3 αs 1/(Q2 qT ) no

F sin φS

UT 3 αs 1/(Qq2
T ) 3 αs 1/(Qq2

T ) yes

F sin(2φh−φS)
UT 3 αs 1/(Qq2

T ) 3 αs 1/(Qq2
T ) yes

F cos(φh−φS)
LT 2 αs 1/q3

T

F cos φS

LT 3 αs 1/(Qq2
T )

F cos(2φh−φS)
LT 3 αs 1/(Qq2

T )

Table 2: Behavior of SIDIS structure functions in the intermediate region M ! qT ! Q. Empty
fields indicate that no calculation is available. The specification of twist 4 for FUU,L and F sin(φh−φS)

UT,L

reflects that these observables are zero when calculated at twist-two and twist-three accuracy.

given in (5.56) by Lcos 2φh

UU , and its high-qT approximation (4.26) by Hcos 2φh

UU . Since in the

intermediate region the two expressions describe distinct contributions to the cross section,

one may consider to use

F cos 2φh

UU ≈ Lcos 2φh

UU + Hcos 2φh

UU (6.17)

as an approximation for this observable. The quality of this approximation can be assessed

from the power behavior of its terms in the different regions:

Lcos 2φh

UU ∼ q2
T/M4 for qT <∼M , (6.18)

Lcos 2φh

UU ∼ M2/q4
T for qT $ M , (6.19)

Hcos 2φh

UU ∼ 1/Q2 for all qT , (6.20)

where the behavior in (6.18) reflects that Lcos 2φh

UU must vanish like q2
T for qT → 0 due to

angular momentum conservation [39]. In the intermediate region M ! qT ! Q both terms
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low-qT calculation high-qT calculation

observable twist order power twist order power powers match

FUU,T 2 αs 1/q2
T 2 αs 1/q2

T yes

FUU,L 4 2 αs 1/Q2

F cos φh

UU 3 αs 1/(QqT ) 2 αs 1/(QqT ) yes

F cos 2φh

UU 2 αs 1/q4
T 2 αs 1/Q2 no

F sin φh

LU 3 α2
s 1/(QqT ) 2 α2

s 1/(QqT ) yes

F sin φh

UL 3 α2
s 1/(QqT )

F sin 2φh

UL 2 αs 1/q4
T

FLL 2 αs 1/q2
T 2 αs 1/q2

T yes

F cos φh

LL 3 αs 1/(QqT ) 2 αs 1/(QqT ) yes

F sin(φh−φS)
UT,T 2 αs 1/q3

T 3 αs 1/q3
T yes

F sin(φh−φS)
UT,L 4 3 αs 1/(Q2 qT )

F sin(φh+φS)
UT 2 αs 1/q3

T 3 αs 1/q3
T yes

F sin(3φh−φS)
UT 2 α2

s 1/q3
T 3 αs 1/(Q2 qT ) no

F sin φS

UT 3 αs 1/(Qq2
T ) 3 αs 1/(Qq2

T ) yes

F sin(2φh−φS)
UT 3 αs 1/(Qq2

T ) 3 αs 1/(Qq2
T ) yes

F cos(φh−φS)
LT 2 αs 1/q3

T

F cos φS

LT 3 αs 1/(Qq2
T )

F cos(2φh−φS)
LT 3 αs 1/(Qq2

T )

Table 2: Behavior of SIDIS structure functions in the intermediate region M ! qT ! Q. Empty
fields indicate that no calculation is available. The specification of twist 4 for FUU,L and F sin(φh−φS)

UT,L

reflects that these observables are zero when calculated at twist-two and twist-three accuracy.

given in (5.56) by Lcos 2φh

UU , and its high-qT approximation (4.26) by Hcos 2φh

UU . Since in the

intermediate region the two expressions describe distinct contributions to the cross section,

one may consider to use

F cos 2φh

UU ≈ Lcos 2φh

UU + Hcos 2φh

UU (6.17)

as an approximation for this observable. The quality of this approximation can be assessed

from the power behavior of its terms in the different regions:

Lcos 2φh

UU ∼ q2
T/M4 for qT <∼M , (6.18)

Lcos 2φh

UU ∼ M2/q4
T for qT $ M , (6.19)

Hcos 2φh

UU ∼ 1/Q2 for all qT , (6.20)

where the behavior in (6.18) reflects that Lcos 2φh

UU must vanish like q2
T for qT → 0 due to

angular momentum conservation [39]. In the intermediate region M ! qT ! Q both terms
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“Sivers”
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“Worm gear”

“SIDIS FT”
“SIDIS FL”

“SIDIS ”g1

“SIDIS ” - g2 gT

 and friendsfT

 and friendse, g⊥

low-qT calculation high-qT calculation

observable twist order power twist order power powers match

FUU,T 2 αs 1/q2
T 2 αs 1/q2

T yes

FUU,L 4 2 αs 1/Q2

F cos φh

UU 3 αs 1/(QqT ) 2 αs 1/(QqT ) yes

F cos 2φh

UU 2 αs 1/q4
T 2 αs 1/Q2 no

F sin φh

LU 3 α2
s 1/(QqT ) 2 α2

s 1/(QqT ) yes

F sin φh

UL 3 α2
s 1/(QqT )

F sin 2φh

UL 2 αs 1/q4
T

FLL 2 αs 1/q2
T 2 αs 1/q2

T yes

F cos φh

LL 3 αs 1/(QqT ) 2 αs 1/(QqT ) yes

F sin(φh−φS)
UT,T 2 αs 1/q3

T 3 αs 1/q3
T yes

F sin(φh−φS)
UT,L 4 3 αs 1/(Q2 qT )

F sin(φh+φS)
UT 2 αs 1/q3

T 3 αs 1/q3
T yes

F sin(3φh−φS)
UT 2 α2

s 1/q3
T 3 αs 1/(Q2 qT ) no

F sin φS

UT 3 αs 1/(Qq2
T ) 3 αs 1/(Qq2

T ) yes

F sin(2φh−φS)
UT 3 αs 1/(Qq2

T ) 3 αs 1/(Qq2
T ) yes

F cos(φh−φS)
LT 2 αs 1/q3

T

F cos φS

LT 3 αs 1/(Qq2
T )

F cos(2φh−φS)
LT 3 αs 1/(Qq2

T )

Table 2: Behavior of SIDIS structure functions in the intermediate region M ! qT ! Q. Empty
fields indicate that no calculation is available. The specification of twist 4 for FUU,L and F sin(φh−φS)

UT,L

reflects that these observables are zero when calculated at twist-two and twist-three accuracy.

given in (5.56) by Lcos 2φh

UU , and its high-qT approximation (4.26) by Hcos 2φh

UU . Since in the

intermediate region the two expressions describe distinct contributions to the cross section,

one may consider to use

F cos 2φh

UU ≈ Lcos 2φh

UU + Hcos 2φh

UU (6.17)

as an approximation for this observable. The quality of this approximation can be assessed

from the power behavior of its terms in the different regions:

Lcos 2φh

UU ∼ q2
T/M4 for qT <∼M , (6.18)

Lcos 2φh

UU ∼ M2/q4
T for qT $ M , (6.19)

Hcos 2φh

UU ∼ 1/Q2 for all qT , (6.20)

where the behavior in (6.18) reflects that Lcos 2φh

UU must vanish like q2
T for qT → 0 due to

angular momentum conservation [39]. In the intermediate region M ! qT ! Q both terms
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low-qT calculation high-qT calculation

observable twist order power twist order power powers match

FUU,T 2 αs 1/q2
T 2 αs 1/q2

T yes

FUU,L 4 2 αs 1/Q2

F cos φh

UU 3 αs 1/(QqT ) 2 αs 1/(QqT ) yes

F cos 2φh

UU 2 αs 1/q4
T 2 αs 1/Q2 no

F sin φh

LU 3 α2
s 1/(QqT ) 2 α2

s 1/(QqT ) yes

F sin φh

UL 3 α2
s 1/(QqT )

F sin 2φh

UL 2 αs 1/q4
T

FLL 2 αs 1/q2
T 2 αs 1/q2

T yes

F cos φh

LL 3 αs 1/(QqT ) 2 αs 1/(QqT ) yes

F sin(φh−φS)
UT,T 2 αs 1/q3

T 3 αs 1/q3
T yes

F sin(φh−φS)
UT,L 4 3 αs 1/(Q2 qT )

F sin(φh+φS)
UT 2 αs 1/q3

T 3 αs 1/q3
T yes

F sin(3φh−φS)
UT 2 α2

s 1/q3
T 3 αs 1/(Q2 qT ) no

F sin φS

UT 3 αs 1/(Qq2
T ) 3 αs 1/(Qq2

T ) yes

F sin(2φh−φS)
UT 3 αs 1/(Qq2

T ) 3 αs 1/(Qq2
T ) yes

F cos(φh−φS)
LT 2 αs 1/q3

T

F cos φS

LT 3 αs 1/(Qq2
T )

F cos(2φh−φS)
LT 3 αs 1/(Qq2

T )

Table 2: Behavior of SIDIS structure functions in the intermediate region M ! qT ! Q. Empty
fields indicate that no calculation is available. The specification of twist 4 for FUU,L and F sin(φh−φS)

UT,L

reflects that these observables are zero when calculated at twist-two and twist-three accuracy.

given in (5.56) by Lcos 2φh

UU , and its high-qT approximation (4.26) by Hcos 2φh

UU . Since in the

intermediate region the two expressions describe distinct contributions to the cross section,

one may consider to use

F cos 2φh

UU ≈ Lcos 2φh

UU + Hcos 2φh

UU (6.17)

as an approximation for this observable. The quality of this approximation can be assessed

from the power behavior of its terms in the different regions:

Lcos 2φh

UU ∼ q2
T/M4 for qT <∼M , (6.18)

Lcos 2φh

UU ∼ M2/q4
T for qT $ M , (6.19)

Hcos 2φh

UU ∼ 1/Q2 for all qT , (6.20)

where the behavior in (6.18) reflects that Lcos 2φh

UU must vanish like q2
T for qT → 0 due to

angular momentum conservation [39]. In the intermediate region M ! qT ! Q both terms
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There are at least four 
possibilities:

low-qT calculation high-qT calculation

observable twist order power twist order power powers match

FUU,T 2 αs 1/q2
T 2 αs 1/q2

T yes

FUU,L 4 2 αs 1/Q2

F cos φh

UU 3 αs 1/(QqT ) 2 αs 1/(QqT ) yes

F cos 2φh

UU 2 αs 1/q4
T 2 αs 1/Q2 no

F sin φh

LU 3 α2
s 1/(QqT ) 2 α2

s 1/(QqT ) yes

F sin φh

UL 3 α2
s 1/(QqT )

F sin 2φh

UL 2 αs 1/q4
T

FLL 2 αs 1/q2
T 2 αs 1/q2

T yes

F cos φh

LL 3 αs 1/(QqT ) 2 αs 1/(QqT ) yes

F sin(φh−φS)
UT,T 2 αs 1/q3

T 3 αs 1/q3
T yes

F sin(φh−φS)
UT,L 4 3 αs 1/(Q2 qT )

F sin(φh+φS)
UT 2 αs 1/q3

T 3 αs 1/q3
T yes

F sin(3φh−φS)
UT 2 α2

s 1/q3
T 3 αs 1/(Q2 qT ) no

F sin φS

UT 3 αs 1/(Qq2
T ) 3 αs 1/(Qq2

T ) yes

F sin(2φh−φS)
UT 3 αs 1/(Qq2

T ) 3 αs 1/(Qq2
T ) yes

F cos(φh−φS)
LT 2 αs 1/q3

T

F cos φS

LT 3 αs 1/(Qq2
T )

F cos(2φh−φS)
LT 3 αs 1/(Qq2

T )

Table 2: Behavior of SIDIS structure functions in the intermediate region M ! qT ! Q. Empty
fields indicate that no calculation is available. The specification of twist 4 for FUU,L and F sin(φh−φS)

UT,L

reflects that these observables are zero when calculated at twist-two and twist-three accuracy.

given in (5.56) by Lcos 2φh

UU , and its high-qT approximation (4.26) by Hcos 2φh

UU . Since in the

intermediate region the two expressions describe distinct contributions to the cross section,

one may consider to use

F cos 2φh

UU ≈ Lcos 2φh

UU + Hcos 2φh

UU (6.17)

as an approximation for this observable. The quality of this approximation can be assessed

from the power behavior of its terms in the different regions:

Lcos 2φh

UU ∼ q2
T/M4 for qT <∼M , (6.18)

Lcos 2φh

UU ∼ M2/q4
T for qT $ M , (6.19)

Hcos 2φh

UU ∼ 1/Q2 for all qT , (6.20)

where the behavior in (6.18) reflects that Lcos 2φh

UU must vanish like q2
T for qT → 0 due to

angular momentum conservation [39]. In the intermediate region M ! qT ! Q both terms
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low-qT calculation high-qT calculation

observable twist order power twist order power powers match

FUU,T 2 αs 1/q2
T 2 αs 1/q2

T yes

FUU,L 4 2 αs 1/Q2

F cos φh

UU 3 αs 1/(QqT ) 2 αs 1/(QqT ) yes

F cos 2φh

UU 2 αs 1/q4
T 2 αs 1/Q2 no

F sin φh

LU 3 α2
s 1/(QqT ) 2 α2

s 1/(QqT ) yes

F sin φh

UL 3 α2
s 1/(QqT )

F sin 2φh

UL 2 αs 1/q4
T

FLL 2 αs 1/q2
T 2 αs 1/q2

T yes

F cos φh

LL 3 αs 1/(QqT ) 2 αs 1/(QqT ) yes

F sin(φh−φS)
UT,T 2 αs 1/q3

T 3 αs 1/q3
T yes

F sin(φh−φS)
UT,L 4 3 αs 1/(Q2 qT )

F sin(φh+φS)
UT 2 αs 1/q3

T 3 αs 1/q3
T yes

F sin(3φh−φS)
UT 2 α2

s 1/q3
T 3 αs 1/(Q2 qT ) no

F sin φS

UT 3 αs 1/(Qq2
T ) 3 αs 1/(Qq2

T ) yes

F sin(2φh−φS)
UT 3 αs 1/(Qq2

T ) 3 αs 1/(Qq2
T ) yes

F cos(φh−φS)
LT 2 αs 1/q3

T

F cos φS

LT 3 αs 1/(Qq2
T )

F cos(2φh−φS)
LT 3 αs 1/(Qq2

T )

Table 2: Behavior of SIDIS structure functions in the intermediate region M ! qT ! Q. Empty
fields indicate that no calculation is available. The specification of twist 4 for FUU,L and F sin(φh−φS)

UT,L

reflects that these observables are zero when calculated at twist-two and twist-three accuracy.

given in (5.56) by Lcos 2φh

UU , and its high-qT approximation (4.26) by Hcos 2φh

UU . Since in the

intermediate region the two expressions describe distinct contributions to the cross section,

one may consider to use

F cos 2φh
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FIG. 5: PT dependence of F sin�
LU /FUU for increasing z bins

(left to right) and for di↵erent Q2-xB bins (see caption of Fig.
4). The systematic uncertainty is given by the grey histogram.
The predictions of the di↵erent theoretical models are shown
by the bold and dashed lines (see caption of Fig. 4).

observed, with a more flat behaviour at small z, PT and
an increasing trend for larger PT , z values. These kine-
matic dependencies can provide valuable insights into the
kinematic dependence of the involved TMDs and FFs.

Significantly, no parameters were varied in any of the
models preparatory to making these experiment-theory
comparisons, which therefore highlight the discriminat-
ing power of fully multidimensional analyses with high
statistics over a wide kinematic range. Such data pro-
vide both the means of validating di↵erent models and
their underlying assumptions, and the ability to place
increasingly tight constraints on the TMDs involved.

Since a fully multidimensional analysis is herein made
available for the first time, some new issues with model
2 are also exposed. (It was previously found [44, Fig. 6]
to underestimate the ⇡0 SSA data obtained by HERMES
[25].) These things indicate that either the parametriza-
tions of the involved TMDs and FFs have to be improved
or that additional terms from Eq. (3) besides the two that
have been used provide measurable contributions in some
kinematic regions. Therefore, including the multidimen-
sional data presented in this work will help to further
constrain the TMDs and FFs in global fits.

In summary, the structure function ratio F
sin�
LU /FUU

corresponding to the polarized electron beam SSA in
semi-inclusive deep inelastic scattering has been mea-
sured over a wide range of kinematics in a fully mul-
tidimensional study. The comparison with calculations

shows the promise of high-precision data to enable dif-
ferentiation between competing reaction models and ef-
fects. In the context of currently available models, one
sees: the potential importance of the chiral odd distri-
bution e, sensitive to emergent hadron mass, on the en-
tire kinematic domain, and a possible role for the poorly
known T-odd chiral-even TMD g

? at large PT and z;
and incipient new signals in support of a role for axial-
vector diquark correlations in the proton’s wave function.
Therefore, including this multidimensional measurement
into global fits, in combination with future measurements
of unpolarized cross sections, as well as polarized target
spin asymmetries, will provide new, strong constraints on
the participating TMDs and FFs. Such progress will set
us firmly on the path to a deeper understanding of nu-
cleon structure in the 3-D space most natural to picturing
composite objects in relativistic quantum field theory.
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FIG. 2: Status of current world data on F
sin�
LU /FUU for ⇡+ in

terms of kinematics and accuracy from CLAS12 (filled black
squares), HERMES [27] (open blue squares), COMPASS [28]
(all positive hadrons considered, open green triangles) and
CLAS [29] (filled red circles) as a function of xB , z and PT

integrated over all other kinematic variables. The A
sin�
LU val-

ues stated in references [28] and [29] were transformed to
F

sin�
LU /FUU following Eq. (2). The grey histogram shows the

systematic uncertainty of the present CLAS12 data.

and the twist-3 FF G̃
?. Apart from those mentioned

above, a mechanism involving the poorly known twist-3
TMD g

? can also generate the beam SSA. g? appears in
the decomposition of the quark correlator if the depen-
dence on the light-cone vector is included and is sensitive
to target quark-gluon correlations. To model the twist-3
T-odd chiral-even TMD g

? it is necessary to include final
state interactions, which can be estimated via one-gluon
exchange. Therefore, studying beam SSAs provides a
unique opportunity to unravel the role of genuine twist-3
e↵ects; and the subsequent discussion suggests that our
data are particularly sensitive to the eH

?
1 (DCSB) and

g
?
D1 (quark gluon correlation) terms in Eq. (3).
SIDIS ⇡

+ electroproduction was measured at Je↵erson
Lab with CLAS12 (CEBAF Large Acceptance Spectrom-
eter for experiments at 12 GeV) [40]. Beam SSAs were
extracted over a wide range in Q

2, xB , z, PT and �. The
incident 10.6GeV electron beam was longitudinally po-
larized and the target was unpolarized liquid hydrogen.
The CLAS12 forward detector consists of six identical
sectors within a toroidal magnetic field. The momentum
and the charge of the particles were determined by 3 re-
gions of drift chambers from the curvature of the particle
trajectories in the magnetic field. The electron identi-
fication was based on a lead-scintillator electromagnetic
sampling calorimeter in combination with a Cherenkov
counter. Positive pions were identified by time-of-flight
measurements. For the selection of deeply inelastic scat-
tered electrons, cuts on Q

2
> 1GeV2, y < 0.75 and on

the invariant mass of the hadronic final stateW > 2 GeV,
were applied. In addition, it was required that the e0⇡+

X

missing mass be larger than 1.5GeV to reduce the con-
tribution from exclusive channels.

Fig. 2 shows the new CLAS12 data as a function of
xB , z, PT , integrated over all other kinematic variables,
compared with available world data for F sin�

LU /FUU from
previous experiments. Details on the CLAS12 multidi-

FIG. 3: Left: Distribution of Q2 versus xB with bin number-
ing and boundaries. Right: Correlation between z and PT for
Q

2 - xB - bin 1. The black lines indicate the bin borders.

mensional analysis follow. Although F
sin�
LU was studied

at HERMES [26, 27], COMPASS [28] and CLAS [29, 41]
during the last two decades, there is still no consistent un-
derstanding of the contribution from each part to the to-
tal structure function. The high statistics on an extended
kinematic range, which distinguishes the new data, en-
ables a high precision multidimensional analysis; hence,
provides an excellent basis for TMD and FF extraction.
For the multidimensional binning, first the electron

variables are sorted in 9 bins in Q
2 and xB (see Fig. 3).

For each of these Q
2 - xB bins, a binning is applied to z

and PT as exemplified in Fig. 3.
The beam SSA and its statistical uncertainty were de-

termined experimentally from the number of counts with
positive and negative helicity (N±

i ) in a specific bin i as:

ALU =
1

Pe

N
+
i �N

�
i

N
+
i +N

�
i

, �ALU =
1

Pe

s
1� (Pe ALU )2

N
+
i +N

�
i

, (4)

where Pe is the average magnitude of the beam polar-
ization. Pe was measured with a Møller polarimeter up-
stream of CLAS12 and was 86.3%±2.6%. The polariza-
tion was flipped at 30 Hz to minimize systematic e↵ects.
To extract A

sin�
LU , the beam SSA was measured as a

function of the azimuthal angle �. Then the data was
fit with a sin� function. The obtained A

sin�
LU moment is

then related to F
sin�
LU /FUU via Eq. (2). Several sources of

systematic uncertainty were investigated, including beam
polarization, radiative e↵ects, particle identification and
contamination from baryon resonances and exclusive ⇢

meson production. A detailed Monte Carlo simulation
was performed to study acceptance and bin-migration
e↵ects, which were both found to be negligible compared
to the other contributions. The influence of additional
azimuthal modulations cos� and cos 2� on the extracted
sin� amplitude was also evaluated, and found to be neg-
ligible. The total point-to-point systematic uncertainty
of F sin�

LU /FUU , defined as the square-root of the quadratic
sum of the uncertainties from all sources, is typically on
the order of 5.6% and dominated by the uncertainty from
radiative e↵ects (3.0%) and acceptance and bin migration
e↵ects (2.7%). The beam polarization adds an additional
3.0% scale uncertainty to our observable.
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3

ergies characteristic of existing fixed-target (as opposed
to colliding beam) facilities, contributions of O(M/Q)
can be significant, making beam SSAs accessible. One
thereby gains rare access to information about: cor-
relations between gluons and quarks within the target
[22, 23]; and emergent hadron mass, which is responsible
for the bulk of observable mass in the Universe [13–15].

This Letter presents high-precision beam SSAs mea-
sured in ⇡

+ SIDIS of longitudinally polarized electrons o↵
unpolarized protons with a wide range of fully di↵eren-
tial multidimensional kinematics on Q

2
2 [1.7, 7.0]GeV2,

xB 2 [0.13, 0.52], z 2 [0.17, 0.7], and PT up to 0.85GeV
(c = 1). Here, Q2 is the momentum transferred into the
system by the lepton probe (the photon virtuality); xB

is the fraction of the proton’s momentum carried by the
struck quark; PT is the hadron’s transverse momentum,
with respect to the virtual photon; y is the energy frac-
tion of the incoming lepton carried by the virtual photon
and z is the fraction of the virtual photon’s energy carried
by the outgoing hadron in the lab frame. The reaction
kinematics of the process are sketched in Fig. 1.

In the one-photon exchange approximation beam SSAs
(ALU ) are defined thus:

ALU (z, PT ,�,xB , Q
2) =

d�
+
� d�

�

d�+ + d��

=
A

sin�
LU sin�

1 +A
cos�
UU cos�+A

cos 2�
UU cos 2�

,

(1)

where d�
± is the di↵erential cross section for each beam

helicity state (±): spin parallel/antiparallel to the beam
direction. The subscripts of the moments Aij repre-
sent the longitudinally polarized (L) or unpolarized (U)
state of the beam and target, respectively. � is the az-
imuthal angle between the electron scattering plane and
the hadronic reaction plane, see Fig. 1.

Our chief focus is the sin� moment, Asin�
LU , which pro-

vides access to dynamical aspects of proton structure,
as will become clear. It is proportional to the polarized
structure function F

sin�
LU :

A
sin�
LU =

p
2✏(1� ✏) F sin�

LU

FUU,T + ✏FUU,L
, (2)

FIG. 1: Schematic diagram of the reaction kinematics of the
single pion semi-inclusive deep inelastic scattering process.

where the terms in FUU = FUU,T + ✏FUU,L are the con-
tributions from longitudinal and transverse polarizations
of the virtual photon, and ✏ is the ratio of their fluxes.
A TMD interpretation of our data requires that a (fac-

torized) convolution formula be a valid interpretative tool
[10, 30]. The required kinematic conditions might not be
met at our largest PT values in the smallest xB bins and a
complementary analysis framework may be applicable on
this domain [31]; but contemporary theory cannot pro-
vide rigorous guidance on these points because factoriza-
tion has not yet been proved in connection with twist-3
observables [32], although progress in that direction is
being made [33–35]. Consequently, we proceed by as-
suming factorization is valid and remain vigilant against
manifest violations. So, we write [10, 30]:

F
sin�
LU =

2M

Q
C

"
�

ĥ · kT

Mh

 
xBeH

?
1 +

Mh

M
f1

G̃
?

z

!

+
ĥ · pT

M

 
xBg

?
D1 +

Mh

M
h
?
1
Ẽ

z

!#
, (3)

where C indicates a convolution of TMDs and FFs. Here
e is a twist-3 TMD, H?

1 is the Collins FF, f1 is the un-
polarized distribution function, G̃? is a twist-3 FF, g?

is a twist-3 T-odd distribution function, D1 is the un-
polarized FF, h?

1 is the Boer-Mulders function and Ẽ is
a twist-3 FF. (The properties of these functions are de-
tailed elsewhere [11, 22, 23].) Furthermore, pT (kT ) is
the intrinsic quark transverse momentum in the generic
distribution function f1 (fragmentation functionD1), Mh

is the pion mass and ĥ is a unit vector in the direction
of the pion’s transverse momentum.
Notably, most twist-3 structure functions can be sepa-

rated into three terms using QCD’s equations of motion:
a twist-2 piece, relating to some single-parton density; a
genuine twist-3 term, containing information on quark-
gluon correlations and DCSB; and a term proportional
to the current-quark mass, which is usually neglected for
light quarks. The so-called Wandzura-Wilczek (WW)
approximation keeps only the twist-two piece [36]. Cru-
cially, the structure function F

sin�
LU is special because it

contains no such twist-two contribution, i.e. it is gen-
uinely twist-three [10]; hence, particularly sensitive to
quark-gluon correlations. Any analysis of our experiment
that uses the WW approximation will return zero for the
BSA [37], in clear conflict with the data.
Since the several percent magnitude of the observed

asymmetry cannot be explained by perturbative QCD,
several nonperturbative mechanisms have been proposed.
One involves the eH?

1 term [38, 39], attributing the asym-
metry to a coupling between the Collins FFH

?
1 and e(x),

which is a chiral-odd TMD; hence, sensitive to DCSB
[13–15]. Other mechanisms involve convolution of the
Boer-Mulders function h

?
1 with the FF Ẽ and the cou-

pling between the unpolarized distribution function f1
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where the terms in FUU = FUU,T + ✏FUU,L are the con-
tributions from longitudinal and transverse polarizations
of the virtual photon, and ✏ is the ratio of their fluxes.
A TMD interpretation of our data requires that a (fac-

torized) convolution formula be a valid interpretative tool
[10, 30]. The required kinematic conditions might not be
met at our largest PT values in the smallest xB bins and a
complementary analysis framework may be applicable on
this domain [31]; but contemporary theory cannot pro-
vide rigorous guidance on these points because factoriza-
tion has not yet been proved in connection with twist-3
observables [32], although progress in that direction is
being made [33–35]. Consequently, we proceed by as-
suming factorization is valid and remain vigilant against
manifest violations. So, we write [10, 30]:
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where C indicates a convolution of TMDs and FFs. Here
e is a twist-3 TMD, H?

1 is the Collins FF, f1 is the un-
polarized distribution function, G̃? is a twist-3 FF, g?

is a twist-3 T-odd distribution function, D1 is the un-
polarized FF, h?

1 is the Boer-Mulders function and Ẽ is
a twist-3 FF. (The properties of these functions are de-
tailed elsewhere [11, 22, 23].) Furthermore, pT (kT ) is
the intrinsic quark transverse momentum in the generic
distribution function f1 (fragmentation functionD1), Mh

is the pion mass and ĥ is a unit vector in the direction
of the pion’s transverse momentum.
Notably, most twist-3 structure functions can be sepa-

rated into three terms using QCD’s equations of motion:
a twist-2 piece, relating to some single-parton density; a
genuine twist-3 term, containing information on quark-
gluon correlations and DCSB; and a term proportional
to the current-quark mass, which is usually neglected for
light quarks. The so-called Wandzura-Wilczek (WW)
approximation keeps only the twist-two piece [36]. Cru-
cially, the structure function F

sin�
LU is special because it

contains no such twist-two contribution, i.e. it is gen-
uinely twist-three [10]; hence, particularly sensitive to
quark-gluon correlations. Any analysis of our experiment
that uses the WW approximation will return zero for the
BSA [37], in clear conflict with the data.
Since the several percent magnitude of the observed

asymmetry cannot be explained by perturbative QCD,
several nonperturbative mechanisms have been proposed.
One involves the eH?

1 term [38, 39], attributing the asym-
metry to a coupling between the Collins FFH

?
1 and e(x),

which is a chiral-odd TMD; hence, sensitive to DCSB
[13–15]. Other mechanisms involve convolution of the
Boer-Mulders function h

?
1 with the FF Ẽ and the cou-

pling between the unpolarized distribution function f1
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where the terms in FUU = FUU,T + ✏FUU,L are the con-
tributions from longitudinal and transverse polarizations
of the virtual photon, and ✏ is the ratio of their fluxes.
A TMD interpretation of our data requires that a (fac-

torized) convolution formula be a valid interpretative tool
[10, 30]. The required kinematic conditions might not be
met at our largest PT values in the smallest xB bins and a
complementary analysis framework may be applicable on
this domain [31]; but contemporary theory cannot pro-
vide rigorous guidance on these points because factoriza-
tion has not yet been proved in connection with twist-3
observables [32], although progress in that direction is
being made [33–35]. Consequently, we proceed by as-
suming factorization is valid and remain vigilant against
manifest violations. So, we write [10, 30]:
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where C indicates a convolution of TMDs and FFs. Here
e is a twist-3 TMD, H?

1 is the Collins FF, f1 is the un-
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this domain [31]; but contemporary theory cannot pro-
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suming factorization is valid and remain vigilant against
manifest violations. So, we write [10, 30]:
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where C indicates a convolution of TMDs and FFs. Here
e is a twist-3 TMD, H?

1 is the Collins FF, f1 is the un-
polarized distribution function, G̃? is a twist-3 FF, g?

is a twist-3 T-odd distribution function, D1 is the un-
polarized FF, h?

1 is the Boer-Mulders function and Ẽ is
a twist-3 FF. (The properties of these functions are de-
tailed elsewhere [11, 22, 23].) Furthermore, pT (kT ) is
the intrinsic quark transverse momentum in the generic
distribution function f1 (fragmentation functionD1), Mh

is the pion mass and ĥ is a unit vector in the direction
of the pion’s transverse momentum.
Notably, most twist-3 structure functions can be sepa-

rated into three terms using QCD’s equations of motion:
a twist-2 piece, relating to some single-parton density; a
genuine twist-3 term, containing information on quark-
gluon correlations and DCSB; and a term proportional
to the current-quark mass, which is usually neglected for
light quarks. The so-called Wandzura-Wilczek (WW)
approximation keeps only the twist-two piece [36]. Cru-
cially, the structure function F

sin�
LU is special because it

contains no such twist-two contribution, i.e. it is gen-
uinely twist-three [10]; hence, particularly sensitive to
quark-gluon correlations. Any analysis of our experiment
that uses the WW approximation will return zero for the
BSA [37], in clear conflict with the data.
Since the several percent magnitude of the observed

asymmetry cannot be explained by perturbative QCD,
several nonperturbative mechanisms have been proposed.
One involves the eH?

1 term [38, 39], attributing the asym-
metry to a coupling between the Collins FFH

?
1 and e(x),

which is a chiral-odd TMD; hence, sensitive to DCSB
[13–15]. Other mechanisms involve convolution of the
Boer-Mulders function h

?
1 with the FF Ẽ and the cou-

pling between the unpolarized distribution function f1
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ergies characteristic of existing fixed-target (as opposed
to colliding beam) facilities, contributions of O(M/Q)
can be significant, making beam SSAs accessible. One
thereby gains rare access to information about: cor-
relations between gluons and quarks within the target
[22, 23]; and emergent hadron mass, which is responsible
for the bulk of observable mass in the Universe [13–15].

This Letter presents high-precision beam SSAs mea-
sured in ⇡

+ SIDIS of longitudinally polarized electrons o↵
unpolarized protons with a wide range of fully di↵eren-
tial multidimensional kinematics on Q

2
2 [1.7, 7.0]GeV2,

xB 2 [0.13, 0.52], z 2 [0.17, 0.7], and PT up to 0.85GeV
(c = 1). Here, Q2 is the momentum transferred into the
system by the lepton probe (the photon virtuality); xB

is the fraction of the proton’s momentum carried by the
struck quark; PT is the hadron’s transverse momentum,
with respect to the virtual photon; y is the energy frac-
tion of the incoming lepton carried by the virtual photon
and z is the fraction of the virtual photon’s energy carried
by the outgoing hadron in the lab frame. The reaction
kinematics of the process are sketched in Fig. 1.

In the one-photon exchange approximation beam SSAs
(ALU ) are defined thus:
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where d�
± is the di↵erential cross section for each beam

helicity state (±): spin parallel/antiparallel to the beam
direction. The subscripts of the moments Aij repre-
sent the longitudinally polarized (L) or unpolarized (U)
state of the beam and target, respectively. � is the az-
imuthal angle between the electron scattering plane and
the hadronic reaction plane, see Fig. 1.

Our chief focus is the sin� moment, Asin�
LU , which pro-

vides access to dynamical aspects of proton structure,
as will become clear. It is proportional to the polarized
structure function F

sin�
LU :
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FIG. 1: Schematic diagram of the reaction kinematics of the
single pion semi-inclusive deep inelastic scattering process.

where the terms in FUU = FUU,T + ✏FUU,L are the con-
tributions from longitudinal and transverse polarizations
of the virtual photon, and ✏ is the ratio of their fluxes.
A TMD interpretation of our data requires that a (fac-

torized) convolution formula be a valid interpretative tool
[10, 30]. The required kinematic conditions might not be
met at our largest PT values in the smallest xB bins and a
complementary analysis framework may be applicable on
this domain [31]; but contemporary theory cannot pro-
vide rigorous guidance on these points because factoriza-
tion has not yet been proved in connection with twist-3
observables [32], although progress in that direction is
being made [33–35]. Consequently, we proceed by as-
suming factorization is valid and remain vigilant against
manifest violations. So, we write [10, 30]:
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where C indicates a convolution of TMDs and FFs. Here
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1 is the Boer-Mulders function and Ẽ is
a twist-3 FF. (The properties of these functions are de-
tailed elsewhere [11, 22, 23].) Furthermore, pT (kT ) is
the intrinsic quark transverse momentum in the generic
distribution function f1 (fragmentation functionD1), Mh

is the pion mass and ĥ is a unit vector in the direction
of the pion’s transverse momentum.
Notably, most twist-3 structure functions can be sepa-

rated into three terms using QCD’s equations of motion:
a twist-2 piece, relating to some single-parton density; a
genuine twist-3 term, containing information on quark-
gluon correlations and DCSB; and a term proportional
to the current-quark mass, which is usually neglected for
light quarks. The so-called Wandzura-Wilczek (WW)
approximation keeps only the twist-two piece [36]. Cru-
cially, the structure function F

sin�
LU is special because it

contains no such twist-two contribution, i.e. it is gen-
uinely twist-three [10]; hence, particularly sensitive to
quark-gluon correlations. Any analysis of our experiment
that uses the WW approximation will return zero for the
BSA [37], in clear conflict with the data.
Since the several percent magnitude of the observed

asymmetry cannot be explained by perturbative QCD,
several nonperturbative mechanisms have been proposed.
One involves the eH?

1 term [38, 39], attributing the asym-
metry to a coupling between the Collins FFH
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A TMD interpretation of our data requires that a (fac-

torized) convolution formula be a valid interpretative tool
[10, 30]. The required kinematic conditions might not be
met at our largest PT values in the smallest xB bins and a
complementary analysis framework may be applicable on
this domain [31]; but contemporary theory cannot pro-
vide rigorous guidance on these points because factoriza-
tion has not yet been proved in connection with twist-3
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1 is the Collins FF, f1 is the un-
polarized distribution function, G̃? is a twist-3 FF, g?

is a twist-3 T-odd distribution function, D1 is the un-
polarized FF, h?

1 is the Boer-Mulders function and Ẽ is
a twist-3 FF. (The properties of these functions are de-
tailed elsewhere [11, 22, 23].) Furthermore, pT (kT ) is
the intrinsic quark transverse momentum in the generic
distribution function f1 (fragmentation functionD1), Mh

is the pion mass and ĥ is a unit vector in the direction
of the pion’s transverse momentum.
Notably, most twist-3 structure functions can be sepa-

rated into three terms using QCD’s equations of motion:
a twist-2 piece, relating to some single-parton density; a
genuine twist-3 term, containing information on quark-
gluon correlations and DCSB; and a term proportional
to the current-quark mass, which is usually neglected for
light quarks. The so-called Wandzura-Wilczek (WW)
approximation keeps only the twist-two piece [36]. Cru-
cially, the structure function F

sin�
LU is special because it

contains no such twist-two contribution, i.e. it is gen-
uinely twist-three [10]; hence, particularly sensitive to
quark-gluon correlations. Any analysis of our experiment
that uses the WW approximation will return zero for the
BSA [37], in clear conflict with the data.
Since the several percent magnitude of the observed

asymmetry cannot be explained by perturbative QCD,
several nonperturbative mechanisms have been proposed.
One involves the eH?

1 term [38, 39], attributing the asym-
metry to a coupling between the Collins FFH
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1 and e(x),
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1 with the FF Ẽ and the cou-

pling between the unpolarized distribution function f1

Bacchetta, Bozzi, Echevarria, Pisano, Prokudin, arXiv:1906.07037


Vladimirov, Moos, arXiv:21109.09771


Ebert, Gao, Stewart, arXiv:2112.07680

Unpolarized structure functions.

W
cos�h
UU

= F̃
⇢
qT

Q
H(0)


�f1D1 +

2kTxpTx � ~kT · ~pT
MNMh

h
?

1 H
?

1

�
(5.41)

+H(0)


�kTx + pTx

Q
f1D1 +

k
2
T
pTx + p

2
T
kTx

MNMhQ
h
?

1 H
?

1

�

�H(1)


2xMN

Q

✓
kTx

MN

f̃
?
D1 +

pTx

Mh

h̃H
?

1

◆
+

2Mh

zQ

✓
pTx

Mh

f1D̃
? +

kTx

MN

h
?

1 H̃

◆��

= F̃
⇢
H(0)


�2kTx

Q
f1D1 +

2k2
T
pTx

MNMhQ
h
?

1 H
?

1

�

�H(1)


2xMN

Q

✓
kTx

MN

f̃
?
D1 +

pTx

Mh

h̃H
?

1

◆
+

2Mh

zQ

✓
pTx

Mh

f1D̃
? +

kTx

MN

h
?

1 H̃

◆��
,

W
sin�h
LU

= F̃
⇢
H(1)


2xMN

Q

✓
kTx

MN

g̃
?
D1 �

pTx

Mh
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Longitudinally polarized structure functions.
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Figure 29: xF -distributions of π+ (left) and π− (right) of pion pairs.
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Figure 30: The Q2-distribution of pion pairs (left) and the φR-distribution of the pair (right).
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Figure 31: The φhdistribution (left) and invariant mass distributions of the pair (right).
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Figure 29: xF -distributions of π+ (left) and π− (right) of pion pairs.
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Figure 30: The Q2-distribution of pion pairs (left) and the φR-distribution of the pair (right).
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Figure 31: The φhdistribution (left) and invariant mass distributions of the pair (right).
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Figure 31: The φhdistribution (left) and invariant mass distributions of the pair (right).
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Figure 29: xF -distributions of π+ (left) and π− (right) of pion pairs.
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Figure 30: The Q2-distribution of pion pairs (left) and the φR-distribution of the pair (right).
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Figure 31: The φhdistribution (left) and invariant mass distributions of the pair (right).
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lidity of the W -term approximation does not end at a
sharp point in qT, and thus a smooth function character-
izes general physical expectations. A reasonable choice
is

Ξ

(

qT
Q

, η

)

= exp

[

−

(

qT
ηQ

)aΞ
]

, (39)

with aΞ > 2.
The only differences between the old and new W -term

are: i) the use of bc(bT) rather than bT in W̃ , and ii) the
multiplication by Ξ(qT/Q, η). (The second modification
was proposed by Collins in Ref. [4, Eq. (13.75)]. There Ξ
is called F (qT/Q).) Equation (38) matches the standard
definition in the limit that C5 and η approach infinity.
Finally, we will present a fully optimized formula for

WNew(qT, Q; η, C5) corresponding to the one for the orig-
inal W (qT, Q) in Eq. (35).
But first it will be convenient to construct some auxil-

iary results.
Naturally, b∗ is to be replaced by

b∗(bc(bT)) =

√

b2T + b20/(C
2
5Q

2)

1 + b2T/b
2
max + b20/(C

2
5Q

2b2max)
. (40)

Also we define

bmin ≡ b∗(bc(0)) =
b0

C5Q

√

1

1 + b20/(C
2
5Q

2b2max)
. (41)

Then, for large enough Q and bmax

bmin ≈
b0

C5Q
. (42)

Thus, bmin decreases like 1/Q, in contrast to bmax which
remains fixed. Note also that

b∗(bc(bT)) −→











bmin bT % bmin

bT bmin % bT % bmax

bmax bT & bmax .

(43)

For bT % 1/Q, b∗(bc(bT)) ≈ b∗(bT). Instead of µb∗ , we
will ultimately use the scale

µ̄ ≡
C1

b∗(bc(bT))
(44)

to implement renormalization group improvement in
TMD correlation functions. There is a maximum cut-
off on the renormalization scale equal to

µc ≡ lim
bT→0

µ̄ =
C1C5Q

b0

√

1 +
b20

C2
5 b

2
maxQ

2
≈

C1C5Q

b0
.

(45)
The approximation sign corresponds to the limit of large
Qbmax. Note that,

bminµc = C1 . (46)

The steps for finding a useful formula for the evolved WNew(qT, Q; η, C5) are as follows. Equation (32) becomes

WNew(qT, Q; η, C5) = Ξ

(

qT
Q

, η

)
∫

d2bT
(2π)2

eiqT·bTW̃NP(bc(bT), Q)W̃ (b∗(bc(bT)), Q) . (47)

Now the definition of W̃ (bT, Q) is unchanged, and only the bT → bc(bT) replacement is new. Therefore instead of
Eq. (35) we simply need

W̃ (bc(bT), Q) = H(µQ, Q)
∑

j′i′

∫ 1

xA

dx̂

x̂
C̃pdf

j/j′ (xA/x̂, b∗(bc(bT)); µ̄
2, µ̄,αs(µ̄))fj′/A(x̂; µ̄)×

×

∫ 1

zB

dẑ

ẑ3
C̃ff

i′/j(zB/ẑ, b∗(bc(bT)); µ̄
2, µ̄,αs(µ̄))dB/i′ (ẑ; µ̄)×

× exp

{

ln
Q2

µ̄2
K̃(b∗(bc(bT)); µ̄) +

∫ µQ

µ̄

dµ′

µ′

[

2γ(αs(µ
′); 1)− ln

Q2

µ′2
γK(αs(µ

′))

]}

× exp

{

−gA(xA, bc(bT); bmax)− gB(zB, bc(bT); bmax)− 2gK(bc(bT); bmax) ln

(

Q

Q0

)}

. (48)

This is the same as Eq. (35) except that b∗(bc(bT)) and µ̄ = C1/b∗(bc(bT)) are used instead of b∗(bT) and
µb∗ = C1/b∗(bT). Note that gK(bc(bT); bmax) depends on Q through bc, albeit only for bT ! 1/Q. For bT & 1/Q,
gK(bc(bT); bmax) → gK(bT; bmax). Also, gK(bc(bT); bmax) does not vanish exactly as bT → 0 but instead approaches a
power of 1/Q.
Up to this point, we have introduced two new parameters, η and C5, in the treatment of the W -term.
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This is the same as Eq. (35) except that b∗(bc(bT)) and µ̄ = C1/b∗(bc(bT)) are used instead of b∗(bT) and
µb∗ = C1/b∗(bT). Note that gK(bc(bT); bmax) depends on Q through bc, albeit only for bT ! 1/Q. For bT & 1/Q,
gK(bc(bT); bmax) → gK(bT; bmax). Also, gK(bc(bT); bmax) does not vanish exactly as bT → 0 but instead approaches a
power of 1/Q.
Up to this point, we have introduced two new parameters, η and C5, in the treatment of the W -term.

Collins et al. 
arXiv:1605.00671 

see, e.g., Bozzi, Catani, De Florian, Grazzini  
hep-ph/0302104 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• The justification is to recover the integrated result (“unitarity constraint”)


• Modification at low bT is allowed because resummed calculation is anyway 
unreliable there 

http://www.arxiv.org/abs/1605.00671
http://arxiv.org/abs/hep-ph/0302104


PAVIA 2019 b∗ PRESCRIPTION

46

b⇤ ⌘
bTp

1 + b2
T /b2

max

Collins, Soper, Sterman, NPB250 (85)



PAVIA 2019 b∗ PRESCRIPTION

46

µ0 = 1GeV

b⇤ ⌘
bTp

1 + b2
T /b2

max

Collins, Soper, Sterman, NPB250 (85)



PAVIA 2019 b∗ PRESCRIPTION

46

µb = 2e��E /b⇤ b̄⇤ ⌘ bmax

 
1� e�b4T /b4max

1� e�b4T /b4min

!1/4

bmax = 2e��E

bmin =
2e��E

Q

µ0 = 1GeV

b⇤ ⌘
bTp

1 + b2
T /b2

max

Collins, Soper, Sterman, NPB250 (85)



PAVIA 2019 b∗ PRESCRIPTION

46

µb = 2e��E /b⇤ b̄⇤ ⌘ bmax

 
1� e�b4T /b4max

1� e�b4T /b4min

!1/4

bmax = 2e��E

bmin =
2e��E

Q

µ0 = 1GeV

These are all choices that should be at some point checked/challenged

b⇤ ⌘
bTp

1 + b2
T /b2

max

Collins, Soper, Sterman, NPB250 (85)



PAVIA 2019 b∗ PRESCRIPTION

46

µb = 2e��E /b⇤ b̄⇤ ⌘ bmax

 
1� e�b4T /b4max

1� e�b4T /b4min

!1/4

bmax = 2e��E

bmin =
2e��E

Q

µ0 = 1GeV

These are all choices that should be at some point checked/challenged

f̂q
1 (x, bT ;µ

2) =
X

i

�
Cqi ⌦ f i

1

�
(x, b⇤;µb)e

S̃(b⇤;µb,µ)egK(bT ) ln µ
µ0 f̂q

NP(x, bT )
<latexit sha1_base64="X7hspQzMSJcnVOBBKFPnG/qMcjg="></latexit>

b⇤ ⌘
bTp

1 + b2
T /b2

max

Collins, Soper, Sterman, NPB250 (85)



EFFECTS OF b∗ PRESCRIPTION 

47

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

bT [GeV-1]

b *

Q= 2 GeV

Q= 1 GeV

Q= 10 GeV

0.0 0.5 1.0 1.5 2.0
1.0

1.5

2.0

2.5

bT [GeV-1]

��
b *

)
Q= 1 GeV

Q= 2 GeV

Q= 10 GeV

µb = 2e��E /b⇤ b̄⇤ ⌘ bmax

 
1� e�b4T /b4max

1� e�b4T /b4min

!1/4

bmax = 2e��E

bmin =
2e��E

Q



EFFECTS OF b∗ PRESCRIPTION 

47

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

bT [GeV-1]

b *

Q= 2 GeV

Q= 1 GeV

Q= 10 GeV

0.0 0.5 1.0 1.5 2.0
1.0

1.5

2.0

2.5

bT [GeV-1]

��
b *

)
Q= 1 GeV

Q= 2 GeV

Q= 10 GeV

µb = 2e��E /b⇤ b̄⇤ ⌘ bmax

 
1� e�b4T /b4max

1� e�b4T /b4min

!1/4

bmax = 2e��E

bmin =
2e��E

Q

No significant effect at high Q, but large effect at low Q  
(inhibits perturbative contribution)



NONMIXED TERMS IN COLLINEAR SIDIS CROSS SECTION

48

4. Low transverse momentum: phenomenology

4A Appendix: di�erence between the TMD integral
and the integrated SIDIS cross section at O(UB)

In this Appendix we report the theoretical formula for the SIDIS cross section inte-
grated over transverse momentum at O(UB), for the reader who wants to compare
it with the integral of the TMD cross section (Sec. 4.1.2). This expression can be
found, for instance, in [84]:

df⌘

dGd&2dI

����
O(U1

B )
= f0

’
5 5

0

4
2
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I
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�
X 5

0
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0
6
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c

⇢ h
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5
0
5

1 ⌦ 5
5 /#

1

i
(G, I,&)

+ 1 � H
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h
⇡

⌘/ 5 0
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5
0
5

!
⌦ 5

5 /#
1

i
(G, I,&)

�
,

(4.37)
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4. Low transverse momentum: phenomenology

4A Appendix: di�erence between the TMD integral
and the integrated SIDIS cross section at O(UB)

In this Appendix we report the theoretical formula for the SIDIS cross section inte-
grated over transverse momentum at O(UB), for the reader who wants to compare
it with the integral of the TMD cross section (Sec. 4.1.2). This expression can be
found, for instance, in [84]:
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SOME JUSTIFICATION: INITIAL SITUATION
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SOLUTION 1: RESTRICT TMD REGION

50

Data

Asy

Fix order

Resum

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

qT [GeV]

d� dq
T2

⟨Q⟩ = 3 GeV



SOLUTION 2: ENHANCE TMD CONTRIBUTIONS
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