3D STRUCTURE: BEAUTY AND THE BEAST

Alessandro Bacchetta

SOME INTRODUCTION

Wigner distributions (Fourier transform of GTMDs = Generalized Transverse Momentum Distributions)

Wigner distributions (Fourier transform of GTMDs = Generalized Transverse Momentum Distributions)

TMDs

Wigner distributions (Fourier transform of GTMDs $=$ Generalized Transverse Momentum Distributions)

TMDs

Wigner distributions (Fourier transform of GTMDs = Generalized Transverse Momentum Distributions)

TMDs

PDFs

IMPROVING OUR 3D MAPS

With present data

IMPROVING OUR SD MAPS

With present data

With $10 x$ data

IMPROVING OUR SD MAPS

With present data

With $10 x$ data

With 100x data

IMPROVING OUR 3D MAPS

With present data

With $10 x$ data

With 100x data

IMPROVING OUR 3D MAPS

Present data

IMPROVING OUR 3D MAPS

IMPROVING OUR 3D MAPS

IMPROVING OUR 3D MAPS

TMD TABLE

quark pol.				
		U	L	T
O	U	f_{1}		h_{1}^{\perp}
O	L		$g_{1 L}$	$h_{1 L}^{\perp}$
菏	T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

TMD TABLE

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

TMD TABLE

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

TMD TABLE

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

TMD TABLE

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

TMD TABLE

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

TMD TABLE

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

TMD TABLE

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

TWIST-3 TMD TABLE

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

Mulders-Tangerman, NPB 461 (96)
Boer-Mulders, PRD 57 (98)
Bacchetta, Mulders, Pijlman, hep-ph/0405154
Goeke, Metz, Schlegel, hep-ph/0504130

TWIST-3 TMD TABLE

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

Mulders-Tangerman, NPB 461 (96)
Boer-Mulders, PRD 57 (98)
Bacchetta, Mulders, Pijlman, hep-ph/0405154
Goeke, Metz, Schlegel, hep-ph/0504130

TMDS IN SEMI-INCLUSIVE DIS

TMDS IN SEMI-INCLUSIVE DIS

hard factor

TMDS IN SEMI-INCLUSIVE DIS

hard factor

TMDS IN SEMI-INCLUSIVE DIS

The W term, dominates at low transverse momentum $q_{T}=P_{h T} / z \ll Q$
So far, the Y term has been neglected in TMD extractions

THE "MATCHING" PROCEDURE

TMDS
PDFS

TMDS IN SEMI-INCLUSIVE DIS

TMDS IN SEMI-INCLUSIVE DIS

The analysis is usually done in Fourier-transformed space

TMDS IN SEMI-INCLUSIVE DIS

The analysis is usually done in Fourier-transformed space
TMDs depend on two scales, but they are set to be equal for convenience.

TMD STRUCTURE

$$
\hat{f}_{1}^{a}\left(x,\left|\boldsymbol{b}_{T}\right| ; \mu, \zeta\right)=\int d^{2} \boldsymbol{k}_{\perp} e^{i \boldsymbol{b}_{T} \cdot \boldsymbol{k}_{\perp}} f_{1}^{a}\left(x, \boldsymbol{k}_{\perp}^{2} ; \mu, \zeta\right)
$$

$$
\left.\hat{f}_{1}^{a}\left(x, b_{T}^{2} ; \mu_{f}, \zeta_{f}\right)=\left[C \otimes f_{1}\right]\left(x, \mu_{b_{*}}\right) e^{\int_{\mu_{b_{*}}}^{\mu_{f}} \frac{d \mu}{\mu}\left(\gamma_{F}-\gamma_{K} \ln \frac{\sqrt{\zeta_{f}}}{\mu}\right.}\right)\left(\frac{\sqrt{\zeta_{f}}}{\mu_{b_{*}}}\right)^{K_{\mathrm{resum}}+g_{K}} f_{1 N P}\left(x, b_{T}^{2} ; \zeta_{f}, Q_{0}\right)
$$

$$
\mu_{b_{*}}=\frac{2 e^{-\gamma_{E}}}{b_{*}}
$$

TMD STRUCTURE

$$
\hat{f}_{1}^{a}\left(x,\left|\boldsymbol{b}_{T}\right| ; \mu, \zeta\right)=\int d^{2} \boldsymbol{k}_{\perp} e^{i \boldsymbol{b}_{T} \cdot \boldsymbol{k}_{\perp}} f_{1}^{a}\left(x, \boldsymbol{k}_{\perp}^{2} ; \mu, \zeta\right)
$$

perturbative Sudakov

 form factor```
see, e.g.,
Collins, "Foundations of Perturbative QCD" (11)
```


## TMD GLOBAL FITS

|  | Accuracy |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | HERMES | COMPASS |
| :---: | | DY <br> fixed <br> target |
| :---: |
| Pavia 2017 <br> arXiv:1703.10157 |
| NLL |

## $x$ - Q2 COVERAGE



MAP Collaboration
Bacchetta, Bertone, Bissolotti, Bozzi, Cerutti,
Piacenza, Radici, Signori, arXiv:2206.07598


Scimemi, Vladimirov, arXiv:1912.06532

## $x$ - Q2 COVERAGE



MAP Collaboration
Bacchetta, Bertone, Bissolotti, Bozzi, Cerutti,
Piacenza, Radici, Signori, arXiv:2206.07598


Scimemi, Vladimirov, arXiv:1912.06532

## MAP22 FUNCTIONAL FORM

$$
f_{1 \mathrm{NP}}\left(x, b_{T}^{2}\right) \propto \text { F.T. of }\left(e^{-\frac{k^{2}}{g I}}+\lambda^{2} k_{T}^{2} e^{-\frac{k^{2}}{\partial B}}+\lambda_{2}^{2} e^{-\frac{k^{2}}{\partial T I}}\right)
$$

## MAP22 FUNCTIONAL FORM

$$
\begin{aligned}
& g_{1}(x)=N_{1} \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}}
\end{aligned}
$$

## MAP22 FUNCTIONAL FORM

$$
\begin{aligned}
& f_{1 \mathrm{NP}}\left(x, b_{T}^{2}\right) \propto \text { F.T. of }\left(e^{-\frac{k_{T}^{2}}{g 1}}+\lambda^{2} k_{T}^{2} e^{-\frac{k_{T}^{2}}{g 1 B}}+\lambda_{2}^{2} e^{-\frac{k_{T}^{2}}{g 1 C}}\right) \\
& \quad g_{1}(x)=N_{1} \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}} \\
& g_{K}\left(b_{T}^{2}\right)=-\frac{g_{2}^{2}}{2} b_{T}^{2}
\end{aligned}
$$

## MAP22 FUNCTIONAL FORM

$$
\begin{aligned}
& f_{1 \mathrm{NP}}\left(x, b_{T}^{2}\right) \propto \text { F.T. of }\left(e^{-\frac{k_{T}^{2}}{g 1}}+\lambda^{2} k_{T}^{2} e^{-\frac{k_{T}^{2}}{g 1 B}}+\lambda_{2}^{2} e^{-\frac{k_{T}^{2}}{g 1 C}}\right) \\
& \quad g_{1}(x)=N_{1} \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}} \\
& g_{K}\left(b_{T}^{2}\right)=-\frac{g_{2}^{2}}{2} b_{T}^{2}
\end{aligned}
$$

11 parameters for TMD PDF +1 for NP evolution +9 for FF
$=21$ free parameters

## EXAMPLE OF RESULTING TMDS



FIG. 13: The TMD PDF of the up quark in a proton at $\mu=\sqrt{\zeta}=Q=2 \mathrm{GeV}$ (left panel) and 10 GeV (right panel) as a function of the partonic transverse momentum $\left|\boldsymbol{k}_{\perp}\right|$ for $x=0.001,0.01$ and 0.1 . The uncertainty bands represent the $68 \%$ CL.

## EXAMPLE OF RESULTING TMDS



FIG. 13: The TMD PDF of the up quark in a proton at $\mu=\sqrt{\zeta}=Q=2 \mathrm{GeV}$ (left panel) and 10 GeV (right panel) as a function of the partonic transverse momentum $\left|\boldsymbol{k}_{\perp}\right|$ for $x=0.001,0.01$ and 0.1 . The uncertainty bands represent the $68 \%$ CL.

## As usual, the rigidity of the functional form plays a role and probably leads to underestimated bands

## EXAMPLE OF RESULTING TMDS



FIG. 13: The TMD PDF of the up quark in a proton at $\mu=\sqrt{\zeta}=Q=2 \mathrm{GeV}$ (left panel) and 10 GeV (right panel) as a function of the partonic transverse momentum $\left|\boldsymbol{k}_{\perp}\right|$ for $x=0.001,0.01$ and 0.1 . The uncertainty bands represent the $68 \%$ CL.

## As usual, the rigidity of the functional form plays a role and probably leads to underestimated bands

## RESULTING COLLINS-SOPER KERNEL

Bermudez Martinez, Vladimirov, arXiv:2206.01105


## RESULTING COLLINS-SOPER KERNEL

Bermudez Martinez, Vladimirov, arXiv:2206.01105


## EXPECTED EXTENSIONS OF DATA RANGE



## JLAB 20 IMPACT

see talk on Wednesday


## JLAB 20 IMPACT

see talk on Wednesday


## JLAB 20 IMPACT



## JLAB 20 IMPACT


see talk on Wednesday

## JLAB 20 IMPACT



## FROM KT TO BT SPACE?

## FROM KT TO BT SPACE?



## FROM KT TO BT SPACE?



## FROM KT TO BT SPACE?



## FROM KT TO BT SPACE?

MSc thesis C. Bissolotti, 2016



## FROM KT TO BT SPACE?

MSc thesis C. Bissolotti, 2016



## BEAST 1 : NORMALIZATION

## PROBLEMS WITH LOW TRANSVERSE MOMENTUM

COMPASS multiplicities (one of many bins)


The description considerably worsens at higher orders

## PROBLEMS WITH LOW TRANSVERSE MOMENTUM

COMPASS multiplicities (one of many bins)


The description considerably worsens at higher orders

## PROBLEMS WITH HIGH TRANSVERSE MOMENTUM

Gonzalez-Hernandez, Rogers, Sato, Wang arXiv:1808.04396


At high $\mathrm{q}_{\mathrm{t}}$, the collinear formalism should be valid, but large discrepancies are observed

## PROBLEMS WITH HIGH TRANSVERSE MOMENTUM

Gonzalez-Hernandez, Rogers, Sato, Wang arXiv:1808.04396


At high $\mathrm{q}_{\mathrm{t}}$, the collinear formalism should be valid, but large discrepancies are observed

## MATCHING PROBLEMS (DRELL-YAN EXAMPLE)




## MATCHING PROBLEMS (DRELL-YAN EXAMPLE)




## MATCHING PROBLEMS (DRELL-YAN EXAMPLE)



Bacchetta, Bozzi, Lambertsen, Piacenza, Steinglechner, Vogelsang arXiv:1901.06916

## MATCHING PROBLEMS (DRELL-YAN EXAMPLE)



Bacchetta, Bozzi, Lambertsen, Piacenza, Steinglechner, Vogelsang arXiv:1901.06916


## BEAST 2 : TMD REGION

## MAP22 TMD DATA SELECTION



## MAP22 TMD DATA SELECTION

$Q^{2}>1.4 \mathrm{GeV}^{2}$
$0.2<z<0.7$

$q_{T}<0.2 Q \quad$ (DY)
$P_{h T}<\min [\min [0.2 Q, 0.5 z Q]+0.3 \mathrm{GeV}, z Q] \quad$ (SIDIS)
Number of points: 2031

## REGION OF VALIDITY OF TMD FORMALISM

Boglione, Diefenthaler, Dolan, Gamberg, Melnitchouk, arXiv:2201.12197

$$
\left|q_{T}\right|=\left|P_{h T}\right| / z \ll Q
$$



## REGION OF VALIDITY OF TMD FORMALISM

Boglione, Diefenthaler, Dolan, Gamberg, Melnitchouk, arXiv:2201.12197

$$
\left|q_{T}\right|=\left|P_{h T}\right| / z \ll Q
$$

Approximate region corresponding to MAP22 cuts


## REGION OF VALIDITY OF TMD FORMALISM

Boglione, Diefenthaler, Dolan, Gamberg, Melnitchouk, arXiv:2201.12197


## REGION OF VALIDITY OF TMD FORMALISM




## REGION OF VALIDITY OF TMD FORMALISM




## REGION OF VALIDITY OF TMD FORMALISM



## REGION OF VALIDITY OF TMD FORMALISM



## REGION OF VALIDTTY OF TMD FORMALISM



The MAP22 cut is already considered to be "generous", but the physics seems to be the same for a much wider $\mathrm{P}_{\mathrm{T}}$

## REGION OF VALIDTTY OF TMD FORMALISM



$$
q_{T}<0.2 Q
$$

MAP22
extrapolation

The MAP22 cut is already considered to be "generous", but the physics seems to be the same for a much wider $\mathrm{P}_{\mathrm{T}}$


## BEAST 3: HIGHER TWIST

## TWIST-3 TMD TABLE



TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd

Mulders-Tangerman, NPB 461 (96)
Boer-Mulders, PRD 57 (98)
Bacchetta, Mulders, Pijlman, hep-ph/0405154
Goeke, Metz, Schlegel, hep-ph/0504130

## TWIST-3 TMD TABLE



TMDs in black survive integration over transverse momentum
TMDs in red are time-reversal odd
Mulders-Tangerman, NPB 461 (96)
Boer-Mulders, PRD 57 (98)
Bacchetta, Mulders, Pijlman, hep-ph/0405154
Goeke, Metz, Schlegel, hep-ph/0504130

## TWIST-3 CORRELATORS



## TWIST-3 CORRELATORS



$$
\begin{aligned}
& i \Phi_{F}^{\alpha}\left(x, x^{\prime}\right)=\int \frac{d \xi^{-} d \eta^{-}}{(2 \pi)^{2}} e^{i k \cdot \xi} e^{i\left(k^{\prime}-k\right) \cdot \eta} \delta_{T}^{\alpha \rho} \\
& \quad \times\left.\langle P| \bar{\psi}(0) \mathcal{W}_{(0, \eta)}^{v} i g F^{+\alpha}(\eta) \mathcal{W}_{(\eta, \xi)}^{v} \psi(\xi)|P\rangle\right|_{\xi^{+}=\xi_{T}=0}
\end{aligned}
$$

## LIST OF STRUCTURE FUNCTIONS

|  |  | lov $\mathrm{P}_{\mathrm{T}}$ | hig $\mathrm{P}_{\mathrm{T}}$ |
| :---: | :---: | :---: | :---: |
|  | observable | twist | twist |
| "SIDIS FT" | $F_{U U, T}$ | 2 | 2 |
| "SIDIS FL" | $F_{U U, L}$ | 4 | 2 |
| "Cahn" - f ${ }^{\perp}$ | $F_{U U}^{\cos \phi_{h}}$ | 3 | 2 |
| "Boer-Mulders" | $F_{U U}^{\cos 2 \phi_{h}}$ | 2 | 2 |
| $e, g^{\perp}$ and friends | $F_{L U}^{\text {sin } \phi_{h}}$ | 3 | 2 |
|  | $F_{U L}^{\sin \phi_{h}}$ | 3 | 2 |
| "Kotzinian-Mulders" | $F_{U L}^{\sin 2 \phi_{h}}$ | 2 |  |
| "SIDIS $g_{1}$ " | $F_{L L}$ | 2 | 2 |
|  | $F_{L L}^{\cos \phi_{h}}$ | 3 | 2 |
| "Sivers" | $F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}$ | 2 | 3 |
|  | $F_{U T, L}^{\sin \left(\phi_{h}-\phi_{S}\right)}$ | 4 | 3 |
| "Collins" | $F_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}$ | 2 | 3 |
| "Pretzelosity" | $F_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)}$ | 2 | 3 |
| $f_{T}$ and friends | $F_{U T}^{\sin \phi_{S}}$ | 3 | 3 |
|  | $F_{U T}^{\sin \left(2 \phi_{h}-\phi_{S}\right)}$ | 3 | 3 |
| "Worm gear" | $F_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)}$ | 2 | 3 |
| "SIDIS $g_{2} "-g_{T}$ | $F_{L T}^{\text {cos } \phi_{S}}$ | 3 |  |
|  | $F_{L T}^{\cos \left(2 \phi_{h}-\phi s\right)}$ | 3 |  |

## LIST OF STRUCTURE FUNCTIONS



## LIST OF STRUCTURE FUNCTIONS



## LIST OF STRUCTURE FUNCTIONS



## There are at least four possibilities:

## LIST OF STRUCTURE FUNCTIONS



## BEAM-SPIN ASYMMETRY AT CLAS12

arXiv:2101.03544



## THE SIVERS CASE

$$
\hat{f}_{1}^{a}\left(x, b_{T}^{2} ; Q, Q\right)=\left[C \otimes f_{1}\right]\left(x, \mu_{b_{*}}\right) S_{\text {pert }} f_{1 N P}\left(x, b_{T}^{2} ; Q, Q_{0}\right),
$$

$$
\hat{f}_{1 T}^{\perp(1)}\left(x, b_{T}^{2} ; Q, Q\right)=\left[C \otimes T_{F}\right]\left(x, \mu_{b_{*}}\right) S_{\mathrm{pert}} f_{1 T N P}^{\perp}\left(x, b_{T}^{2} ; Q, Q_{0}\right),
$$

## THE SIVERS CASE

$$
\hat{f}_{1}^{a}\left(x, b_{T}^{2} ; Q, Q\right)=\left[C \otimes f_{1}\right]\left(x, \mu_{b_{*}}\right) S_{\text {pert }} f_{1 N P}\left(x, b_{T}^{2} ; Q, Q_{0}\right),
$$



## BEAM-SPIN ASYMMETRY

$$
F_{L U}^{\sin \phi}=\frac{2 M}{Q} \mathcal{C}\left[-\frac{\hat{\mathbf{h}} \cdot \mathbf{k}_{T}}{M_{h}}\left(x_{B} e H_{1}^{\perp}+\frac{M_{h}}{M} f_{1} \frac{\tilde{G}^{\perp}}{z}\right)\right. \text { start being known }
$$

## BEAM-SPIN ASYMMETRY

$$
\begin{aligned}
& F_{L U}^{\sin \phi}=\frac{2 M}{Q} \mathcal{C}\left[-\frac{\hat{\mathbf{h}} \cdot \mathbf{k}_{T}}{M_{h}}\left(x_{B} e H_{1}^{\perp}+\frac{M_{h}}{M} f_{1} \frac{\tilde{G}^{\perp}}{z}\right)\right. \\
& \text { accessible from other observables being known } \\
& \text { and partially known }
\end{aligned}
$$

## BEAM-SPIN ASYMMETRY

$$
\begin{aligned}
& F_{L U}^{\sin \phi}= \frac{2 M}{Q} \mathcal{C}\left[-\frac{\hat{\mathbf{h}} \cdot \mathbf{k}_{T}}{M_{h}}\left(x_{B} e H_{1}^{\perp}+\frac{M_{h}}{M} f_{1} \frac{\tilde{G}^{\perp}}{z}\right)\right. \\
&\left.+\frac{\hat{\mathbf{h}} \cdot \mathbf{p}_{T}}{M}\left(x_{B} g^{\perp} D_{1}+\frac{M_{h}}{M} h_{1}^{\perp} \frac{\tilde{E}}{z}\right)\right] \\
& W_{L U}^{\sin \phi_{h}}=\tilde{\mathcal{F}}\left\{\mathcal{H}^{(1)}\left[\frac{2 x M_{N}}{Q}\left(\frac{k_{T x}}{M_{N}} \tilde{g}^{\perp} D_{1}-\frac{p_{T x}}{M_{h}} \tilde{e} H_{1}^{\perp}\right)-\frac{2 M_{h}}{z Q}\left(\frac{p_{T x}}{M_{h}} f_{1} \tilde{G}^{\perp}-\frac{k_{T x}}{M_{N}} h_{1}^{\perp} \tilde{E}\right)\right]\right\} .
\end{aligned}
$$



## BEAST 4: TARGET FRAGMENTATION






fragmentation function

distribution function

fracture function

Distribution of x _F for the $\pi^{\Lambda}+$ in the $\pi^{\Lambda}+\pi^{\Lambda}$ - channel

fragmentation function

distribution function

## CONCLUSIONS

## CONCLUSIONS

- We can obtain beautiful TMD extractions


## CONCLUSIONS

> We can obtain beautiful TMD extractions

- JLab 20 can drastically decrease the uncertainties


## CONCLUSIONS

- We can obtain beautiful TMD extractions
- JLab 20 can drastically decrease the uncertainties
> JLab and EIC can be
complementary


## CONCLUSIONS

> We can obtain beautiful TMD extractions
> JLab 20 can drastically decrease the uncertainties
> JLab and EIC can be
complementary

- Several issues need to be sorted out, but they are opportunities, not problems


## CONCLUSIONS

> We can obtain beautiful TMD extractions
> JLab 20 can drastically decrease the uncertainties
> JLab and EIC can be
complementary

- Several issues need to be sorted out, but they are opportunities, not problems


## CONCLUSIONS

- We can obtain beautiful TMD extractions
> JLab 20 can drastically decrease the uncertainties
> JLab and EIC can be complementary
- Several issues need to be sorted out, but they are opportunities, not problems



## BACKUP SLIDES

## LOW-bT MODIFICATIONS

$$
\log \left(Q^{2} b_{T}^{2}\right) \rightarrow \log \left(Q^{2} b_{T}^{2}+1\right)
$$

see, e.g., Bozzi, Catani, De Florian, Grazzini hep-ph/0302104

## LOW-bT MODIFICATIONS

$$
\begin{aligned}
& \log \left(Q^{2} b_{T}^{2}\right) \rightarrow \log \left(Q^{2} b_{T}^{2}+1\right) \quad \begin{array}{l}
\text { see, e.g., Bozzi, Catani, De Florian, Grazzini } \\
\text { hep-ph/0302104 }
\end{array} \\
& b_{*}\left(b_{c}\left(b_{T}\right)\right)=\sqrt{\frac{b_{T}^{2}+b_{0}^{2} /\left(C_{5}^{2} Q^{2}\right)}{1+b_{T}^{2} / b_{\max }^{2}+b_{0}^{2} /\left(C_{5}^{2} Q^{2} b_{\max }^{2}\right)}} \quad b_{\min } \equiv b_{*}\left(b_{c}(0)\right)=\frac{b_{0}}{C_{5} Q} \sqrt{\frac{1}{1+b_{0}^{2} /\left(C_{5}^{2} Q^{2} b_{\max }^{2}\right)}}
\end{aligned}
$$

Collins et al.
arXiv: 1605.00671

## LOW-bT MODIFICATIONS

$$
\begin{array}{cl}
\log \left(Q^{2} b_{T}^{2}\right) \rightarrow \log \left(Q^{2} b_{T}^{2}+1\right) & \begin{array}{l}
\text { see, e.g., Bozzi, Catani, De Florian, Grazzini } \\
\text { hep-ph/0302104 }
\end{array} \\
b_{*}\left(b_{c}\left(b_{\mathrm{T}}\right)\right)=\sqrt{\frac{b_{\mathrm{T}}^{2}+b_{0}^{2} /\left(C_{5}^{2} Q^{2}\right)}{1+b_{\mathrm{T}}^{2} / b_{\max }^{2}+b_{0}^{2} /\left(C_{5}^{2} Q^{2} b_{\max }^{2}\right)}} & \quad \begin{array}{l}
b_{\min } \equiv b_{*}\left(b_{c}(0)\right)=\frac{b_{0}}{C_{5} Q} \sqrt{\frac{1}{1+b_{0}^{2} /\left(C_{5}^{2} Q^{2} b_{\max }^{2}\right)}} \\
\\
\begin{array}{l}
\text { Collins et al. } \\
\text { arXiv:1605.00671 }
\end{array}
\end{array}
\end{array}
$$

- The justification is to recover the integrated result ("unitarity constraint")
- Modification at low $b_{T}$ is allowed because resummed calculation is anyway unreliable there


## PAVIA 2019 b $_{*}$ PRESCRIPTION

$$
b_{*} \equiv \frac{b_{T}}{\sqrt{1+b_{T}^{2} / b_{\max }^{2}}}
$$

## PAVIA 2019 b $_{*}$ PRESCRIPTION

$$
\begin{aligned}
& \mu_{0}=1 \mathrm{GeV} \\
& b_{*} \equiv \frac{b_{T}}{\sqrt{1+b_{T}^{2} / b_{\max }^{2}}}
\end{aligned}
$$

Collins, Soper, Sterman, NPB250 (85)

## PAVIA $2019 \mathbf{b}_{*}$ PRESCRIPTION

$$
\begin{gathered}
\mu_{0}=1 \mathrm{GeV} \\
b_{*} \equiv \frac{b_{T}}{\sqrt{1+b_{T}^{2} / b_{\max }^{2}}} \quad \text { Collins, Soper, Sterman, } \\
\mu_{b}=2 e^{-\gamma_{E}} / b_{*} \quad \bar{b}_{*} \equiv b_{\max }\left(\frac{1-e^{-b_{T}^{4} / b_{\max }^{4}}}{1-e^{-b_{T}^{4} / b_{\min }^{4}}}\right)^{1 / 4} \quad b_{\max }=2 e^{-\gamma_{E}} \\
b_{\min }=\frac{2 e^{-\gamma_{E}}}{Q}
\end{gathered}
$$

## PAVIA $2019 \mathbf{b}_{*}$ PRESCRIPTION

$$
\begin{gathered}
\mu_{0}=1 \mathrm{GeV} \\
b_{*} \equiv \frac{b_{T}}{\sqrt{1+b_{T}^{2} / b_{\max }^{2}}} \quad \text { Collins, Soper, Sterman, } \\
\mu_{b}=2 e^{-\gamma_{E}} / b_{*} \quad \bar{b}_{*} \equiv b_{\max }\left(\frac{1-e^{-b_{T}^{4} / b_{\max }^{4}}}{1-e^{-b_{T}^{4} / b_{\min }^{4}}}\right)^{1 / 4} \quad b_{\max }=2 e^{-\gamma_{E}} \\
b_{\min }=\frac{2 e^{-\gamma_{E}}}{Q}
\end{gathered}
$$

These are all choices that should be at some point checked/challenged

## PAVIA $2019 \mathbf{b}_{*}$ PRESCRIPTION

$$
\begin{gathered}
\hat{f}_{1}^{q}\left(x, b_{T} ; \mu^{2}\right)=\sum_{i}\left(C_{q i} \otimes f_{1}^{i}\right)\left(x, b_{*} ; \mu_{b}\right) e^{\tilde{S}\left(b_{*} ; \mu_{b}, \mu\right)} e^{g_{K}\left(b_{T}\right) \ln \frac{\mu}{\mu_{0}}} \hat{f}_{\mathrm{NP}}^{q}\left(x, b_{T}\right) \\
\mu_{0}=1 \mathrm{GeV} \\
b_{*} \equiv \frac{b_{T}}{\sqrt{1+b_{T}^{2} / b_{\max }^{2}}} \quad \text { Collins, Soper, Sterman, NPB250 } 885 \\
\mu_{b}=2 e^{-\gamma_{E}} / b_{*} \quad \bar{b}_{*} \equiv b_{\max }\left(\frac{1-e^{-b_{T}^{4} / b_{\max }^{4}}}{1-e^{-b_{T}^{4} / b_{\min }^{4}}}\right)^{1 / 4} \quad b_{\max }=2 e^{-\gamma_{E}} \\
b_{\min }=\frac{2 e^{-\gamma_{E}}}{Q}
\end{gathered}
$$

These are all choices that should be at some point checked/challenged

## EFFECTS OF $b_{*}$ PRESCRIPTION

$$
\mu_{b}=2 e^{-\gamma_{E}} / b_{*} \quad \bar{b}_{*} \equiv b_{\max }\left(\frac{1-e^{-b_{T}^{4} / b_{\max }^{4}}}{1-e^{-b_{T}^{4} / b_{\min }^{4}}}\right)^{1 / 4} \quad b_{\max }=2 e^{-\gamma_{E}}
$$




## EFFECTS OF $b$ * PRESCRIPTION

$$
\mu_{b}=2 e^{-\gamma_{E}} / b_{*} \quad \bar{b}_{*} \equiv b_{\max }\left(\frac{1-e^{-b_{T}^{4} / b_{\max }^{4}}}{1-e^{-b_{T}^{4} / b_{\min }^{4}}}\right)^{1 / 4} \quad b_{\max }=2 e^{-\gamma_{E}}
$$




No significant effect at high Q , but large effect at low Q (inhibits perturbative contribution)

## NONMIXED TERMS IN COLLINEAR SIDIS CROSS SECTION

$$
\left.\begin{array}{rl}
\left.\frac{\mathrm{d} \sigma^{h}}{\mathrm{~d} x \mathrm{~d} Q^{2} \mathrm{~d} z}\right|_{O\left(\alpha_{s}^{1}\right)} & =\sigma_{0} \sum_{f f^{\prime}} \frac{e_{f}^{2}}{z^{2}}\left(\delta_{f^{\prime} f}+\delta_{f^{\prime} g}\right) \frac{\alpha_{s}}{\pi}\left\{\left[D_{1}^{h / f^{\prime}} \otimes C_{1}^{f^{\prime} f} \otimes f_{1}^{f / N}\right](x, z, Q)\right. \\
& \left.+\frac{1-y}{1+}\left[D^{h / f^{\prime}} e_{L}^{f^{\prime} f} \otimes f_{1}^{\prime \prime N}\right](x, z, Q)\right\} \\
C_{1}^{q q} & =\frac{C_{F}}{2}\{-8 \delta(1-x) \delta(1-z) \\
& +\delta(1-x)\left[P_{q q}(z) \ln \frac{Q^{2}}{\mu_{F}^{2}}+L_{1}(z)+L_{2}(z)+(1-z)\right] \\
& +\delta(1-z)\left[P_{q q}(x) \ln \frac{Q^{2}}{\mu^{2}}+L_{1}(x)-L_{2}(x)+(1-x)\right] \\
& +2 \frac{1}{(1-x)_{+}} \frac{1}{(1-2)}-\frac{1+z}{(1-x)_{+}}(1-z)_{+}
\end{array}\right)
$$

## SOME JUSTIFICATION: INITIAL SITUATION



## SOLUTION 1: RESTRICT TMD REGION



## SOLUTION 2: ENHANCE TMD CONTRIBUTIONS



