

REVEALING EMERGENT MASS THROUGH STUDIES OF HADRON SPECTRA AND STRUCTURE

12 September 2022 — 16 September 2022

Single Diffractive Hard Exclusive Processes (SDHEP) for the Study of 3D Hadron Structure

Emergent Properties

Jianwei Qiu Jefferson Lab, Theory Center

Dynamical Structure

In collaboration with Zhite Yu (MSU) JHEP 08 (2022) 103, arXiv:2209.xxxxx

Office of Science

Nucleon Mass:

1

 $m = E/c^2$ from the A. Einstein's famous equation E = mc²

Mass is the Energy of the nucleon when it is at Rest!

$$M_n = \left. \frac{\langle P | H_{\rm QCD}(\psi, A) | P \rangle}{\langle P | P \rangle} \right|_{\rm at \ rest}$$

Nucleon is not elementary:

Nucleon is a strongly interacting, relativistic bound state of quarks and gluons of QCD Our understanding of the nucleon has been evolving, and will continue to evolve, ...

QCD Landscape of Nucleons and Nuclei

"See" Internal Structure of Hadron without seeing quarks/gluons?

3D hadron structure:

□ If the proton is broken, e.g., in SIDIS, ...

Structure information is diluted by the collision induced shower!

 $\times \log(s/Q^2)$

 $\times \alpha_s(C_F, C_A)$

 $\times \log(Q^2/\Lambda_{\rm QCD}^2) \sim \gtrsim 1$

Transverse momentum

broadening:

 $\Delta k_T^2 \propto \Lambda_{
m QCD}^2$

Jefferson Lab

- Measured k_T is NOT the same as k_T of the confined motion!
- Structure information vs. collision effects

How to Explore Internal Structure of Hadron without Breaking it?

But, there is NO elastic "color" form factor!

3D hadron tomography:

Generalized "form factor" for quark and gluon "density" distribution Generalized PDFs (GPDs) – without breaking the proton

 $F_{q/h}(x,\xi,t)$ skewness $\xi = \frac{(P-P')^{+}}{(P+P')^{+}}$

Spatial distribution of quark/gluon density, quark/gluon correlations, ...

No Proton "Radius" in color charge distribution!

How to Explore Internal Structure of Hadron without Breaking it?

5

How to Explore Internal Structure of Hadron without Breaking it?

Generalized Parton Distribution (GPD)

$\begin{aligned} \mathbf{Definition:} \\ F^{q}(x,\xi,t) &= \int \frac{\mathrm{d}z^{-}}{4\pi} e^{-ixP^{+}z^{-}} \langle p' | \bar{q}(z^{-}/2)\gamma^{+}q(-z^{-}/2) | p \rangle \\ &= \frac{1}{2P^{+}} \left[H^{q}(x,\xi,t) \, \bar{u}(p') \, \gamma^{+}u(p) - E^{q}(x,\xi,t) \, \bar{u}(p') \, \frac{i\sigma^{+\alpha}\Delta_{\alpha}}{2m}u(p) \right], \\ \widetilde{F}^{q}(x,\xi,t) &= \int \frac{\mathrm{d}z^{-}}{4\pi} e^{-ixP^{+}z^{-}} \langle p' | \bar{q}(z^{-}/2)\gamma^{+}\gamma_{5}q(-z^{-}/2) | p \rangle \\ &= \frac{1}{2P^{+}} \left[\widetilde{H}^{q}(x,\xi,t) \, \bar{u}(p') \, \gamma^{+}\gamma_{5}u(p) - \widetilde{E}^{q}(x,\xi,t) \, \bar{u}(p') \, \frac{\gamma_{5}\Delta^{+}}{2m}u(p) \right]. \end{aligned}$

Combine <u>PDF</u> and <u>Distribution Amplitude (DA)</u>:

7

Forward limit $\xi = t = 0$: $H^q(x, 0, 0) = q(x)$, $\tilde{H}^q(x, 0, 0) = \Delta q(x)$

Exclusive Diffractive Process for Extracting GPDs

 \Box Hit the proton hard without breaking it \Rightarrow Diffractive scattering to keep proton intact

8

HERA discovery:

~15% of HERA events with the Proton stayed intact

□ Known exclusive processes for extracting GPDs:

Why it is difficult to extract the *x*-dependence of GPD?

Amplitude nature: exclusive processes

 $x \sim loop momentum$

$$\mathcal{M} \sim \int_{-1}^{1} \mathrm{d}\boldsymbol{x} F(\boldsymbol{x}, \boldsymbol{\xi}, t) \cdot C(\boldsymbol{x}, \boldsymbol{\xi}; Q/\mu)$$

never pin down to some x

Given Sensitivity to *x* **comes from** $C(x, \xi; Q/\mu)$

At LO, DVCS hard coefficient factorizes

$$C(x,\xi;Q/\mu) = C_Q(Q/\mu) \cdot C_x(x,\xi) \propto \frac{1}{x-\xi+i\varepsilon} \cdots$$
$$i\mathcal{M} \propto \int_{-1}^1 \mathrm{d}x \, \frac{F(x,\xi,t)}{x-\xi+i\varepsilon} \equiv "F_0(\xi,t)"$$

- also true for most other processes
- *x*-dependence is only constrained by a "moment"
- easy to fit to the data

Blue and dashed Fit the same CFFs ! PRD103 (2021) 114019

Inclusive Process vs. Exclusive Process

<u>Cross section</u>: Cut diagrams

$$\sigma_{\rm DIS} \simeq \int_{\boldsymbol{x}_B}^1 \mathrm{d}\boldsymbol{x} f(\boldsymbol{x}) \,\hat{\sigma}(\boldsymbol{x}/x_B)$$

- $PDF \sim probability$
- At LO: $x = x_B$
- Beyond LO: $x \in [x_B, 1]$

x-dependence: Part of measurement

Amplitude: Uncut diagrams

$$\mathcal{M}_{\mathrm{DVCS}}(\xi, t) \simeq \int_{-1}^{1} \mathrm{d}x \, F(x, \xi, t) \, \hat{\mathcal{M}}(x, \xi)$$

- GPD \sim amplitude
- $k^+ = (x + \xi) P^+$ is loop momentum
- At any order: $x \in [-1, 1]$

<u>*x-dependence*</u>: Hard to measure

Single-Diffractive Hard Exclusive Processes (SDHEP)

 \Box Two-stage diffractive $2 \rightarrow 3$ hard exclusive processes:

• Single diffractive:

$$\begin{array}{c} h'(p') \\ h(p) \\ h(p') \\ h(p) \\ h(p') \\ h(p) \\ h(p') \\ h(p) \\ h(p') \\ h(p) \\ h($$

Qiu & Yu, 2022

Probing its structure without breaking it!

- Hard probe: $2 \rightarrow 2$ high q_T exclusive process $A^*(p_1) + B(p_2) \rightarrow C(q_1) + D(q_2)$
 - $(p-p') \cdot n \gg \sqrt{|t|} \quad \longleftarrow \quad |q_{1_T}| = |q_{2_T}| \gg \sqrt{-t}$
- The single diffractive $2 \rightarrow 3$ exclusive hard processes:

 $h(p) + B(p_2) \to h'(p') + C(q_1) + D(q_2)$

Necessary condition for QCD factorization:

 $|q_{1_T}| = |q_{2_T}| \gg \sqrt{-t}$

The state $A^*(p_1)$ lives much longer

than $2 \rightarrow 2$ hard exclusive collision!

Not necessarily sufficient!

Single-Diffractive Hard Exclusive Processes (SDHEP)

h'(p')

 $A^*(p_1 = p - p')$

 \Box Two-stage diffractive $2 \rightarrow 3$ hard exclusive processes:

Single diffractive:

h(p)

 $h(p) \to h'(p') + A^*(p_1 = p - p')$

 $t = (p - p')^2 \equiv p_1^2$

 $A^*(p_1) + B(p_2) \to C(q_1) + D(q_2)$

Hard probe: $2 \rightarrow 2$ high q_T exclusive process

 $h(p) + B(p_2) \rightarrow h'(p') + C(q_1) + D(q_2)$

 $(p - p') \cdot n \gg \sqrt{|t|} \quad \longleftarrow \quad |q_{1_T}| = |q_{2_T}| \gg \sqrt{-t}$

• The single diffractive $2 \rightarrow 3$ exclusive hard processes:

Qiu & Yu, 2022

Probing its structure without breaking it!

 $C(q_1)$

 $D(q_2)$

 $B(p_2) = e, \gamma, \pi$

Single-Diffractive Hard Exclusive Processes (SDHEP)

son Lab

Symmetry of producing non-vanishing H

Exchange of a virtual photon:

$$\mathcal{M}^{(1)} = \frac{ie^2}{t} \langle h'(p') | J^{\mu}(0) | h(p) \rangle \langle C(q_1) D(q_2) | J_{\mu}(0) | B(p_2) \rangle$$

$$\equiv \frac{ie^2}{t} F^{\mu}(p, p') \mathcal{H}_{\mu}(p_1, p_2, q_1, q_2) \qquad J^{\mu} = \sum_{i \in q} Q_i \bar{\psi}_i \gamma^{\mu} \psi_i$$

 $F^{\mu}(p,p') = \langle h'(p') | J^{\mu}(0) | h(p) \rangle$ = $F_1^h(t) \, \bar{u}(p') \gamma^{\mu} u(p) + F_2^h(t) \, \bar{u}(p') \frac{i\sigma^{\mu\nu} p_{1\nu}}{2m_h} u(p)$

Has a leading component , $F^+ \propto \mathcal{O}(Q)$, as h-h' fast along "+"

Forbidden for $p \to n \ ({\rm or} \ n \to p \)$ transition GPDs Or not allowed by H

Jefferson Lab

Factorization in the Two-stage Paradigm

Factorization for 2-parton channel factorization:

Qiu & Yu, 2205.07846 (JHEP in press)

□ Soft gluons cancel for the meson-initialized process if *C* and *D* are mesons:

Soft gluons are no longer pinched and can be deformed into *h*-collinear region

Electroproduction of Single Diffractive Hard Processes

Electroproduction of Single Diffractive Hard Processes

DVMP: $h(p) = \operatorname{Proton}(p), h'(p') = \operatorname{Proton}(p'), B(p_2) = \operatorname{electron}(p_2), C(q_1) = \operatorname{electron}(p_3), D(q_2) = \operatorname{Meson}(p_4)$

• Leading order diagram:

• Leading pinch surface:

• SDHEP – Leading region:

SDHEP – sample diagrams:

Electroproduction of Single Diffractive Hard Processes

DVMP: $h(p) = \operatorname{Proton}(p), h'(p') = \operatorname{Proton}(p'), B(p_2) = \operatorname{electron}(p_2), C(q_1) = \operatorname{electron}(p_3), D(q_2) = \operatorname{Meson}(p_4)$

• Factorization:

SDHEP – Leading region:

SDHEP – sample diagrams:

18

DDVCS:

$$h(p) = \operatorname{Proton}(p), \ h'(p') = \operatorname{Proton}(p'), \ B(p_2) = \operatorname{electron}(p_2)$$

 $C(q_1) = \operatorname{electron}(q_1), \ D(q_2) = \gamma^* [\to e^+ e^-](q')$

Factorization: Can be factorized in the same way as DVCS!

\square Heavy meson production (high q_T):

Factorization could be valid if $p_T >> m_Q$, not sure for other regions.

The x-dependence on GPDs:

As explained earlier, the type of DVCS and DVMP processes only sensitive to:

$$\int_{-1}^{1} dx \frac{F(x,\xi,t)}{x-\xi\pm i\varepsilon}$$

For DDVCS: Transverse momentum flow from the final-state lepton and the virtual photon is sensitive to the virtuality of the dilepton

$$Q^{'2} \equiv q^{'2} = \left(\frac{2\xi}{x_B(1+\xi)} - 1\right)$$

Direct sensitive to external variable, x_B , directly sensitive to q_T

Photoproduction of Single Diffractive Hard Processes

Dilepton & Diphoton production:

Both n=1 and n=2 should contribution, and factorizable

Real photon + meson production:

A. Pedrak, et al. Phys.Rev.D96 (2017)074008, ...

G. Duplancic, et al. JHEP 11 (2018) 179, ...

The n=1 channel is forbidden for a charge meson: π^{\pm} , or transversely polarized vector meson, ho_{T} ,

but, allowed for the production of a longitudinally polarized vector meson like ρ_L .

Factorization arguments are the same as that for DVMP.

Light meson pair production:

$$\mathcal{M}_{h\gamma \to h'M_CM_D} = \sum_{i,i,k} \int_{-1}^{1} \mathrm{d}x \int_{0}^{1} \mathrm{d}z_C \,\mathrm{d}z_D \,F_i^{hh'}(x,\xi,t) \\ \times C_{i\gamma \to jk}(x,\xi;z_C,z_D;q_T) \,D_{j/C}(z_C) \,D_{k/D}(z_D)$$

Meson-initiated Single Diffractive Hard Processes

Two-photon production: $\pi^{-}(p_{\pi}) + P(p) \rightarrow \gamma(q_1) + \gamma(q_2) + N(p')$

(AMBER, J-PARC, ...)

Kinematical observables:

t,
$$\xi$$
, q_T
• $t = (p - p')^2$
• $\xi = (p^+ - p'^+)/(p^+ + p'^+)$

Hard scale: $q_T \gg \Lambda_{
m OCD}$ Soft scale: $t \sim \Lambda_{\rm OCD}^2$

Factorization:

 q_T distribution is "conjugate" to x distribution

Meson-initiated Single Diffractive Hard Processes

☐ Hard part for A-type:

- Gluon propagator $q^{2} = -\frac{\hat{s}}{4} \left[\left(2z_{1} 1 \sqrt{1 \kappa} \right) \left(2z_{2} 1 \sqrt{1 \kappa} \right) + \kappa \right]$ $\longrightarrow \qquad \mathcal{M} \propto \int_{0}^{1} \mathrm{d}z_{1} \, \mathrm{d}z_{2} \frac{\phi(z_{1})\phi(z_{2})}{(1 z_{1})\left(1 z_{2} \right) \left[\left(2z_{1} 1 \sqrt{1 \kappa} \right) \left(2z_{2} 1 \sqrt{1 \kappa} \right) + \kappa \right]}$
- Change q_T changes the z_1 - z_2 integral.
- $d\sigma/dq_T^2$ provides sensitivity to the DA's functional form of z.

□ Hard part for B-type:

Like "time-like" form factor Gluon propagator $q^2 = z_2(1-z_1)\hat{s}$

$$\longrightarrow \qquad \mathcal{M} \propto \int_0^1 \mathrm{d}z_1 \, \mathrm{d}z_1 \, \frac{\phi(z_1)\phi(z_2)}{z_1 \, (1-z_1) \, z_2 \, (1-z_2)} \sim \left[\int_0^1 \mathrm{d}z \, \frac{\phi(z)}{z \, (1-z)}\right]^2$$

- Not sensitive to DA functional form.
- Relies on $\phi(z) = 0$ at end points.
- Sudakov resummation could suppress the end-point sensitivity.

Li, Sterman, 1992

Numerical results

GPD models – simplified GK model:

$$H_{pn}(x,\xi,t) = \theta(x) \, x^{-0.9 \, (t/\text{GeV}^2)} \frac{x^{\rho} (1-x)^{\tau}}{B(1+\rho,1+\tau)}$$
$$\widetilde{H}_{pn}(x,\xi,t) = \theta(x) \, x^{-0.45 \, (t/\text{GeV}^2)} \frac{1.267 \, x^{\rho} (1-x)^{\tau}}{B(1+\rho,1+\tau)}$$

• Neglect E, \tilde{E} . Neglect evolution effect.

- Tune (ρ, τ) to control x shape.
- Fix DA: $D(z) = N z^{0.63} (1-z)^{0.63}$

Goloskokov, Kroll

hep-ph/0501242 arXiv: 0708.3569

arXiv: 0906.0460

Jefferson Lab

23

Numerical results

Discussion

Why single-diffractive?

We need diffractive process to keep proton intact. But, double diffractive process is not factorizable!

Connection to high-twist inclusive production:

Twist-4 DIS

□ More opportunities:

- Diffractive plane
- Exclusive hard scattering plane
- Angular modulation between the two planes

Selection from different exchange state A* (or different GPDs)

Not sensitive to the loop momentum fraction: x_i

Summary and Outlook

Understanding the emergency of nucleon mass is a challenge:

- Mass is closely related to QCD trace anomaly and chiral symmetry breaking
- Mass decomposition to matrix elements of quark/gluon fields is not unique
- Single hadron matrix element of quark/gluon field operator is not physical observable

Extract each of them from experimental observable(s) with controllable approximation - factorization

 \Box Introduced the diffractive $2 \rightarrow 3$ exclusive hard processes for extracting GPDs, ...

- Provide both necessary and sufficient conditions for leading power factorization
- Including existing/known processes for extracting GPDs, ...
- Identify new factorizable exclusive processes for GPDs more sensitive to their x-dependence
- Angular modulation between diffractive plane and hard scattering plane could provide unique opportunity to separate various GPDs

Introduce a path forward to identify more factorizable exclusive processes for extracting GPDs, and multi-parton correlations, ...

