DE LA RECHERCHE À L'INDUSTRIE

Phenomenology of the nucleon internal pressure

www.cea.fr

Revealing emergent mass | Hervé MOUTARDE

Sep. 16, 2022

UNIVERSITE PARIS-SACLAY

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093.

OE LA RECHERCHE À L'INDUSTR

Perturbative and nonperturbative QCD. Study hadron structure to shed new light on nonperturbative QCD.

Energy-momentum tensor

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

Energy-momentum tensor. Quark and gluon contributions.

Nucleon internal pressure

Energymomentum tensor

Lensor

Gravitational form factors

3D distribution

Nucleon EOS

Experiments

Phenomenology

Strategy

CFF global fit

Pressure forces

Models: systematic uncertainties

Areas for improvement

CFF fits

GFF t-profile

Isolating d_1

Conclusion

Abbreviations

- EMT defined from the invariance under space and time translations.
- Quark and gluon contributions

$$\begin{aligned} T_{q}^{\mu\nu} &= \bar{q}\gamma^{\mu}\frac{i}{2}\overset{\leftrightarrow}{\mathrm{D}}q\\ T_{g}^{\mu\nu} &= -F^{\mu\lambda}F^{\nu}{}_{\lambda} + \frac{1}{4}\eta^{\mu\nu}F^{2} \end{aligned}$$

with $\stackrel{\leftrightarrow}{D}$ the symmetric covariant derivative and $F^{\mu\nu}$ the field strength tensor.

$$T^{\mu\nu} = \sum_{a} T^{\mu\nu}_{a} \ (a = q, g).$$

Cea

Parameterization: massive spin-1/2 target. Introduction of 5 GFFs.

Nucleon internal pressure

Energymomentum

tensor

Gravitational form factors

3D distribution

Nucleon EOS

Experiments

Phenomenology

Strategy

CFF global fit

Pressure forces

Models: systematic

uncertainties

Areas for improvement

CFF fits

GFF t-profile

Isolating d_1

Conclusion

Abbreviations

Local, gauge-invariant, asymmetric EMT:

$$\left\langle p', s' \right| T^{\mu\nu}_{a}(0) \left| p, s \right\rangle = \bar{u}(p', s') \begin{cases} \frac{P^{\mu}P^{\nu}}{M} A_{a}(t) + M\eta^{\mu\nu} \bar{C}_{a}(t) \\ + \frac{\Delta^{\mu}\Delta^{\nu} - \eta^{\mu\nu}\Delta^{2}}{M} C_{a}(t) \\ + \frac{P^{\{\mu}i\sigma^{\nu\}\Delta}}{4M} \left[A_{a}(t) + B_{a}(t) \right] \\ + \frac{P^{[\mu}i\sigma^{\nu]\Delta}}{4M} D_{a}(t) \end{cases}$$

3D profile of GFFs. Localization in the Wigner sense.

Nucleon internal pressure

Energymomentum tensor

Gravitational form

3D distribution

Nucleon EOS Experiments

Phenomenology

Strategy

CFF global fit

Pressure forces

Models: systematic uncertainties

Areas for improvement

CFF fits GFF t-profile

Isolating d_1

Conclusion

Abbreviations

Define distribution of a physical quantity inside a system, by first localizing the system in both position and momentum space.

Breit frame where
$${\it P}^{\mu}=({\it P}^{0},ec{0})$$
 and $\Delta^{\mu}=(0,ec{\Delta})$

$$\langle T^{\mu\nu}_{a} \rangle_{\mathrm{BF}(\vec{r})} = \int \frac{\mathrm{d}^{3}\Delta}{(2\pi)^{3}} e^{-i\vec{\Delta}\vec{r}} \left[\frac{\langle p', s | T^{\mu\nu}_{a}(0) | p, s \rangle}{2P^{0}} \right]_{\vec{P}=\vec{0}}$$

 < □ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < □ >

 H. Moutarde
 Revealing emergent mass
 6 / 33

Gravitational form factors. Definition of pressure.

Nucleon internal pressure

Energymomentum tensor

Gravitational form factors

3D distribution

Nucleon EOS Experiments

Phenomenology

Strategy

CFF global fit

Pressure forces

Models: systematic uncertainties

Areas for improvement

CFF fits

GFF t-profile

Isolating d_1

Conclusion

Abbreviations

• Matrix element in the Breit frame (a = q, g):

$$\left\langle \frac{\Delta}{2} \left| \mathcal{T}_{a}^{\mu\nu}(0) \right| - \frac{\Delta}{2} \right\rangle = \mathcal{M} \left\{ \eta^{\mu 0} \eta^{\nu 0} \left[\mathcal{A}_{a}(t) + \frac{t}{4M^{2}} \mathcal{B}_{a}(t) \right] \right. \\ \left. + \eta^{\mu\nu} \left[\bar{\mathcal{C}}_{a}(t) - \frac{t}{M^{2}} \mathcal{C}_{a}(t) \right] + \frac{\Delta^{\mu} \Delta^{\nu}}{M^{2}} \mathcal{C}_{a}(t) \right\}$$

Anisotropic fluid in **relativistic hydrodynamics**: $\Theta^{\mu\nu}(\vec{r}) = [\varepsilon(r) + p_t(r)] u^{\mu}u^{\nu} - p_t(r)\eta^{\mu\nu} + [p_r(r) - p_t(r)] \chi^{\mu}\chi^{\nu}$ where u^{μ} and $\chi^{\mu} = x^{\mu}/r$.

Define isotropic pressure and pressure anisotropy:

H. Moutarde

 $p(r) = \frac{p_r(r) + 2 p_t(r)}{3}$ $s(r) = p_r(r) - p_t(r)$

🖾 Lorcé et al. (2019)

OF LA RECARDAR À L'INDUSTRI

Mechanical properties of hadrons. Pressure from gravitational form factors.

Nucleon
internal
pressure
Write dictionary between quantum and fluid pictures:
$$\frac{\varepsilon_{a}(r)}{M} = \int \frac{d^{3}\vec{\Delta}}{(2\pi)^{3}} e^{-i\vec{\Delta} \cdot \vec{r}} \left\{ A_{a}(t) + \bar{C}_{a}(t) + \frac{t}{4M^{2}} \left[B_{a}(t) - 4C_{a}(t) \right] \right\}$$
Energy-
momentum
tensor
Gravitational form
$$\frac{P_{r,a}(r)}{M} = \int \frac{d^{3}\vec{\Delta}}{(2\pi)^{3}} e^{-i\vec{\Delta} \cdot \vec{r}} \left\{ -\bar{C}_{a}(t) - \frac{4}{r^{2}} \frac{t^{-1/2}}{M^{2}} \frac{d}{dt} \left(t^{3/2} C_{a}(t) \right) \right\}$$
Nucleon EOS
Experiments
Phenomenology $t, a(r)$
Strategy
$$M = \int \frac{d^{3}\vec{\Delta}}{(2\pi)^{3}} e^{-i\vec{\Delta} \cdot \vec{r}} \left\{ -\bar{C}_{a}(t) + \frac{4}{r^{2}} \frac{t^{-1/2}}{M^{2}} \frac{d}{dt} \left[t \frac{d}{dt} \left(t^{3/2} C_{a}(t) \right) \right]$$
Strategy
$$M = \int \frac{d^{3}\vec{\Delta}}{(2\pi)^{3}} e^{-i\vec{\Delta} \cdot \vec{r}} \left\{ -\bar{C}_{a}(t) + \frac{2}{r^{2}} \frac{t^{-1/2}}{M^{2}} \frac{d}{dt} \left[t \frac{d}{dt} \left(t^{3/2} C_{a}(t) \right) \right]$$
Areas for
improvement
CFF fits
GFF transfor
$$M = \int \frac{d^{3}\vec{\Delta}}{(2\pi)^{3}} e^{-i\vec{\Delta} \cdot \vec{r}} \left\{ -\bar{C}_{a}(t) + \frac{2}{3} \frac{t}{M^{2}} C_{a}(t) \right\}$$
Conclusion
Abbreviations
$$M = \int \frac{d^{3}\vec{\Delta}}{(2\pi)^{3}} e^{-i\vec{\Delta} \cdot \vec{r}} \left\{ -\frac{4}{r^{2}} \frac{t^{-1/2}}{M^{2}} \frac{d^{2}}{dt^{2}} \left(t^{5/2} C_{a}(t) \right) \right\}$$

H. Moutarde | Revealing emergent mass | 8 / 33

Mechanical properties of hadrons. Pressure from gravitational form factors.

H. Moutarde Revealing emergent mass

Equation of state.

Elaborating on the relation between energy and pressure.

Nucleon internal pressure

■ Simple multiple models: dipole for GFFs *A* and *C*, tripole for GFFs *B* and *C*.

Neutron stars

Equation of state.

Elaborating on the relation between energy and pressure.

Nucleon internal pressure

Abbreviations

Simple multiple models: dipole for GFFs A and C, tripole for GFFs B and C.

Lorcé et al.

(2019)

Equation of state.

Elaborating on the relation between energy and pressure.

Nucleon internal pressure

Energymomentum tensor

Gravitational form factors 3D distribution

Nucleon EOS

Experiments

Phenomenology

Strategy

CFF global fit

Pressure forces

Models: systematic uncertainties

Areas for improvement

CFF fits GFF t-profile Isolating d₁

Conclusion

Abbreviations

From the nucleon to compact stars?

Nucleon internal pressure Energymomentum tensor

Gravitational form factors

3D distribution

Nucleon EOS

Experiments

Phenomenology

Strategy

CFF global fit

Pressure forces

Models: systematic uncertainties

Areas for improvement

CFF fits GFF t-profile Isolating d₁

Conclusion

Link between GPDs and	GFF	s	
$\int \mathrm{d}x x \mathbf{H}^q(x,\xi,t)$	=	$\mathbf{A}^{\mathbf{q}}(t) + 4\xi^2 \mathbf{C}^{\mathbf{q}}(t)$	
$\int \mathrm{d}x \mathbf{x} \mathbf{E}^q(\mathbf{x}, \xi, t)$	=	$B^q(t) - 4\xi^2 C^q(t)$	
	⊿ J:	i (1997), ⁄ Goeke	(2001)

Nucleon internal pressure

Energymomentum tensor

Gravitational form factors

3D distribution

Nucleon EOS

Experiments

Phenomenology

Strategy

CFF global fit

Pressure forces

Models: systematic uncertainties

Areas for improvement

CEE fits GFF t-profile Isolating d₁

Conclusion

Abbreviations

Link	between GPDs and	GFF	s	
	$\int \mathrm{d}x x \boldsymbol{H}^{\boldsymbol{q}}(x,\xi,t)$	=	$\boldsymbol{A}^{\boldsymbol{q}}(t) + 4\xi^2 \boldsymbol{C}^{\boldsymbol{q}}(t)$	
	$\int \mathrm{d}x x \boldsymbol{E}^q(x,\xi,t)$	=	$\boldsymbol{B}^{\boldsymbol{q}}(t) - 4\xi^2 \boldsymbol{C}^{\boldsymbol{q}}(t)$	
		⊿∎ J	i (1997), ⁄ Goeke	(2001)

Nucleon internal pressure

Energymomentum tensor

Gravitational form factors

3D distribution

Nucleon EOS

Experiments

Phenomenology

Strategy

CFF global fit

Pressure forces

Models: systematic uncertainties

Areas for improvement

CFF fits GFF t-profile Isolating d₁

Conclusion

Abbreviations

Link between GPDs and GFFs $\int dx x H^q(x,\xi,t) = A^q(t) + 4\xi^2 C^q(t)$ $\int dx x E^q(x,\xi,t) = B^q(t) - 4\xi^2 C^q(t)$ $\not \equiv \text{ Ji (1997), } \not \equiv \text{ Goeke (2001)}$

Deeply Virtual Compton Scattering (DVCS)

Nucleon internal pressure

Energymomentum tensor

Gravitational form factors

3D distribution

Nucleon EOS

Experiments

Phenomenology

Strategy

CFF global fit

Pressure forces

Models: systematic uncertainties

Areas for improvement

CFF fits GFF t-profile Isolating d₁

Conclusion

Abbreviations

Link between GPDs and GFFs $\int dx x \mathcal{H}^{q}(x,\xi,t) = \mathcal{A}^{q}(t) + 4\xi^{2} C^{q}(t)$ $\int dx x \mathcal{E}^{q}(x,\xi,t) = \mathcal{B}^{q}(t) - 4\xi^{2} C^{q}(t)$

🖾 Ji (1997), 🖾 Goeke (2001)

Deeply Virtual Compton Scattering (DVCS)

OF LA RECAERCAE À L'INDUSTRI

Cez

Exclusive processes of current interest. Factorization, universality and need for high luminosity.

Nucleon internal pressure

Energymomentum tensor

Gravitational form factors 3D distribution

Nucleon EOS

Experiments

Phenomenology

Strategy

CFF global fit

Pressure forces

Models: systematic uncertainties

Areas for improvement

CFF fits

GFF t-profile

Isolating d_1

Conclusion

Exclusive processes of current interest. Factorization, universality and need for high luminosity.

Energymomentum tensor

Experiments
Nucleon EOS
3D distribution
factors
Gravitational form

Nonperturbative

Phenomenology

- Strategy
- CFF global fit
- Pressure forces
- Models: systematic
- uncertainties

Areas for improvement

CEE fits

GFF t-profile

Isolating d₁

Conclusion

OF LA RECARDAR À L'IMPOSTRI

Exclusive processes of current interest. Factorization, universality and need for high luminosity.

Energymomentum tensor

Gravitational form				
factors				
3D distribution				
Nucleon EOS				
Experiments				

Phenomenology

Strategy

CFF global fit

Pressure forces

Models: systematic uncertainties

Areas for improvement CFF fits GFF t-profile

•

Isolating d₁ Conclusion

Abbreviations

- A - E - N

OF LA RECARDAR À L'IMPOSTRI

Exclusive processes of current interest. Factorization, universality and need for high luminosity.

Nucleon internal pressure

Energymomentum tensor

Gravitational form			
factors			
3D distribution			
Nucleon EOS			
Experiments			

Phenomenology

Strategy

CFF global fit

Pressure forces

Models: systematic uncertainties

Areas for improvement CFF fits GFF t-profile

Isolating d₁ Conclusion

OF LA RECARDAR À L'INDUSTR

Cea

Exclusive processes of current interest. Factorization, universality and need for high luminosity.

Nucleon internal pressure

Energymomentum tensor

Gravitational form
factors
3D distribution
Nucleon EOS
Experiments

Phenomenology

Strategy

CFF global fit

Pressure forces

Models: systematic uncertainties

Areas for improvement CFF fits GFF t-profile

L

Isolating d₁ Conclusion

OF LA RECARDAR À L'INDUSTR

Ces

Exclusive processes of current interest. Factorization, universality and need for high luminosity.

Nucleon internal pressure

Energymomentum tensor

Gravitational form
factors
3D distribution
Nucleon EOS
Experiments

Phenomenology

Strategy

CFF global fit

Pressure forces

Models: systematic uncertainties

Areas for improvement CFF fits GFF t-profile

Isolating d₁

.

OF LA RECARDAR À L'INDUSTR

Cea

Exclusive processes of current interest. Factorization, universality and need for high luminosity.

Nucleon internal pressure

Energymomentum tensor

Gravitational form					
factors					
3D distribution					
Nucleon EOS					
Experiments					

Phenomenology

Strategy

CFF global fit

Pressure forces

Models: systematic uncertainties

Areas for improvement

CFF fits GFF t-profile Isolating d_1

Conclusion

Compton Form Factors. DVCS amplitude in the Bjorken regime.

Nucleon internal pressure

Energymomentum tensor

Gravitational form factors 3D distribution

Nucleon EOS

Experiments

Phenomenology

Strategy

CFF global fit

Pressure forces

Models: systematic

Areas for improvement

CFF fits GFF t-profile Isolating d₁

Conclusion

Abbreviations

Bjorken regime : large ${\it Q}^2$ and fixed ${\it xB}\simeq 2\xi/(1+\xi)$

- Partonic interpretation relies on factorization theorems.All-order proofs for DVCS.
- GPDs depend on a (arbitrary) factorization scale μ_{F} .
 - **Consistency** requires the study of **different channels**.

GPDs enter DVCS through **Compton Form Factors** :

$$\mathcal{F}(\xi, t, Q^2) = \int_{-1}^{1} \mathrm{d}x \, T\left(x, \xi, \alpha_{\mathcal{S}}(\mu_F), \frac{Q}{\mu_F}\right) F(x, \xi, t, \mu_F)$$

for a given GPD F.

Kernels T derived at NLO and (partially) NNLO.
Relitsky and Willo

🛆 Belitsky and Müller (1998)

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

\land Braun et al. (2022)

Revealing emergent mass | 12 / 33

• CFF \mathcal{F} is a **complex function**.

H. Moutarde

Phenomenology

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

What is the proton internal pressure? Identifying the concepts.

What is the proton internal pressure? Identifying the concepts.

What is the proton internal pressure? Identifying the concepts.

What is the proton internal pressure? Identifying the concepts.

Almost all existing DVCS data sets. 2600+ measurements of 30 observables published during 2001-17.

Nucleon	No.	Collab.	Year	Ref.	Observa	ble	Kinematic dependence	No. of points used / all
internal	1	HERMES	2001	40	A_{LU}^+		ϕ	10 / 10
pressure	2		2006	41	$A_C^{\cos i\phi}$	i = 1	t	4/4
	3		2008	42	$A_C^{\cos i\phi}$	i = 0, 1	$x_{\rm Bj}$	18 / 24
					$A_{UT, DVCS}^{\sin(\phi - \phi_S) \cos i\phi}$	i = 0		
					$A_{UT I}^{\sin(\phi - \phi_S) \cos i\phi}$	i = 0, 1		
Energy-					$A_{UT}^{\cos(\phi-\phi_S)\sin i\phi}$	i = 1		
momentum	4		2009	43	$A_{LU,I}^{\sin i\phi}$	i = 1, 2	$x_{\rm Bj}$	35 / 42
tensor				-	$A_{LU,DVCS}^{\sin i\phi}$	i = 1		
Gravitational form				_	$A_C^{\cos i\phi}$	i=0,1,2,3		
factors	5		2010	44	$A_{UL}^{+,\sin i\phi}$	i=1,2,3	$x_{\rm Bj}$	18 / 24
2D distribution				_	$A_{LL}^{+,\cos i\phi}$	i=0,1,2		
SD distribution	6		2011	45	$A_{LT,DVCS}^{\cos(\phi-\phi_S)\cos i\phi}$	i = 0, 1	$x_{\rm Bj}$	24 / 32
Nucleon EUS					$A_{LT,DVCS}^{\sin(\phi-\phi_S)\sin i\phi}$	i = 1		
Experiments					$A_{LT,I}^{\cos(\phi-\phi_S)\cos i\phi}$	i = 0, 1, 2		
Dhamanalana					$A_{LT,I}^{\sin(\phi-\phi_S)\sin i\phi}$	i = 1, 2		
Phenomenology	7		2012	46	$A_{LU,I}^{\sin i\phi}$	i = 1, 2	$x_{\rm Bj}$	35 / 42
Strategy					$A_{LU,DVCS}^{\sin i\phi}$	i = 1		
CFF global fit				_	$A_C^{\cos i\phi}$	i=0,1,2,3		
Pressure forces	8	CLAS	2001	47	$A_{LU}^{-,\sin i\phi}$	i = 1, 2	_	0 / 2
Models: systematic	9		2006	48	$A_{UL}^{-, \text{on } i\psi}$	i = 1, 2		2 / 2
uncertainties	10		2008	49	ALU A		φ	283 / 737
	19		2009	51	$A^ A^ A^-$		φ	22 / 33
Areas for	13		2015	52	$d^4\sigma_{TTT}$		ϕ	1333 / 1933
improvement	14	Hall A	2015	34	$\Delta d^4 \sigma_{LH}^-$		ф ф	228 / 228
CEE fitz	15		2017	35	$\Delta d^4 \sigma_{LU}^{LU}$		ϕ	276 / 358
	16	COMPASS	2018	36	$d^3 \sigma_{UU}^{\pm}$		t	2/4
GFF t-profile	17	ZEUS	2009	37	$d^3 \sigma^+_{UU}$		t	4 / 4
Isolating d ₁	18	H1	2005	38	$d^3\sigma^+_{UU}$		t	7/8
Constanting	19		2009	39	$d^{a}\sigma_{UU}$		t	12 / 12
Conclusion							SUM:	2624 / 3996
All how dotters							utarde	
Abbreviations								; <u>с</u> и
					H. Mouta	rde Rev	vealing eme	ergent mass

Almost all existing DVCS data sets. 2600+ measurements of 30 observables published during 2001-17.

Abbreviations

also as close as possible to the valence region. 15 / 33

H. Moutarde Revealing emergent mass

Modeling of \mathcal{H} , $\widetilde{\mathcal{H}}$, \mathcal{E} and $\widetilde{\mathcal{E}}$. Independent descriptions of real and imaginary parts.

Nucleon internal pressure

- Energymomentum tensor
- Gravitational form factors 3D distribution
- Nucleon EOS
- Experiments

Phenomenology

Strategy

CFF global fit

Pressure forces Models: systematic uncertainties

Areas for improvement

CFF fits GFF t-profile Isolating d₁

Conclusion

- Real and imaginary parts of CFFs parameterized by neural networks.
- Propagation of uncertainties through replica method and evaluation of 68 % confidence levels.

Pressure forces from DVCS measurements. A first-principle connection.

Nucleon internal pressure

Energymomentum tensor

Gravitational form factors

3D distribution

Nucleon EOS

Experiments

Phenomenology

Strategy

CFF global fit

Pressure forces

Models: systematic uncertainties

Areas for improvement

CFF fits

GFF t-profile

Isolating d_1

Conclusion

Abbreviations

1 Expand D-term on Gegenbauer polynomials

$$D_{\text{term}}^{q}(z, t, \mu_{F}^{2}) = (1 - z^{2}) \sum_{\text{odd } n} d_{n}^{q}(t, \mu_{F}^{2}) C_{n}^{3/2}(z)$$

2 Write dispersion relation for CFF (true at all pQCD orders)

$$\mathcal{C}_{\mathcal{H}}(t, Q^2) = \operatorname{Re}\mathcal{H}(\xi) - \frac{1}{\pi} \int_0^1 \mathrm{d}\xi' \operatorname{Im}\mathcal{H}(\xi') \left(\frac{1}{\xi - \xi'} - \frac{1}{\xi + \xi'}\right)$$

3 Compute subtraction constant

$$\mathcal{C}_{H}^{q,g}(t,Q^2) = \frac{2}{\pi} \int_{1}^{+\infty} \mathrm{d}\omega \operatorname{Im} T^{q,g}(\omega) \int_{-1}^{1} \mathrm{d}z \, \frac{D^{q,g}(z)}{\omega - z}$$

🛆 Diehl & Ivanov (2007)

4 Retrieve GFF

$$d_1^q(t,\mu_F^2) = 5C_q(t,\mu_F^2)$$

H. Moutarde Revealing emergent mass | 17 / 33

Pressure forces from DVCS measurements. A first-principle connection.

Nucleon internal pressure

Energymomentum tensor

Gravitational form factors

3D distribution

Nucleon EOS

Experiments

Phenomenology

Strategy

CFF global fit

Pressure forces

Models: systematic uncertainties

Areas for improvement

CFF fits

GFF t-profile

Isolating d_1

Conclusion

Abbreviations

1 Expand D-term on Gegenbauer polynomials

$$D_{\text{term}}^{q}(z, t, \mu_{F}^{2}) = (1 - z^{2}) \sum_{\text{odd } n} d_{n}^{q}(t, \mu_{F}^{2}) C_{n}^{3/2}(z)$$

2 Write dispersion relation for CFF (true at all pQCD orders)

$$\mathcal{C}_{\mathcal{H}}(t, Q^2) = \operatorname{Re}\mathcal{H}(\xi) - \frac{1}{\pi} \int_0^1 \mathrm{d}\xi' \operatorname{Im}\mathcal{H}(\xi') \left(\frac{1}{\xi - \xi'} - \frac{1}{\xi + \xi'}\right)$$

3 Compute subtraction constant at LO

$$\mathcal{C}_{H}(t, Q^{2}) = 4 \sum_{q} e_{q}^{2} \sum_{\text{odd } n} d_{n}^{q}(t, \mu_{F}^{2} \equiv Q^{2})$$

⁄ Diehl & Ivanov (2007)

 $d_1^q(t,\mu_F^2) = 5C_q(t,\mu_F^2)$

H. Moutarde Revealing emergent mass | 17 / 33

Nucleon
internal
pressure

Experimental data

Energy-
momentum
toncor

LEIISOI

Gravitational form factors

3D distribution

Nucleon EOS

Experiments

Phenomenology

Strategy

CFF global fit

Pressure forces

Models: systematic uncertainties

Areas for improvement

CFF fits

GFF t-profile

Isolating d_1

Conclusion

Nucleon
internal
pressure

—			
Exp	erim	ental	l data
	~		

Energy-	
momentum	
tensor	

Gravitational	form
-	

3D distribution

Nucleon EOS

Experiments

Phenomenology

Strategy

CFF global fit

Pressure forces	orce	f	re	u	s	s	e	1	F	
-----------------	------	---	----	---	---	---	---	---	---	--

Cea

Subtraction constant from measurements. EIC prospect: determination over a wide kinematic domain.

main.

Pressure forces from DVCS measurements. Working assumptions.

(2021)

Nucleor
internal
pressure

Energymomentum tensor

Gravitational form factors 3D distribution Nucleon EOS Experiments

Phenomenology

Strategy

CFF global fit

Pressure forces

Models: systematic uncertainties

Areas for improvement

CFF fits GFF t-profile Isolating d₁

Conclusion

Abbreviations

1 Subtraction constant assumed equal to d_1 .

- **2** Equal values for light quark contributions d_1^{uds} .
- Radiative generation of gluon d^g₁ and charm d^c₁ contributions.
- **4** Tripole Ansatz for the *t*-dependence of d_1 .

🛆 Dutrieux et al.

Pressure forces from DVCS measurements. Working assumptions.

Nucleon
internal
pressure

Energymomentum tensor

Gravitational form factors 3D distribution Nucleon EOS Experiments

Phenomenology

10

5

ہ تق⁰

-5

-10

Strategy

CFF global fit

Pressure forces

Models: systematic uncertainties

Areas for improvement

CFF fits GFF t-profile Isolating d₁

Conclusion

Abbreviations

1 Subtraction constant assumed equal to d_1 .

- **2** Equal values for light quark contributions d_1^{uds} .
- Radiative generation of gluon d^g₁ and charm d^c₁ contributions.
- **4** Tripole Ansatz for the *t*-dependence of d_1 .

400

µ² [GeV²]

▲ Dutrieux et al. (2021)

H. Moutarde Revealing emergent mass 20 / 33

Pressure forces from DVCS measurements. Working assumptions.

Nucleon
internal
pressure

Energymomentum tensor

- Gravitational form factors 3D distribution Nucleon EOS Experiments
- Phenomenology
- Strategy
- CFF global fit

Pressure forces

Models: systematic uncertainties

Areas for improvement

CFF fits GFF t-profile

Isolating d_1

Conclusion

Abbreviations

- **1** Subtraction constant assumed equal to d_1 .
- **2** Equal values for light quark contributions d_1^{uds} .
- Radiative generation of gluon d^g₁ and charm d^c₁ contributions.
- **4** Tripole Ansatz for the *t*-dependence of d_1 .

Summary of existing determinations

No.	Marker in Fig. 3	$\sum_{q} d_{1}^{q}(\mu_{F}^{2})$	$_{\rm in~GeV^2}^{\mu_{\rm F}^2}$	# of flavours	Type	Ref
1	0	$-2.30 \pm 0.16 \pm 0.37$	2.0	3	from experimental data	[13
2		0.88 ± 1.69	2.2	2	from experimental data	[14
3	0	-1.59	4	2	<i>t</i> -channel saturated model	[55
		-1.92	4	2	<i>t</i> -channel saturated model	55
4		-4	0.36	3	χQSM	30
5	∇	-2.35	0.36	2	χQSM	[10
6		-4.48	0.36	2	Skyrme model	56
7	Ħ	-2.02	2	3	LFWF model	[57
8	\otimes	-4.85	0.36	2	χQSM]58
9	\oplus	-1.34 ± 0.31	4	2	lattice QCD (MS)	[59
		-2.11 ± 0.27	4	2	lattice QCD (MS)	[59

H. Moutarde

Revealing emergent mass

20 / 33

Nucleon internal pressure

Energymomentum tensor

Gravitational form factors 3D distribution

Nucleon EOS

Experiments

Phenomenology

Strategy

CFF global fit

Pressure forces

Models: systematic uncertainties

Areas for improvement

CFF fits

GFF t-profile

Isolating d_1

Conclusion

Abbreviations

■ No justification to truncate the subtraction constant expansion to its first term and assume that it is the *d*₁ coefficient related to the energy-momentum tensor.

Nucleon internal pressure

Energymomentum tensor

Gravitational form factors 3D distribution Nucleon EOS Experiments

Phenomenology

Strategy

CFF global fit

Pressure forces

Models: systematic uncertainties

Areas for improvement

CFF fits

GFF t-profile

Isolating d_1

Conclusion

- No justification to truncate the subtraction constant expansion to its first term and assume that it is the d_1 coefficient related to the energy-momentum tensor.
- Leading contributions of d₁ and d₃, higher order terms neglected.

Nucleon internal pressure

Energymomentum tensor

Gravitational form factors 3D distribution Nucleon EOS Experiments

Phenomenology

Strategy

CFF global fit

Pressure forces

Models: systematic uncertainties

Areas for improvement

CFF fits

GFF t-profile

Isolating d_1

Conclusion

- No justification to truncate the subtraction constant expansion to its first term and assume that it is the *d*₁ coefficient related to the energy-momentum tensor.
- Leading contributions of d₁ and d₃, higher order terms neglected.
- 3 active quark flavors (*uds*), and radiative generation of *c* contribution.

Nucleon internal pressure

Energymomentum tensor

Gravitational form factors 3D distribution Nucleon EOS Experiments

Phenomenology

Strategy

CFF global fit

Pressure forces

Models: systematic uncertainties

Areas for improvement

CEE fits GFF t-profile

Isolating d₁

Conclusion

Abbreviations

No justification to truncate the subtraction constant **expansion to its first term** and assume that it is the d_1 coefficient related to the energy-momentum tensor.

• Leading contributions of d_1 and d_3 , higher order terms neglected.

3 active quark flavors (uds), and radiative generation of c contribution.

4 parameters

 $d_1^{uds}(\mu_0) = d_3^{uds}(\mu_0) = d_1^g(\mu_0) = d_3^g(\mu_0)$

イロト イボト イヨト イヨト

Pressure forces from DVCS measurements. From leading order to next-to-leading order.

Nucleon internal pressure

Energymomentum tensor

Gravitational form factors 3D distribution Nucleon EOS Experiments

Phenomenology

Strategy CFF global fit Pressure forces Models: systematic uncertainties

Areas for improvement

CFF fits

GFF t-profile

Isolating d_1

Conclusion

Abbreviations

4 parameters $d_1^{uds}(0.1 \text{GeV}^2)$ $d_1^g(0.1 \text{GeV}^2)$ $d_3^{uds}(0.1 \text{GeV}^2)$ $d_3^g(0.1 \text{GeV}^2)$

Investigate 3 fitting scenarios

	Pressure to From leading ord	rces from DV er to next-to-leading	cs measuremei	nts.
Nucleon internal pressure		Investigate 3	fitting scenarios	
Energy- momentum tensor Gravitational form factors 3D distribution Nucleon EOS Experiments	4 parameters $d_1^{uds}(0.1 \text{GeV}^2)$ $d_1^g(0.1 \text{GeV}^2)$	1. Nominal fit: 1 free p. Gluon a	arameter for light qua nd charm radiatively	arks. generated.
Phenomenology Strategy	$d_2^{uds}(0.1 \mathrm{GeV}^2)$		LO	NLO
CFF global fit Pressure forces	$d^{g}(0.1 \text{GeV}^{2})$	$d_1^{uds}(0.1 {\rm GeV}^2)$	-0.7 ± 1.7	-0.8 ± 2.0
Models: systematic uncertainties	<i>u</i> ₃ (0.10ev)	$d_1^{uds}(2 \text{GeV})$	-0.5 ± 1.2	-0.5 ± 1.4
Areas for		$d_1^{g}(2 \text{GeV})$	-0.6 ± 1.6	-0.7 ± 1.9
CFF fits	Free	$d_1^{\rm C}(2{\rm GeV})$	-0.002 ± 0.0005	-0.002 ± 0.006
Isolating d ₁	Fixed			
Conclusion			Dutrieux et al.,	in preparation
Abbreviations				

H. Moutarde | Revealing emergent mass | 22 / 33

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆ �� ◆

Ces

Pressure forces from DVCS measurements. From leading order to next-to-leading order.

Nucleon internal pressure

4 parameters

 $d_1^{uds}(0.1 \,{\rm GeV}^2)$

 $d_3^{uds}(0.1 \,{\rm GeV}^2)$

 $d_1^{g}(0.1 \, \text{GeV}^2)$

 $d_3^{g}(0.1 \,{\rm GeV}^2)$

Free

Fixed

Energymomentum tensor

Gravitational form factors 3D distribution Nucleon EOS Experiments

Phenomenology

Strategy CFF global fit Pressure forces Models: systematic uncertainties

Areas for improvement

CFF fits GFF t-profile

Isolating $d_1 \\$

Conclusion

Abbreviations

Investigate 3 fitting scenarios

- 2. Alternative fit:
 - 2 free parameters: light quarks and gluons.
 - Charm radiatively generated.

	LO	NLO
$d_1^{uds}(0.1 {\rm GeV}^2)$	-6.2 ± 14	-0.4 ± 2.3
$d_1^{\mathrm{g}}(0.1\mathrm{GeV}^2)$	68 ± 152	6.3 ± 22
$d_1^{uds}(2 {\rm GeV})$	-0.7 ± 1.2	0.4 ± 2.8
$d_1^{g}(2{ m GeV})$	51 ± 111	5.3 ± 19
$d_1^c(2 {\rm GeV})$	0.2 ± 0.4	0.02 ± 0.06

Dutrieux et al., in preparation

 < □ > < ⊡ > < ⊡ > < ≧ > < ≧ > < ≧ > < ∑ < ♡</td>

 H. Moutarde
 Revealing emergent mass
 22 / 33

Ces

Pressure forces from DVCS measurements. From leading order to next-to-leading order.

Nucleon internal pressure

Energymomentum tensor

Gravitational form factors 3D distribution Nucleon EOS Experiments

Phenomenology

Strategy CFF global fit Pressure forces Models: systematic uncertainties

Areas for improvement

CFF fits GFF t-profile Isolating d₁

Free
 Fixed

4 parameters

 $d_1^{uds}(0.1 \,{\rm GeV}^2)$

 $d_{3}^{uds}(0.1 \,{\rm GeV}^2)$

 $d_1^{g}(0.1 \, \text{GeV}^2)$

 $d_{3}^{g}(0.1 \,{\rm GeV}^2)$

Conclusion

Abbreviations

Investigate 3 fitting scenarios

- 2. Alternative fit:
 - 2 free parameters: light quarks and gluons.
 - Charm radiatively generated.

Decorrelation of d_1^g and d_1^{uds} at NLO.

Dutrieux *et al.*, *in preparation*

Correlation at NLO

R = 0.23043

m = 1.73655

b = 7.15348

10.0

H. Moutarde | Revealing emergent mass | 22 / 33

Pressure forces from DVCS measurements. From leading order to next-to-leading order.

Nucleon internal		Investigate 3	fitting scenario	os
pressure		3. Alternative	fit:	
Energy- momentum tensor Gravitational form	4 parameters	2 free particular de la construcción de la	arameters: d_1 and not charm radiative	d_3 for light ely generated.
3D distribution	$d_1^{uds}(0.1 { m GeV}^2)$		LO	NLO
Experiments	$d_1^{g}(0.1 {\rm GeV}^2)$	$d_1^{uds}(0.1 \text{GeV}^2)$	16 ± 37	15 ± 34
Phenomenology Strategy	$d^{uds}(0.1 \text{ CoV}^2)$	$d_3^{uds}(0.1 \text{GeV}^2)$	-26 ± 59	-18 ± 39
CFF global fit	$u_3 (0.1 \text{GeV})$	$d_1^{uds}(2 \text{GeV})$	11 ± 25	11 ± 23
Models: systematic uncertainties	$d_3^{g}(0.1 {\rm GeV}^2)$	$d_1^{g}(2 \text{GeV})$	15 ± 34	15 ± 32
Areas for		$d_1^c(2 \text{GeV})$	-0.05 ± 0.1	-0.05 ± 0.1
CFF fits		$d_3^{uds}(2 \text{GeV})$	-11 ± 26	-7.7 ± 17
GFF t-profile	Free	$d_3^{g}(2 \text{GeV})$	-1.8 ± 3.9	-1.2 ± 2.6
Conclusion	Fixed	$d_3^{c}(2 {\rm GeV})$	-0.04 ± 0.01	-0.003 ± 0.007
Abbreviations			Dutrieux et	al., in preparation

H. Moutarde | Revealing emergent mass | 22 / 33

Pressure forces from DVCS measurements. From leading order to next-to-leading order.

Nucleon internal pressure

Energymomentum tensor

Gravitational form factors 3D distribution Nucleon EOS Experiments

Phenomenology

Strategy CFF global fit Pressure forces Models: systematic uncertainties

Areas for improvement

CEE fits GFF t-profile Isolating d₁

Conclusion

Abbreviations

$d_1^{uds}(0.1 \,{\rm GeV}^2)$ $d_1^{g}(0.1 \,{\rm GeV}^2)$ $d_3^{uds}(0.1 \,{\rm GeV}^2)$ $d_3^{g}(0.1 \,{\rm GeV}^2)$

Free

Fixed

4 parameters

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > H. Moutarde

Strong correlation of d_1^{uds} and d_3^{uds}

LO and NLO.

Revealing emergent mass

Dutrieux et al., in preparation

22 / 33

both at

Investigate 3 fitting scenarios

- 3. Alternative fit:
 - 2 free parameters: d₁ and d₃ for light quarks.
 - Gluon and charm radiatively generated.

Correlation at NLO

Areas for improvement

<□▶ <@▶ <글▶ <글▶

CO2

Increase the physics input in the global fit. An example of the bias-variance trade-off.

Nucleon internal pressure

Energymomentum tensor

Gravitational form factors 3D distribution Nucleon EOS Experiments

Phenomenology

Strategy

CFF global fit

Pressure forces

Models: systematic uncertainties

Areas for improvement

CFF fits

GFF t-profile Isolating d_1

Conclusion

Abbreviations

So far the CFF fit gathering most of the world DVCS measurements relies on an independent modeling of the CFF real and imaginary parts by neural networks.

• Convenient because of the **dimensionality** of the problem but yields **large statistical uncertainties**.

🛆 Moutarde *et al*. (2019)

 Conversaly a fit to the same data with a physically motivated parameterization still required *ad hoc* assumptions.

🛆 Moutarde *et al*. (2018)

 Many first-principle constraints expressed at the GPD level are not implemented at the CFF level.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

OF LA RECHERCHE À L'INDUSTI

Increase the physics input in the global fit. An example of the bias-variance trade-off.

DE LA RECHERCHE À L'INDUSTR

Cez

Increase the physics input in the global fit. An example of the bias-variance trade-off.

Nucleon internal pressure

Energy-

tensor Gravitational form

factors 3D distribution

momentum

Nucleon EOS

- Next step requires a (challenging) GPD global fit to world data.
- On the long run, need more experimental data to
 - Increase the *Q*²-lever arm.
 - Provide a better handle on the real part of \mathcal{H} .
 - Improve the accuracy of existing measurements.
 - Probe the kinematic regions insufficiently constrained.

Cea

Relax modeling assumptions on $d_1(t)$. Shape of pressure distribution not set by the current fit...

Nucleon internal pressure

Energymomentum tensor

Gravitational form factors 3D distribution

Nucleon EOS

Experiments

Phenomenology

Strategy

CFF global fit

Pressure forces

Models: systematic uncertainties

Areas for improvement

CFF fits

GFF t-profile

Isolating d_1

Conclusion

Abbreviations

- $d_1(t,\mu_F) = \frac{d_1(\mu_F)}{\left(1 \frac{t}{\Lambda^2}\right)^{\alpha}}$ Remind $d_1^q(t,\mu_F^2) = 5C_q(t,\mu_F^2).$
- Plug in pressure anisotropy

Use multipole Ansatz

$$\frac{5(r)}{M} \propto \int \frac{\mathrm{d}^3 \vec{\Delta}}{(2\pi)^3} \, e^{-i\vec{\Delta} \cdot \vec{r}} \left\{ -\frac{4}{r^2} \frac{t^{-1/2}}{M^2} \frac{\mathrm{d}^2}{\mathrm{d}t^2} \left(t^{5/2} \, d_1(t) \right) \right\}$$

- Normalization d₁(µ_F) set by fit.
- Position of node in *r* depends on Λ.
- 🛆 Dutrieux et al. (2021)

C02

Relax modeling assumptions on $d_1(t)$. Shape of pressure distribution not set by the current fit...

Nucleon internal pressure

Energymomentum tensor

Gravitational form factors 3D distribution Nucleon EOS Experiments

Phenomenology

Strategy

CFF global fit

Pressure forces

Models: systematic uncertainties

Areas for improvement

CFF fits

Isolating d₁

Conclusion

Abbreviations

- Normalization set by fit.
- Position of node in r depends on Λ.

\land Dutrieux et al. (2021)

- **Asymptotic** information on |t|-dependence from perturbative QCD. *But how large is "asymptotic"*?
- Factorization constraint: Q² ≫ |t|. Most of the experimental data used as fit input has low |t|.
- Need for more experimental data points.

Increase Q^2 -lever arm. Evolution equations bring a slow $\log Q^2$ dependence.

Nucleon internal pressure

Energymomentum tensor

Gravitational form factors

3D distribution

Nucleon EOS

Experiments

Phenomenology

Strategy

CFF global fit

Pressure forces

Models: systematic uncertainties

Areas for improvement

CFF fits

GFF t-profile

Isolating d_1

Conclusion

Abbreviations

Remind computation of subtraction constant at LO

$$\mathcal{C}_{H}(t, Q^{2}) = 4 \sum_{q} e_{q}^{2} \sum_{\text{odd } n} d_{n}^{q}(t, \mu_{F}^{2} \equiv Q^{2})$$

🛆 Diehl & Ivanov (2007)

 Plug LO evolution of D-term to obtain the following pattern

$$\mathcal{C}_{H}(t, Q^{2}) \propto \sum_{\text{odd } n} d_{n}(t, \mu_{F}) \left(\frac{\alpha_{s}(Q^{2})}{\alpha_{s}(\mu_{F}^{2})} \right)^{\gamma_{n}}$$

with γ_n computed in perturbative QCD. Since $\alpha_s(Q^2) \propto 1/\log Q^2$, an exact knowledge of $\mathcal{C}_H(t,Q^2)$ on an Q^2 -interval allows to exactly retrieve d_n .

Increase Q²-lever arm.

Anomalous dimensions γ_n are small and take comparable values.

Nucleon internal pressure Introduce evolution operator Γ so that $d_n(\mu_1) = \Gamma_n(\mu_1, \mu_2) d_n(\mu_2)$

Energymomentum tensor

Gravitational form factors 3D distribution Nucleon EOS Experiments

Phenomenology

Strategy

CFF global fit

Pressure forces

Models: systematic uncertainties

Areas for improvement

CFF fits

GFF t-profile

Conclusion

Abbreviations

Γ₁ and Γ₃ are numerically very close.

• Experimental data mostly constrain $d_1 + d_3 + \dots$

▲ Dutrieux (et) al → (2021) C
H. Moutarde | Revealing emergent mass | 27 / 33

Anomalous dimensions γ_n and Q^2 -lever arm. Inverse problem and regularization.

Remind pattern of the problem

Nucleon internal pressure

Energymomentum tensor

Gravitational form factors 3D distribution Nucleon EOS Experiments

Phenomenology

Strategy

CFF global fit

Pressure forces

Models: systematic uncertainties

Areas for improvement

CEE fits

GFF t-profile

Isolating d₁

Conclusion

Abbreviations

If Q^2 -range is too small, a solution with $d_1(t, \mu_F) + d_3(t, \mu_F) + d_5(t, \mu_F) + \ldots = 0$ can remain hidden within experimental uncertainties over the whole range $Q^2 \in [Q^2_{\min}, Q^2_{\max}]$.

 $\mathcal{C}_{H}(t, Q^{2}) \propto \sum_{\text{odd } p} d_{n}(t, \mu_{F}) \left(\frac{\alpha_{s}(Q^{2})}{\alpha_{s}(\mu_{F}^{2})} \right)^{n}$

- In practice: act as if the problem of retrieving d_1, d_3, \ldots from measurements has infinitely many solutions.
- Add extra regularization to select one solution robust with respect to statistical uncertainties.
- Today cannot reliably estimate the uncertainty associated to the neglect of d_3, \ldots

Conclusion

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

Conclusion and prospects. The phenomenological quest towards proton internal pressure.

Nucleon internal pressure

Energymomentum tensor

- Gravitational form factors 3D distribution Nucleon EOS
- Experiments

Phenomenology

- Strategy
- CFF global fit
- Pressure forces
- Models: systematic uncertainties

Areas for improvement

CFF fits GFF t-profile Isolating d₁

Conclusion

- Concept well-defined and suitable for phenomenology.
- Strong first-principle connection between concept and experimental data.
- Need for multi-channel analysis beyond LO on a wide kinematic coverage. EIC and EIcC much needed!
- The GPD deconvolution problem is ill-posed. Huge sensitivity to numerical noise or experimental uncertainties.

gg75478317 GoGraph.com

- Development of the software ecosystem PARTONS for 3D hadron structure studies.
- Need for coordinated effort involving fits, computing chains, continuum and lattice QCD to make the best from experiments.
 - H. Moutarde | Revealing emergent mass | 30 / 33

Abbreviations

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

Abbreviations used in this presentation.

Nucleon internal pressure	ANN CFF DDVCS	artificial neural network Compton form factor double deeply virtual Compton scattering
Energy- momentum tensor Gravitational form factors 3D distribution Nucleon EOS Experiments Phenoenology Strategy CFF global fit Pressure forces Models: systematic uncertainties Areas for improvement CFF fits GFF t-profile tealating d ₁ Conclusion	DVCS DVMP DR EIC EFF GFF GFF GPD LO NLO PDF TCS	deeply virtual Compton scattering deeply virtual meson production dispersion relation electron-ion collider electron-ion collider in China elastic form factor gravitational form factor generalized parton distribution leading order next-to-leading order parton distribution function timelike Compton scattering
		(日) (四) (三) (三) (三) (三) (三) (三) (三) (三) (三) (三

э

Commissariat à l'énergie atomique et aux énergies alternatives DRF Centre de Saclay | 91191 Git-sur-Yvette Cedex Infu T, +330(16 00 67 38 | F, +330(16 00 67 58 4 DPINI

Etablissement public à caractère industriel et commercial R.C.S. Paris B 775 685 01

####