A light hybrid meson resonance from lattice OCD

David Wilson

hadspec.org

Revealing emergent mass through studies of hadron spectra and structure
ECT* Trento online event
15 September 2022
beyond the quark model:
many ways to make a colour singlet

- molecules

- tetraquarks

- hybrids

beyond the quark model:
many ways to make a colour singlet
- molecules
- tetraquarks
- hybrids
which ones are realised in nature?

$$
\pi_{1}(1564) \quad \text { COMPASS }
$$

$\pi_{1} \quad J^{P C}=1^{-+}$

COMPASS arXiv: 1408.4286, PLB 740 (2015) 303-311

COMPASS PWA sees peaks at different masses: are there two resonances or one?

JPAC: COMPASS data can be described by a single resonance pole m~1564 MeV, $\Gamma \sim 500 \mathrm{MeV}$ arXiv:1810.04171 PRL122, 042002 (2019)
similar result: COMPASS+Crystal Barrel data, B. Kopf et al - arXiv: 2008.11566, Г~400 MeV
$\pi_{1} \quad J^{P C}=1^{-+}$

COMPASS arXiv: 1408.4286, PLB 740 (2015) 303-311

GlueX at Jefferson Lab is collecting data

Hadron Spectrum Collaboration:
spectra from local qव̄ constructions

- hybrids found at all masses from light to bottom

similar states can be identified for half-integer spin
- see https://arxiv.org/abs/1201.2349

Hadron Spectrum Collaboration: spectra from local $q \bar{q}$ constructions

- hybrids found at all masses from light to bottom

$$
m_{\pi}=391 \mathrm{MeV}
$$

[^0]it's very challenging to study the $\pi_{1}(1564)$ using anything like a physical pion mass

- use heavier-than-physical pions
what does this tell us?
- eg K*(892)

$$
t \sim \frac{c^{2}}{s_{0}-s}
$$

- pole coupling hardly changes
- similar for rho, b_{1}, f_{2}

$$
\begin{aligned}
m_{\pi}=391 \mathrm{MeV} \quad \pi_{1} & \rightarrow \pi b_{1} \rightarrow \pi \pi \omega \\
& \rightarrow \pi \pi \phi \\
& \rightarrow \pi \pi \pi \eta \\
& \rightarrow \pi K \bar{K}
\end{aligned}
$$

a problem for another day

$$
\begin{aligned}
& m_{\pi}=688 \mathrm{MeV} \\
& \quad m_{u}=m_{d}=m_{s} \\
& m_{\pi}=m_{K}=m_{\eta^{8}}
\end{aligned}
$$

much simpler
fewer channels for a first attempt
simple counting $3 * 700 \mathrm{MeV}=2100 \mathrm{MeV}$

- 3 body is pushed off to higher energies

JSA thesis prize
PANDA thesis prize

Decays of an exotic 1^{-+}hybrid meson resonance in QCD

Antoni J. Woss, ${ }^{1, *}$ Jozef J. Dudek, ${ }^{2,3, \dagger}$ Robert G. Edwards, ${ }^{2}{ }^{\ddagger}$ Christopher E. Thomas, ${ }^{1, \S}$ and David J. Wilson ${ }^{1, ~ \llbracket ~}$ (for the Hadron Spectrum Collaboration)
${ }^{1}$ DAMTP, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 0WA, UK
Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
Department of Physics, College of William and Mary, Williamsburg, VA 23187, USA
(Dated: 21 September 2020)
We present the first determination of the hadronic decays of the lightest exotic $J^{P C}=1^{-+}$ resonance in lattice QCD. Working with $\operatorname{SU}(3)$ flavor symmetry, where the up, down and strange quark masses approximately match the physical strange-quark mass giving $m_{\pi} \sim 700 \mathrm{MeV}$, we compute finite-volume spectra on six lattice volumes which constrain a scattering system featuring eight coupled channels. Analytically continuing the scattering amplitudes into the complex energy plane, we find a pole singularity corresponding to a narrow resonance which shows relatively weak coupling to the open pseudoscalar-pseudoscalar, vector-pseudoscalar and vector-vector decay Attempting a simple extrapolation of the one kinematically-closed axial-vector-pseudoscalar chancel resonance decaying dominantly through the $b_{1} \pi$ mode with much smaller decays into $f_{1} \pi, \rho \pi, \eta^{\prime} \pi$ and $\eta \pi$. A large total width is potentially in agreement with the experimental $\pi_{1}(1564)$ candidate state, observed in $\eta \pi, \eta^{\prime} \pi$, which we suggest may be heavily suppressed decay channels.

anisotropic (3.5 finer spacing in time) Wilson-Clover
$L / a_{s}=12,14,16,18,20,24$
$\mathrm{m}_{\pi}=688 \mathrm{MeV}$
this study - total momentum zero irreps only sufficient energy levels from 6 volumes moving frames have a rich, dense spectrum
operators used:

$$
\begin{aligned}
& \bar{\psi} \Gamma \overleftrightarrow{D} \ldots \overleftrightarrow{D} \psi \text { local qq-like constructions } \\
& (\bar{\psi} \boldsymbol{\Gamma} \psi)_{i}=\underbrace{\sum_{\vec{p}_{1}+\vec{p}_{2} \in \vec{p}} C\left(\vec{p}_{1}, \vec{p}_{2} ; \vec{p}\right) \Omega_{\pi}\left(\vec{p}_{1}\right) \Omega_{\pi}\left(\vec{p}_{2}\right) \quad \begin{array}{l}
\text { two-hadron } \\
\text { constructions }
\end{array}}_{1_{i--\otimes 1^{+-} \rightarrow 1^{-+}}^{\epsilon_{i j k}\left(\bar{\psi} \gamma_{j} \psi\right) B_{k}}, \quad \begin{array}{c}
\quad \begin{array}{l}
\text { includes hybrid-like } \\
\text { constructions }
\end{array} \\
B_{k} \propto \epsilon_{k p q}\left[\overleftrightarrow{D_{p}}, \overleftrightarrow{D_{q}}\right]
\end{array}} \\
& \Omega_{\pi}^{\dagger}=\sum_{i} v_{i} \mathcal{O}_{i}^{\dagger} \quad \begin{array}{l}
\text { uses the eigenvector from the } \\
\text { variational method performed in } \\
\text { e.g. pion quantum numbers }
\end{array}
\end{aligned}
$$

using distillation (Peardon et al 2009) many wick contractions

- we compute a large correlation matrix
- then use GEVP to extract energies
E / MeV
(

no $\eta^{8} \eta^{8}$ because of bose symmetry
|IIIIIIIIII

IIIIIIIIIII
$0^{+(+)}$
in moving frames

- many other resonances to consider

$$
\begin{aligned}
& L / a_{s}=18
\end{aligned}
$$

$L / a_{s}=24$
$L / a_{s}=24$

- | ا 1

$L / a_{s}=18$

$\rightarrow \mathrm{M} \rightarrow \mathrm{N} \rightarrow$

1-dimensional QM , periodic BC , two interacting particles: $\mathrm{V}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right) \neq 0$

$$
\begin{gathered}
\psi(0)=\psi(\mathrm{L}),\left.\quad \frac{\partial \psi}{\partial x}\right|_{x=0}=\left.\frac{\partial \psi}{\partial x}\right|_{x=\mathrm{L}} \\
\sin \left(\frac{\mathrm{pL}}{2}+\delta(p)\right)=0 \\
p=\frac{2 \pi n}{\mathrm{~L}}-\frac{2}{\mathrm{~L}} \delta(\mathrm{p})
\end{gathered}
$$

Phase shifts via Lüscher's method: $\quad \tan \delta_{1}=\frac{\pi^{3 / 2} q}{\mathcal{Z}_{00}\left(1 ; q^{2}\right)}$

$$
\mathcal{Z}_{00}\left(1 ; q^{2}\right)=\sum_{n \in \mathbb{Z}^{3}} \frac{1}{|\vec{n}|^{2}-q^{2}}
$$

generalisation to a 3-dimensional strongly-coupled QFT

\rightarrow powerful non-trivial mapping from finite vol spectrum to infinite volume phase

Direct extension of the elastic quantisation condition

$\operatorname{det}[\mathbf{1}+i \boldsymbol{\rho}(E) \cdot \underbrace{\boldsymbol{\rho}}_{\text {phase space }}(E) \cdot(\mathbf{1}+i \mathcal{M}(E, L))]=0$

Many extensions of the original Lüscher formalism to moving frames, unequal masses, etc
Quantisation condition for an arbitrary t-matrix of coupled (pseudo)scalars - all in agreement Hansen \& Sharpe 2012, Briceño \& Davoudi 2012, Guo et al 2012

Quantisation condition generalised to scattering of particles with non-zero spin for arbitrary scattering amplitudes (the one used here):
Briceño, arXiv:1401.3312, PRD 89 (2014) 7, 074507

$$
\boldsymbol{K}_{V V}(s)=\left[\begin{array}{cccc}
\gamma_{\omega^{\mathbf{8}} \omega^{\mathbf{8}}\{ }\left\{{ }^{3} P_{1}\right\} & 0 & 0 & 0 \\
0 & \gamma_{\omega^{1}} \omega^{\mathbf{8}}\left\{{ }^{1} P_{1}\right\} & 0 & 0 \\
0 & 0 & \gamma_{\omega^{1} \omega^{\mathbf{8}}\left\{3 P_{1}\right\}} & 0 \\
0 & 0 & 0 & \gamma_{\omega^{1} \omega^{\mathbf{8}}\left\{5 P_{1}\right\}}
\end{array}\right]
$$

$$
\boldsymbol{K}_{\boldsymbol{y}}(s)=\frac{\boldsymbol{g} \boldsymbol{g}^{T}}{m^{2}-s}+\left[\begin{array}{cccc}
\gamma_{\eta^{1} \eta^{8}\left\{{ }^{1} P_{1}\right\}} & 0 & 0 & 0 \\
0 & \gamma_{\omega^{\mathbf{8}} \eta^{8}\left\{\left\{^{3} P_{1}\right\}\right.} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\boldsymbol{g}=\left(g_{\eta^{1} \eta^{8}\left\{{ }^{1} P_{1}\right\}}, g_{\omega}{ }^{8} \eta^{8}\left\{{ }^{3} P_{1}\right\}, g_{f_{1}^{8} \eta^{8}\left\{{ }^{3} S_{1}\right\}}, g_{h_{1}^{8} \eta^{8}\left\{{ }^{3} S_{1}\right\}}\right)
$$

partial waves

$\left.$| $1^{-(+)}$ |
| :--- | | $\eta^{1} \eta^{8}\left\{{ }^{1} P_{1}\right\}$ |
| :--- |
| $\omega^{8} \eta^{8}\left\{{ }^{3} P_{1}\right\}$ |
| $\omega^{8} \omega^{8}\left\{{ }^{3} P_{1}\right\}, \omega^{1} \omega^{8}\left\{{ }^{1} P_{1},{ }^{3} P_{1},{ }^{5} P_{1}\right\}$ |
| $f_{1}^{8} \eta^{8}\left\{{ }^{3} S_{1}\right\}, h_{1}^{8} \eta^{8}\left\{{ }^{3} S_{1}\right\}$ | \right\rvert\, | $\eta^{1} \eta^{8}\left\{{ }^{1} F_{3}\right\}$ |
| :--- |
| $\omega^{8} \eta^{8}\left\{{ }^{3} F_{3}\right\}$ |
| $\omega^{1} \omega^{8}\left\{{ }^{5} P_{3}\right\} \quad$ K-matrix parametrisation |

$$
t^{-1}=K^{-1}+I
$$

- pole coupled in 1^{-+}
- various constants
vector-vector appears decoupled
these channels have larger mixing
+ simple constants in 3^{-+}

(d)

amplitude variations - off-diagonal t-matrix elements
perhaps more familiar :

$$
\begin{aligned}
\eta^{\prime} \pi & \rightarrow \rho \pi \\
& \rightarrow K^{\star} \bar{K}
\end{aligned}
$$

in the region of a pole

$$
t \sim \frac{c^{2}}{s_{0}-s}
$$

narrow resonance

$$
\begin{aligned}
a_{t} \sqrt{s} & =0.4606(26) \pm \frac{i}{2} 0.0039(39) \\
\sqrt{s} & =\left(2144(12) \pm \frac{i}{2} 18(18)\right) \mathrm{MeV}
\end{aligned}
$$

small imaginary part, consistent with zero in
some parameterisations
many sheets (2^{n})
pole is located on "proximal" sheet
open channels: $\operatorname{Im} k_{i}<0$
closed channels: $\operatorname{Im} k_{i}>0$
in the region of a pole

$$
t \sim \frac{c^{2}}{s_{0}-s}
$$

narrow resonance

$$
\begin{aligned}
a_{t} \sqrt{s} & =0.4606(26) \pm \frac{i}{2} 0.0039(39) \\
\sqrt{s} & =\left(2144(12) \pm \frac{i}{2} 18(18)\right) \mathrm{MeV}
\end{aligned}
$$

small imaginary part, consistent with zero in some parameterisations
many sheets (2^{n})

Flavour decomposition

- break apart SU(3) multiplets
- use CGs e.g. from de Swart (Rev. Mod. Phys. 35, 916 (1963))
- mixing angles needed for singlets taken from PDG
very heavy quarks
- crudely extrapolate to physical pions
scale couplings:

$$
\begin{aligned}
& |c|^{\text {phys }}=\left|\frac{k^{\text {phys }}\left(m_{R}^{\text {phys }}\right)}{k\left(m_{R}\right)}\right|^{\ell}|c| \\
& \text { choose } m_{R}=1563 \mathrm{MeV}
\end{aligned}
$$

see also Arkaitz Rodas slides @ Lattice 2022

weak dependence on m_{π} even when K^{*} appears as a bound state

$f_{2}^{a}: \quad \sqrt{s_{0}}=1470(15)-\frac{i}{2} 160(18) \mathrm{MeV}$
$\operatorname{Br}\left(f_{2}^{\mathrm{a}} \rightarrow \pi \pi\right) \sim 85 \%, \quad \operatorname{Br}\left(f_{2}^{a} \rightarrow K \bar{K}\right) \sim 12 \%$

$f_{2}^{\mathrm{b}}: \quad \sqrt{s_{0}}=1602(10)-\frac{i}{2} 54(14) \mathrm{MeV}$
$\operatorname{Br}\left(f_{2}^{\mathrm{b}} \rightarrow \pi \pi\right) \sim 8 \%, \quad \operatorname{Br}\left(f_{2}^{\mathrm{b}} \rightarrow K \bar{K}\right) \sim 92 \%$

$f_{2}^{\mathrm{a}}: \quad \sqrt{s_{0}}=1470(15)-\frac{i}{2} 160(18) \mathrm{MeV}$
$\operatorname{Br}\left(f_{2}^{\mathrm{a}} \rightarrow \pi \pi\right) \sim 85 \%, \quad \operatorname{Br}\left(f_{2}^{\mathrm{a}} \rightarrow K \bar{K}\right) \sim 12 \%$
$f_{2}^{\mathrm{b}}: \quad \sqrt{s_{0}}=1602(10)-\frac{i}{2} 54(14) \mathrm{MeV}$
$\operatorname{Br}\left(f_{2}^{\mathrm{b}} \rightarrow \pi \pi\right) \sim 8 \%, \quad \operatorname{Br}\left(f_{2}^{\mathrm{b}} \rightarrow K \bar{K}\right) \sim 92 \%$

scaled PDG

$$
\left|c\left(f_{2} \rightarrow \pi \pi\right)\right| \quad 488(28) \quad 453_{-4}^{+9}
$$

$$
\left|c\left(f_{2} \rightarrow K \bar{K}\right)\right| \quad 139(27) \quad 132(7)
$$

$$
\left|c\left(f_{2}^{\prime} \rightarrow \pi \pi\right)\right| \quad 103(32) \quad 33(4)
$$

$$
\left|c\left(f_{2}^{\prime} \rightarrow K \bar{K}\right)\right| \quad 321(50) \quad 389(12)
$$

$$
\left|c\left(b_{1} \rightarrow \pi \omega\right)\right| \quad 564(114) \quad 556(17)
$$

$$
\rho \rightarrow \pi \pi
$$

$K^{*} \rightarrow K \pi$

evidence for weakly varying couplings as a function of m_{π} in several cases

- seems reasonable to scale couplings to estimate properties of the π_{1}
consider $\mathrm{I}=1, \mathrm{I}_{\mathrm{z}}=+1$ component $\pi_{1}{ }^{+}$
begin with experimentally observed decay modes: $\eta \pi, \eta^{\prime} \pi$
just one component:

$$
\begin{aligned}
& \eta^{\mathbf{1}} \eta^{\mathbf{8}} \mathbf{1} \times \mathbf{8} \rightarrow \mathbf{8} \\
& \pi_{1} \rightarrow \pi \eta_{1}
\end{aligned}
$$

rotate η_{1} to physical states:

$$
\binom{\eta_{8}}{\eta_{1}}=\left(\begin{array}{cc}
\cos \theta_{P} & \sin \theta_{P} \\
-\sin \theta_{P} & \cos \theta_{P}
\end{array}\right)\binom{\eta}{\eta^{\prime}} \quad \theta_{P} \sim-10^{\circ}
$$

couplings are then:

$$
\begin{aligned}
\left|c\left(\pi_{1} \rightarrow \eta \pi\right)\right|=\mid c_{\eta^{\mathbf{1}} \eta^{8} \sin \theta_{P} \mid} \quad \text { decay of } \eta^{\prime} \pi>\eta \pi \\
\left|c\left(\pi_{1} \rightarrow \eta^{\prime} \pi\right)\right|=\left\lvert\, c_{\eta^{\mathbf{1}} \eta^{8} \operatorname{COS} \theta_{P} \mid} \begin{array}{l}
\text { coupling at } m_{\pi}=688 \mathrm{MeV} \\
\text { scale to lighter masses }
\end{array}\right.
\end{aligned}
$$

Flavour decomposition

- break apart SU(3) multiplets
- use CGs from de Swart (Rev. Mod. Phys. 35, 916 (1963))
- mixing angles needed for singlets taken from PDG

$$
\begin{array}{rl}
\pi_{1}^{\mathbf{8}} \rightarrow \omega^{\mathbf{8}} \eta^{\mathbf{8}} & \mathbf{8} \otimes \mathbf{8} \rightarrow \mathbf{1} \oplus \mathbf{8}_{\mathbf{1}} \oplus \mathbf{8}_{\mathbf{2}} \oplus \mathbf{1 0} \oplus \overline{\mathbf{1 0}} \oplus \mathbf{2 7} \\
\mathrm{eg}: & \pi_{1}^{+} \rightarrow \frac{1}{\sqrt{3}}\left(\pi^{+} \rho^{0}-\pi^{0} \rho^{+}\right)+\frac{1}{\sqrt{6}}\left(K^{+} \bar{K}^{* 0}-\bar{K}^{0} K^{*+}\right) \\
\left|c\left(\pi_{1} \rightarrow \rho \pi\right)\right|=\sqrt{\frac{2}{3}}\left|c_{\omega^{\mathbf{8}} \eta^{\mathbf{8}}}\right| \\
\left|c\left(\pi_{1} \rightarrow K^{*} \bar{K}\right)\right|=\sqrt{\frac{1}{3}}\left|c_{\omega^{8} \eta^{\mathbf{8}}}\right| &
\end{array}
$$

largest decay modes:

$$
\begin{aligned}
& f_{1}^{8} \eta^{8}\left\{{ }^{3} S_{1}\right\} \\
& h_{1}^{8} \eta^{8}\left\{{ }^{3} S_{1}\right\}
\end{aligned}
$$

$$
\begin{gathered}
f_{1}^{\mathbf{8} \eta^{8}\left\{{ }^{3} S_{1}\right\}} \\
\mathbf{8} \otimes \mathbf{8} \rightarrow \mathbf{1} \oplus \mathbf{8 1}_{\mathbf{1}} \oplus \underset{\mathbf{2}}{\mathbf{8}_{1}^{8} \eta^{8}\left\{{ }^{3} S_{1}\right\}} \oplus \mathbf{1 0} \oplus \overline{\mathbf{1 0}} \oplus \mathbf{2 7}
\end{gathered}
$$

$$
\frac{1}{\sqrt{6}}\left(K_{1 B}^{+} \bar{K}^{0}-\bar{K}_{1 B}^{0} K^{+}\right)+\frac{1}{\sqrt{3}}\left(b_{1}^{+} \pi^{0}-b_{1}^{0} \pi^{+}\right)
$$

$$
\left|c\left(\pi_{1} \rightarrow b_{1} \pi\right)\right|=\sqrt{\frac{2}{3}}\left|c_{h_{1}^{8} \eta^{8}}\right|
$$

kaon- K_{1} channels kinematically closed for $\mathrm{m} \gtrsim 1500 \mathrm{MeV}$

$$
\begin{aligned}
& -\sqrt{\frac{3}{10}}\left(K_{1 A}^{+} \bar{K}^{0}+\bar{K}_{1 A}^{0} K^{+}\right)+\frac{1}{\sqrt{5}}\left(a_{1}^{+} \eta_{8}+\left(f_{1}\right)_{8} \pi^{+}\right) \\
& \left|c\left(\pi_{1} \rightarrow a_{1} \eta\right)\right|=\frac{1}{\sqrt{5}}\left|c_{f_{1}^{8} \eta^{8}} \cos \theta_{P}\right| \\
& \left|c\left(\pi_{1} \rightarrow a_{1} \eta^{\prime}\right)\right|=\frac{1}{\sqrt{5}}\left|c_{f_{1}^{8} \eta^{8}} \sin \theta_{P}\right| \\
& \left|c\left(\pi_{1} \rightarrow f_{1}(1285) \pi\right)\right|=\frac{1}{\sqrt{5}}\left|c_{f_{1}^{8} \eta^{8}} \cos \theta_{A}\right| \\
& \left|c\left(\pi_{1} \rightarrow f_{1}(1420) \pi\right)\right|=\frac{1}{\sqrt{5}}\left|c_{f_{1}^{8} \eta^{8}} \sin \theta_{A}\right| .
\end{aligned}
$$

For the first time, we have a QCD computation of a $\boldsymbol{\pi}_{1}$ resonance

- a heavier than physical pion mass was used with $m_{u}=m_{d}=m_{s}$
- multibody decay modes are suppressed, only 2-body becomes relevant
- we find large coupling to a kinematically-closed axial-vector-pseudoscalar channel
- narrow resonance at $m_{\pi}=688 \mathrm{MeV}$

Extrapolating to the experimentally-observed mass, we find

- the dominant decay mode appears to be $b_{1} \pi$
- in experiment this is a 5π final state
- current analyses of $\eta \pi$ and $\eta^{\prime} \pi$ channels may be quite suppressed w.r.t. $b_{1} \pi$
- broad resonance

This SU(3) calculation has components that apply to the other elements of the octet

- but other components are expected to also contribute (eg singlet in η_{1})
- nevertheless - there's likely to be a family of hybrids

Charmonium, bottomonium is another interesting place to look

- heavier quarks may make extrapolating to the experimental masses more straightforward

[^0]: $a_{t} m=1.6666(1) \quad a_{t} m=1.7657(7) \quad a_{t} m=1.8028(16) a_{t} m=1.8120(15) a_{t} m=1.8368(21) a_{t} m=1.8957(58) a_{t} m=1.9104(59) a_{t} m=1.9216(37) a_{t} m=1.9370(40) a_{t} m=1.9470(80)$

