A light hybrid meson resonance from lattice QCD

David Wilson

Revealing emergent mass through studies of hadron spectra and structure ECT* Trento online event 15 September 2022

THE ROYAL SOCIETY

beyond the quark model:

many ways to make a colour singlet

- molecules

- tetraquarks

_

-

-

$\sigma, f_0(980)$? beyond the quark model: CERN-Munich, ANL, BN many ways to make a colour singlet 1.0 0.8 $\pi\pi \rightarrow$ 0.6 molecules 0.4 \overline{q} 0.2 0.8 0.6 1.0 $\pi \hat{A}$ $\rightarrow h \eta \eta$ Candidates / (17.3 MeV/ c^2) 60 E LHCb X(2900) 50 - (a)40 E arXiv:2009.00026 30 tetraquarks 20 10 2.5 3.5 3 $m(D^{-}K^{+})$ [GeV/ c^{2}] $\pi_1(1564)$ COMPASS 3 0 ηπ *P*-wave Events/40 MeV 09 00 09 00 09 00 \overline{q} hybrids 1.4 √s (GeV) 1.6 1.8 2.0 1.2 1.0 0.8 ×10³ η'π *P*-wave 4.0 MeV 4.0 MeV 3.2 T 1.0 T 1. Events/40 MeV which ones are realised in nature? 0.8 1.0 1.2 1.4 √s (GeV) 1.6 1.8 2.0

patterns of hadron construction

David Wilson (Cambridge) 4/39

COMPASS arXiv: 1408.4286, PLB 740 (2015) 303-311

COMPASS PWA sees peaks at different masses:

are there two resonances or one?

JPAC: COMPASS data can be described by a single resonance pole m~1564 MeV, F~500 MeV arXiv:1810.04171 PRL122, 042002 (2019)

similar result: COMPASS+Crystal Barrel data, B. Kopf et al - arXiv: 2008.11566, F~400 MeV

patterns of hadron construction

COMPASS arXiv: 1408.4286, PLB 740 (2015) 303-311

GlueX at Jefferson Lab is collecting data

Hadron Spectrum Collaboration: spectra from local qq constructions

- hybrids found at **all** masses from **light** to bottom

similar states can be identified for half-integer spin

- see https://arxiv.org/abs/1201.2349

David Wilson (Cambridge) 6/39

Hadron Spectrum Collaboration: spectra from local qq constructions

- hybrids found at **all** masses from light to **bottom**

Sinéad Ryan & DW - 2008.02656

1.0

0.8

0.6

0.4

0.2

David Wilson (Cambridge)

scattering

it's very challenging to study the $\pi_1(1564)$ using anything like a physical pion mass - use heavier-than-physical pions

similar for rho, b₁, f₂

heavy light quarks

$$m_{\pi} = 391 \text{ MeV} \qquad \pi_1 \to \pi b_1 \to \pi \pi \omega$$
$$\to \pi \pi \phi$$
$$\to \pi \pi \pi \eta$$
$$\to \pi K \overline{K}$$

a problem for another day

$$m_{\pi} = 688 \text{ MeV}$$

 $m_{u} = m_{d} = m_{s}$
 $m_{\pi} = m_{K} = m_{\eta} \mathbf{s}$

much simpler fewer channels for a first attempt

simple counting 3*700 MeV = 2100 MeV - 3 body is pushed off to higher energies

JSA thesis prize PANDA thesis prize

arXiv:2009.10034

Decays of an exotic 1^{-+} hybrid meson resonance in QCD

Antoni J. Woss,^{1,*} Jozef J. Dudek,^{2,3,†} Robert G. Edwards,^{2,‡} Christopher E. Thomas,^{1,§} and David J. Wilson^{1,¶}

(for the Hadron Spectrum Collaboration)

¹DAMTP, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 0WA, UK ²Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA ³Department of Physics, College of William and Mary, Williamsburg, VA 23187, USA (Dated: 21 September 2020)

We present the first determination of the hadronic decays of the lightest exotic $J^{PC} = 1^{-+}$ resonance in lattice QCD. Working with SU(3) flavor symmetry, where the up, down and strange quark masses approximately match the physical strange-quark mass giving $m_{\pi} \sim 700$ MeV, we compute finite-volume spectra on six lattice volumes which constrain a scattering system featuring eight coupled channels. Analytically continuing the scattering amplitudes into the complex energy plane, we find a pole singularity corresponding to a narrow resonance which shows relatively weak coupling to the open pseudoscalar–pseudoscalar, vector–pseudoscalar and vector–vector decay channels, but large couplings to at least one kinematically-closed axial-vector–pseudoscalar channel. Attempting a simple extrapolation of the couplings to physical light-quark mass suggests a broad π_1 resonance decaying dominantly through the $b_1\pi$ mode with much smaller decays into $f_1\pi$, $\rho\pi$, $\eta'\pi$ and $\eta\pi$. A large total width is potentially in agreement with the experimental $\pi_1(1564)$ candidate state, observed in $\eta\pi$, $\eta'\pi$, which we suggest may be heavily suppressed decay channels.

anisotropic (3.5 finer spacing in time) Wilson-Clover

 L/a_s =12, 14, 16, 18, 20, 24 m_{π} = 688 MeV

this study - total momentum zero irreps only sufficient energy levels from 6 volumes moving frames have a rich, dense spectrum

operators used:

 $\bar{\psi} \Gamma \overleftrightarrow{D} \ldots \overleftrightarrow{D} \; \psi \;$ local qq-like constructions

 $(\bar{\psi} \mathbf{\Gamma} \psi)_i = \underbrace{\epsilon_{ijk}(\bar{\psi} \gamma_j \psi) B_k}_{1^{--} \otimes 1^{+-} \to 1^{-+}},$ $B_k \propto \epsilon_{kpq} [\overleftrightarrow{D_p}, \overleftrightarrow{D_q}]$

includes hybrid-like constructions

$$\sum_{\vec{p_1} + \vec{p_2} \in \vec{p}} C(\vec{p_1}, \vec{p_2}; \vec{p}) \Omega_{\pi}(\vec{p_1}) \ \Omega_{\pi}(\vec{p_2})$$

two-hadron constructions

 $\Omega_{\pi}^{\dagger} = \sum_{i} v_i \mathcal{O}_i^{\dagger}$

uses the eigenvector from the variational method performed in e.g. pion quantum numbers

using *distillation* (Peardon *et al* 2009) many wick contractions

- we compute a large correlation matrix
- then use GEVP to extract energies

$E/{\rm MeV}$

- many other resonances to consider

David Wilson (Cambridge) 15/39

David Wilson (Cambridge)

1-dimensional QM, periodic BC, two interacting particles: $V(x_1 - x_2) \neq 0$

$$\psi(0) = \psi(L), \quad \frac{\partial \psi}{\partial x}\Big|_{x=0} = \frac{\partial \psi}{\partial x}\Big|_{x=L}$$

$$\sin\left(\frac{pL}{2} + \delta(p)\right) = 0$$

$$p = \frac{2\pi n}{L} - \frac{2}{L}\delta(p)$$
2

Phase shifts via Lüscher's method:

$$\tan \delta_1 = \frac{\pi^{3/2} q}{\mathcal{Z}_{00}(1; q^2)}$$
$$\mathcal{Z}_{00}(1; q^2) = \sum_{n \in \mathbb{Z}^3} \frac{1}{|\vec{n}|^2 - q^2}$$

Lüscher 1986, 1991

generalisation to a 3-dimensional strongly-coupled QFT

→ powerful non-trivial mapping from finite vol spectrum to infinite volume phase

Direct extension of the elastic quantisation condition

Many extensions of the original Lüscher formalism to moving frames, unequal masses, etc

Quantisation condition for an arbitrary t-matrix of coupled (pseudo)scalars - all in agreement Hansen & Sharpe 2012, Briceño & Davoudi 2012, Guo et al 2012

Quantisation condition generalised to scattering of particles with non-zero spin for arbitrary scattering amplitudes (the one used here): Briceño, arXiv:1401.3312, PRD 89 (2014) 7, 074507

 $\left(\omega^{\mathbf{s}} \eta^{\mathbf{s}} \{{}^{3}\!P_{1}\!\} \left| f_{1}^{\mathbf{s}} \eta^{\mathbf{s}} \{{}^{3}\!S_{1}\!\} \right) \qquad \qquad \left(\omega^{\mathbf{s}} \eta^{\mathbf{s}} \{{}^{3}\!P_{1}\!\} \left| h_{1}^{\mathbf{s}} \eta^{\mathbf{s}} \{{}^{3}\!S_{1}\!\} \right)$

0.48

0.48

0.47

0.47

0.47

0.47

0.47

0.46

 $\overline{0.48} a_t E_{\mathsf{cm}}$

0.48

0.48 $a_t E_{cm}$

 $\overline{0.48} \ a_t E_{\mathsf{cm}}$

0.48 $(\omega^{\mathbf{1}}\omega^{\mathbf{8}}\{{}^{X}\!P_{\mathbf{1}}\}|\omega^{\mathbf{1}}\omega^{\mathbf{8}}\{{}^{X}\!P_{\mathbf{1}}\}$

0.48 $a_t E_{cm}$

0.43

0.44

0.45

 $\eta^{\mathbf{1}}\eta^{\mathbf{8}}\{{}^{1}P_{1}\} \to \omega^{\mathbf{8}}\eta^{\mathbf{8}}\{{}^{3}P_{1}\}$

perhaps more familiar :

$$\eta' \pi \to \rho \pi \\ \to K^* \bar{K}$$

poles

 $\sqrt{s} = \left(2144(12) \pm \frac{i}{2}18(18)\right) \text{ MeV}$

small imaginary part, consistent with zero in some parameterisations

many sheets (2ⁿ)

pole is located on "proximal" sheet open channels: $Imk_i < 0$ closed channels: $Imk_i > 0$

poles

Flavour decomposition

- break apart SU(3) multiplets
- use CGs e.g. from de Swart (Rev. Mod. Phys. 35, 916 (1963))
- mixing angles needed for singlets taken from PDG

very heavy quarks

- crudely extrapolate to physical pions

scale couplings:

$$\left| c
ight|^{
m phys} = \left| rac{k^{
m phys}(m_R^{
m phys})}{k(m_R)}
ight|^\ell \left| c
ight|$$

choose m_R=1563 MeV

pole couplings - vectors

see also Arkaitz Rodas slides @ Lattice 2022

weak dependence on m_{π} even when K* appears as a bound state

Tensor resonance poles

 $\begin{array}{ll} f_2^{\sf a}: & \sqrt{s_0} = 1470(15) - \frac{i}{2} \, 160(18) \; {\rm MeV} \\ {\rm Br}(f_2^{\sf a} \to \pi\pi) \sim 85\%, & {\rm Br}(f_2^{\sf a} \to K\overline{K}) \sim 12\% \end{array}$

 $f_2^{b}: \quad \sqrt{s_0} = 1602(10) - \frac{i}{2} \, 54(14) \text{ MeV}$ Br $(f_2^{b} \to \pi\pi) \sim 8\%, \quad \text{Br}(f_2^{b} \to K\overline{K}) \sim 92\%$

 $f_2^{a}: \quad \sqrt{s_0} = 1470(15) - \frac{i}{2} \, 160(18) \text{ MeV}$ $Br(f_2^{a} \to \pi\pi) \sim 85\%, \quad Br(f_2^{a} \to K\overline{K}) \sim 12\%$

 $f_2^{b}: \quad \sqrt{s_0} = 1602(10) - \frac{i}{2} \, 54(14) \text{ MeV}$ $Br(f_2^{b} \to \pi\pi) \sim 8\%, \quad Br(f_2^{b} \to K\overline{K}) \sim 92\%$

poles & couplings

evidence for weakly varying couplings as a function of m_{π} in several cases - seems reasonable to scale couplings to estimate properties of the π_1 consider I=1, I_z =+1 component π_1^+

begin with experimentally observed decay modes: $\eta \pi$, $\eta' \pi$

just one component:

$$\eta^1 \eta^8 \quad \mathbf{1} \times \mathbf{8} \to \mathbf{8}$$

 $\pi_1 \to \pi \eta_1$

rotate η_1 to physical states:

$$\begin{pmatrix} \eta_8 \\ \eta_1 \end{pmatrix} = \begin{pmatrix} \cos \theta_P & \sin \theta_P \\ -\sin \theta_P & \cos \theta_P \end{pmatrix} \begin{pmatrix} \eta \\ \eta' \end{pmatrix} \qquad \theta_P \sim -10^{\circ}$$

couplings are then:

$$\begin{aligned} |c(\pi_1 \to \eta \pi)| &= |c_{\eta^1 \eta^8} \sin \theta_P| & \operatorname{decay of} \eta' \pi > \eta \pi \\ c(\pi_1 \to \eta' \pi)| &= |c_{\eta^1 \eta^8} \cos \theta_P| & \operatorname{coupling at} m_{\pi} = 688 \operatorname{MeV} \\ & \operatorname{scale to lighter masses} \end{aligned}$$

Flavour decomposition

- break apart SU(3) multiplets
- use CGs from de Swart (Rev. Mod. Phys. 35, 916 (1963))
- mixing angles needed for singlets taken from PDG

$$\begin{aligned} \pi_1^{\mathbf{8}} &\to \omega^{\mathbf{8}} \eta^{\mathbf{8}} & \mathbf{8} \otimes \mathbf{8} \to \mathbf{1} \oplus \mathbf{8}_{\mathbf{1}} \oplus \mathbf{8}_{\mathbf{2}} \oplus \mathbf{10} \oplus \overline{\mathbf{10}} \oplus \mathbf{27} \\ \text{eg} : \pi_1^+ &\to \frac{1}{\sqrt{3}} \left(\pi^+ \rho^0 - \pi^0 \rho^+ \right) + \frac{1}{\sqrt{6}} \left(K^+ \bar{K}^{*0} - \bar{K}^0 K^{*+} \right) \\ \left| c(\pi_1 \to \rho \pi) \right| &= \sqrt{\frac{2}{3}} \left| c_{\omega} \mathbf{s}_{\eta} \mathbf{s} \right| \\ \left| c(\pi_1 \to K^* \overline{K}) \right| &= \sqrt{\frac{1}{3}} \left| c_{\omega} \mathbf{s}_{\eta} \mathbf{s} \right| \end{aligned}$$

largest decay modes: $f_1^8 \eta^8 \{{}^3S_1\}$ $h_1^8 \eta^8 \{{}^3S_1\}$

$$f_{1}^{8}\eta^{8}\{{}^{3}S_{1}\}$$

$$\mathbf{8}\otimes\mathbf{8}\rightarrow\mathbf{1}\oplus\mathbf{8_{1}}\oplus\mathbf{8_{2}}\oplus\mathbf{10}\oplus\overline{\mathbf{10}}\oplus\mathbf{27}$$

$$h_{1}^{8}\eta^{8}\{{}^{3}S_{1}\}$$

$$-\sqrt{\frac{3}{10}} \left(K_{1A}^{+} \overline{K}^{0} + \overline{K}_{1A}^{0} K^{+} \right) + \frac{1}{\sqrt{5}} \left(a_{1}^{+} \eta_{8} + (f_{1})_{8} \pi^{+} \right)$$
$$\left| c(\pi_{1} \to a_{1} \eta) \right| = \frac{1}{\sqrt{5}} \left| c_{f_{1}^{8} \eta^{8}} \cos \theta_{P} \right|$$
$$\left| c(\pi_{1} \to a_{1} \eta') \right| = \frac{1}{\sqrt{5}} \left| c_{f_{1}^{8} \eta^{8}} \sin \theta_{P} \right|$$
$$\left| c(\pi_{1} \to f_{1}(1285)\pi) \right| = \frac{1}{\sqrt{5}} \left| c_{f_{1}^{8} \eta^{8}} \cos \theta_{A} \right|$$
$$\left| c(\pi_{1} \to f_{1}(1420)\pi) \right| = \frac{1}{\sqrt{5}} \left| c_{f_{1}^{8} \eta^{8}} \sin \theta_{A} \right|.$$

$$\frac{1}{\sqrt{6}} \left(K_{1B}^+ \,\overline{K}^0 - \overline{K}_{1B}^0 \,K^+ \right) + \frac{1}{\sqrt{3}} \left(b_1^+ \pi^0 - b_1^0 \,\pi^+ \right)$$
$$\left| c(\pi_1 \to b_1 \pi) \right| = \sqrt{\frac{2}{3}} \left| c_{h_1^{\mathbf{s}} \eta^{\mathbf{s}}} \right|$$

kaon-K₁ channels kinematically closed for $m \gtrsim 1500 \; MeV$

 $\left|c
ight|^{
m phys} = \left|rac{k^{
m phys}(m_R^{
m phys})}{k(m_R)}
ight|^\ell \left|c
ight|$

 $\Gamma(R \to i) = \frac{\left|c_i^{\text{phys}}\right|^2}{m_R^{\text{phys}}} \cdot \rho_i(m_R^{\text{phys}})$

	thr./MeV	$\left c_{i}^{\mathrm{phys}}\right /\mathrm{MeV}$	$\Gamma_i/{ m MeV}$
$\eta\pi$	688	$0 \rightarrow 43$	$0 \rightarrow 1$
$ ho\pi$	910	$0 \rightarrow 203$	$0 \rightarrow 20$
$\eta'\pi$	1098	$0 \rightarrow 173$	$0 \rightarrow 12$
$b_1\pi$	1375	$799 \to 1559$	$139 \rightarrow 529$
$K^*\overline{K}$	1386	0 ightarrow 87	$0 \rightarrow 2$
$f_1(1285)\pi$	1425	$0 \rightarrow 363$	$0 \rightarrow 24$
$ ho\omega\{^1\!P_1\}$	1552	$\lesssim 19$	$\lesssim 0.03$
$ ho\omega\{^{3}\!P_{1}\}$	1552	$\lesssim 32$	$\lesssim 0.09$
$ ho\omega\{{}^5\!P_1\}$	1552	$\lesssim 19$	$\lesssim 0.03$
$f_1(1420)\pi$	1560	$0 \rightarrow 245$	$0 \rightarrow 2$
$\Gamma = \sum_{i} \Gamma_{i} = 139 \rightarrow 590$			

[PDG]

For the first time, we have a QCD computation of a π_1 resonance

- a heavier than physical pion mass was used with $m_u = m_d = m_s$
- multibody decay modes are suppressed, only 2-body becomes relevant
- we find large coupling to a kinematically-closed axial-vector-pseudoscalar channel
- narrow resonance at m_{π} =688 MeV

Extrapolating to the experimentally-observed mass, we find

- the dominant decay mode appears to be $b_1\pi$
- in experiment this is a 5π final state
- current analyses of $\eta\pi$ and $\eta'\pi$ channels may be quite suppressed w.r.t. $b_1\pi$
- broad resonance

This SU(3) calculation has components that apply to the other elements of the octet

- but other components are expected to also contribute (eg singlet in η_1)
- nevertheless there's likely to be a family of hybrids

Charmonium, bottomonium is another interesting place to look

- heavier quarks may make extrapolating to the experimental masses more straightforward