Modelling and Imaging the nucleon LFWFs

Cédric Mezrag

Irfu, CEA, Université Paris-Saclay

September $14^{\text {th }}, 2022$

In collaboration with:
M. Ding, J. M. Morgado Chavez, M. Riberdy,
L. Chang, C.D. Roberts and J. Segovia

Definitions and Classification of LFWFs

Hadrons seen as Fock States

- Lightfront quantization allows to expand hadrons on a Fock basis:

$$
\begin{gathered}
|P, \pi\rangle \propto \sum_{\beta} \Psi_{\beta}^{q \bar{q}}|q \bar{q}\rangle+\sum_{\beta} \Psi_{\beta}^{q \bar{q}, q \bar{q}}|q \bar{q}, q \bar{q}\rangle+\ldots \\
|P, N\rangle \propto \sum_{\beta} \Psi_{\beta}^{q q q}|q q q\rangle+\sum_{\beta} \Psi_{\beta}^{q q q, q \bar{q}}|q q q, q \bar{q}\rangle+\ldots
\end{gathered}
$$

Hadrons seen as Fock States

- Lightfront quantization allows to expand hadrons on a Fock basis:

$$
\begin{gathered}
|P, \pi\rangle \propto \sum_{\beta} \Psi_{\beta}^{q \bar{q}}|q \bar{q}\rangle+\sum_{\beta} \Psi_{\beta}^{q \bar{q}, q \bar{q}}|q \bar{q}, q \bar{q}\rangle+\ldots \\
|P, N\rangle \propto \sum_{\beta} \Psi_{\beta}^{q q q}|q q q\rangle+\sum_{\beta} \Psi_{\beta}^{q q q, q \bar{q}}|q q q, q \bar{q}\rangle+\ldots
\end{gathered}
$$

- Non-perturbative physics is contained in the N-particles Lightfront-Wave Functions (LFWF) Ψ^{N}

Hadrons seen as Fock States

- Lightfront quantization allows to expand hadrons on a Fock basis:

$$
\begin{gathered}
|P, \pi\rangle \propto \sum_{\beta} \Psi_{\beta}^{q \bar{q}}|q \bar{q}\rangle+\sum_{\beta} \Psi_{\beta}^{q \bar{q}, q \bar{q}}|q \bar{q}, q \bar{q}\rangle+\ldots \\
|P, N\rangle \propto \sum_{\beta} \Psi_{\beta}^{q q q}|q q q\rangle+\sum_{\beta} \Psi_{\beta}^{q q q, q \bar{q}}|q q q, q \bar{q}\rangle+\ldots
\end{gathered}
$$

- Non-perturbative physics is contained in the N-particles Lightfront-Wave Functions (LFWF) Ψ^{N}
- Schematically a distribution amplitude φ is related to the LFWF through:

$$
\varphi(x) \propto \int \frac{\mathrm{d}^{2} k_{\perp}}{(2 \pi)^{2}} \Psi\left(x, k_{\perp}\right)
$$

LFWFs: definitions

$\left.\langle 0| O^{\alpha, \ldots}\left(\left\{z_{1}^{-}, z_{\perp 1}\right\}, \ldots,\left\{z_{n}^{-}, z_{\perp n}\right\}\right)|P, \lambda\rangle\right|_{z_{i}^{+}=0}$

- Lightfront operator O of given number of quark and gluon fields

LFWFs: definitions

$\left.\langle 0| O^{\alpha, \ldots}\left(\left\{z_{1}^{-}, z_{\perp 1}\right\}, \ldots,\left\{z_{n}^{-}, z_{\perp n}\right\}\right)|P, \lambda\rangle\right|_{z_{i}^{+}=0}=\sum_{j}^{n} \tau_{j}^{\alpha, \ldots} N(P, \lambda) F_{j}\left(z_{i}\right)$

- Lightfront operator O of given number of quark and gluon fields
- Expansion in terms of scalar non-pertubative functions $F\left(z_{i}\right)$

$$
\left.\langle 0| O^{\alpha, \ldots}\left(\left\{z_{1}^{-}, z_{\perp 1}\right\}, \ldots,\left\{z_{n}^{-}, z_{\perp n}\right\}\right)|P, \lambda\rangle\right|_{z_{i}^{+}=0}=\sum_{j}^{n} \tau_{j}^{\alpha, \ldots} N(P, \lambda) F_{j}\left(z_{i}\right)
$$

- Lightfront operator O of given number of quark and gluon fields
- Expansion in terms of scalar non-pertubative functions $F\left(z_{i}\right)$
- The τ_{j} can be chosen to have a definite twist, i.e. a definit power behaviour when P^{+}becomes large

LFWFs: definitions

$$
\left.\langle 0| O^{\alpha, \ldots}\left(\left\{z_{1}^{-}, z_{\perp 1}\right\}, \ldots,\left\{z_{n}^{-}, z_{\perp n}\right\}\right)|P, \lambda\rangle\right|_{z_{i}^{+}=0}=\sum_{j}^{n} \tau_{j}^{\alpha, \cdots} N(P, \lambda) F_{j}\left(z_{i}\right)
$$

- Lightfront operator O of given number of quark and gluon fields
- Expansion in terms of scalar non-pertubative functions $F\left(z_{i}\right)$
- The τ_{j} can be chosen to have a definite twist, i.e. a definit power behaviour when P^{+}becomes large
- Leading and higher twist contributions can be selected by adequate projections of O

$$
\left.\langle 0| O^{\alpha, \ldots}\left(\left\{z_{1}^{-}, z_{\perp 1}\right\}, \ldots,\left\{z_{n}^{-}, z_{\perp n}\right\}\right)|P, \lambda\rangle\right|_{z_{i}^{+}=0}=\sum_{j}^{n} \tau_{j}^{\alpha, \ldots} N(P, \lambda) F_{j}\left(z_{i}\right)
$$

- Lightfront operator O of given number of quark and gluon fields
- Expansion in terms of scalar non-pertubative functions $F\left(z_{i}\right)$
- The τ_{j} can be chosen to have a definite twist, i.e. a definit power behaviour when P^{+}becomes large
- Leading and higher twist contributions can be selected by adequate projections of O

Both mesons and baryons can (in principle) have multiple independent leading-twist LFWFs

Spinor decomposition and twist selection

We introduce to lightlike vector p and n such that:

$$
P^{\mu}=p^{\mu}+n^{\mu} \frac{M^{2}}{2 p \cdot n} \quad \text { and } \quad P^{+}=p^{+}
$$

see for instance V. Braun et al., Nucl Phys B589 381 (2000)
From these four-vectors we define the projectors:

$$
N(p)=\underbrace{\frac{p \cdot \gamma n \cdot \gamma}{2 p \cdot n} N(P)}+\frac{n \cdot \gamma p \cdot \gamma}{2 p \cdot n} N(p)=N^{+}(P)+N^{-}(P)
$$

Dominant contribution
when $P^{+} \rightarrow \infty$

Spinor decomposition and twist selection

We introduce to lightlike vector p and n such that:

$$
P^{\mu}=p^{\mu}+n^{\mu} \frac{M^{2}}{2 p \cdot n} \quad \text { and } \quad P^{+}=p^{+}
$$

see for instance V. Braun et al., Nucl Phys B589 381 (2000)
From these four-vectors we define the projectors:

$$
N(p)=\underbrace{\frac{p \cdot \gamma n \cdot \gamma}{2 p \cdot n} N(P)}_{\substack{\text { Dominant contribution } \\ \text { when } P^{+} \rightarrow \infty}}+\frac{n \cdot \gamma p \cdot \gamma}{2 p \cdot n} N(p)=N^{+}(P)+N^{-}(P)
$$

The same procedure is applied to all quark fields (and a similar one to gluon fields), selecting the leading twist contributions

Sorting LFWFs

$$
\left.\langle 0| \tilde{O}^{\alpha, \ldots}\left(\left\{z_{1}^{-}, z_{\perp 1}\right\}, \ldots,\left\{z_{n}^{-}, z_{\perp n}\right\}\right)|P, \lambda\rangle\right|_{z_{i}^{+}=0}=\sum_{\substack{j \\ \mathrm{LT}}}^{n} \tilde{\tau}_{j}^{\alpha, \ldots} N^{+}(P, \lambda) \tilde{F}_{j}\left(z_{i}\right)
$$

- With the previous procedure we can select the leading-twist combinations scalar functions \tilde{F}

Sorting LFWFs

$$
\left.\langle 0| \tilde{O}^{\alpha, \ldots}\left(\left\{z_{1}^{-}, z_{\perp 1}\right\}, \ldots,\left\{z_{n}^{-}, z_{\perp n}\right\}\right)|P, \lambda\rangle\right|_{z_{i}^{+}=0}=\sum_{\substack{j \\ \mathrm{LT}}}^{n} \tilde{\tau}_{j}^{\alpha, \ldots} N^{+}(P, \lambda) \tilde{F}_{j}\left(z_{i}\right)
$$

- With the previous procedure we can select the leading-twist combinations scalar functions \tilde{F}
- But an additional classification can be performed, by selecting the helicity projection of the quark fields involved through:

$$
\psi=\frac{1+\gamma_{5}}{2} \psi+\frac{1-\gamma_{5}}{2} \psi=\psi^{\uparrow}+\psi^{\downarrow}
$$

Nucleon LFWFs classification

- In the nucleon case, the procedure applies with three quarks at leading Fock state:

$$
\langle 0| \epsilon^{i j k} u_{\alpha}^{i}\left(z_{1}\right) u_{\beta}^{j}\left(z_{2}\right) d_{\gamma}^{k}\left(z_{3}\right)|P, \uparrow\rangle
$$

Nucleon LFWFs classification

- In the nucleon case, the procedure applies with three quarks at leading Fock state:

$$
\langle 0| \epsilon^{i j k} u_{\alpha}^{i}\left(z_{1}\right) u_{\beta}^{j}\left(z_{2}\right) d_{\gamma}^{k}\left(z_{3}\right)|P, \uparrow\rangle
$$

- It results in defining 6 independent LFWFs
X. Ji, et al., Nucl Phys B652 383 (2003)

Nucleon LFWFs classification

- In the nucleon case, the procedure applies with three quarks at leading Fock state:

$$
\langle 0| \epsilon^{i j k} u_{\alpha}^{i}\left(z_{1}\right) u_{\beta}^{j}\left(z_{2}\right) d_{\gamma}^{k}\left(z_{3}\right)|P, \uparrow\rangle
$$

- It results in defining 6 independent LFWFs

$$
\text { X. Ji, et al., Nucl Phys B652 } 383 \text { (2003) }
$$

- The LFWFs carry different amount of OAM projections:

states	$\langle\downarrow \downarrow \downarrow \mid P, \uparrow\rangle$	$\langle\downarrow \downarrow \uparrow \mid P, \uparrow\rangle$	$\langle\uparrow \downarrow \uparrow \mid P, \uparrow\rangle$	$\langle\uparrow \uparrow \uparrow \mid P, \uparrow\rangle$
OAM	2	1	0	-1
LFWFs	ψ^{6}	ψ^{3}, ψ^{4}	ψ^{1}, ψ^{2}	ψ^{5}

Relation with the Faddeev Wave function

- Since the Faddeev wave function χ is given as:

$$
\begin{aligned}
& \langle 0| T\left\{q\left(z_{1}\right) q\left(z_{2}\right) q\left(z_{3}\right)\right\}|P, \lambda\rangle=\frac{1}{4} f_{N} N_{\sigma}(P, \lambda) \\
& \times \int \prod_{j=1}^{3} \mathrm{~d}^{(4)} k_{j} e^{-i k_{j} z_{j}} \delta^{(4)}\left(P-\sum_{j} k_{j}\right) \chi_{\sigma}\left(k_{1}, k_{2}, k_{3}\right),
\end{aligned}
$$

Relation with the Faddeev Wave function

- Since the Faddeev wave function χ is given as:

$$
\begin{aligned}
& \langle 0| T\left\{q\left(z_{1}\right) q\left(z_{2}\right) q\left(z_{3}\right)\right\}|P, \lambda\rangle=\frac{1}{4} f_{N} N_{\sigma}(P, \lambda) \\
& \times \int \prod_{j=1}^{3} \mathrm{~d}^{(4)} k_{j} e^{-i k_{j} z_{j}} \delta^{(4)}\left(P-\sum_{j} k_{j}\right) \chi_{\sigma}\left(k_{1}, k_{2}, k_{3}\right),
\end{aligned}
$$

- one can get the LFWFs schematically through

$$
\psi^{i}=\int \prod_{j=1}^{3}\left[\mathrm{~d} k_{j}^{-}\right] \mathcal{P}_{i} \chi
$$

where \mathcal{P}_{i} are the relevant leading-twist and OAM projectors.

Relation with the Faddeev Wave function

- Since the Faddeev wave function χ is given as:

$$
\begin{aligned}
& \langle 0| T\left\{q\left(z_{1}\right) q\left(z_{2}\right) q\left(z_{3}\right)\right\}|P, \lambda\rangle=\frac{1}{4} f_{N} N_{\sigma}(P, \lambda) \\
& \times \int \prod_{j=1}^{3} \mathrm{~d}^{(4)} k_{j} e^{-i k_{j} z_{j}} \delta^{(4)}\left(P-\sum_{j} k_{j}\right) \chi_{\sigma}\left(k_{1}, k_{2}, k_{3}\right),
\end{aligned}
$$

- one can get the LFWFs schematically through

$$
\psi^{i}=\int \prod_{j=1}^{3}\left[\mathrm{~d} k_{j}^{-}\right] \mathcal{P}_{i} \chi
$$

where \mathcal{P}_{i} are the relevant leading-twist and OAM projectors.

Important

The FWF allows a consistent derivation of the 6 leading-fock states LFWFs of the nucleon

Modelling the Faddeev wave Function

Baryon and Diquarks

- The Faddeev equation provides a covariant framework to describe the nucleon as a bound state of three dressed quarks.

Baryon and Diquarks

- The Faddeev equation provides a covariant framework to describe the nucleon as a bound state of three dressed quarks.
- It predicts the existence of strong diquarks correlations inside the nucleon.

Baryon and Diquarks

- The Faddeev equation provides a covariant framework to describe the nucleon as a bound state of three dressed quarks.
- It predicts the existence of strong diquarks correlations inside the nucleon.

- Mostly two types of diquark are dynamically generated by the Faddeev equation:
- Scalar diquarks,
- Axial-Vector (AV) diquarks.

Baryon and Diquarks

- The Faddeev equation provides a covariant framework to describe the nucleon as a bound state of three dressed quarks.
- It predicts the existence of strong diquarks correlations inside the nucleon.

- Mostly two types of diquark are dynamically generated by the Faddeev equation:
- Scalar diquarks,
- Axial-Vector (AV) diquarks.
- In the following we build a model inspired by numerical solutions of the Faddeev equations

Example on the Nucleon Distribution Amplitude

- DA is obtained by integrating the transverse momentum degrees of feedom

$$
\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}^{-}, 0_{\perp}\right) C 巾 u_{\downarrow}^{j}\left(z_{2}^{-}, 0_{\perp}\right)\right) 巾 d_{\uparrow}^{k}\left(z_{3}^{-}, 0_{\perp}\right)|P, \lambda\rangle \rightarrow \varphi\left(x_{1}, x_{2}, x_{3}\right),
$$

Braun et al., Nucl.Phys. B589 (2000)

Example on the Nucleon Distribution Amplitude

- DA is obtained by integrating the transverse momentum degrees of feedom

$$
\begin{aligned}
& \langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}^{-}, 0_{\perp}\right) C \phi u_{\downarrow}^{j}\left(z_{2}^{-}, 0_{\perp}\right)\right) \phi d_{\uparrow}^{k}\left(z_{3}^{-}, 0_{\perp}\right)|P, \lambda\rangle \rightarrow \varphi\left(x_{1}, x_{2}, x_{3}\right), \\
& \text { Braun et al., Nucl.Phys. B589 (2000) }
\end{aligned}
$$

- We can apply it on the wave function:

Example on the Nucleon Distribution Amplitude

- DA is obtained by integrating the transverse momentum degrees of feedom

$$
\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}^{-}, 0_{\perp}\right) C \phi u_{\downarrow}^{j}\left(z_{2}^{-}, 0_{\perp}\right)\right) \phi d_{\uparrow}^{k}\left(z_{3}^{-}, 0_{\perp}\right)|P, \lambda\rangle \rightarrow \varphi\left(x_{1}, x_{2}, x_{3}\right)
$$

Braun et al., Nucl.Phys. B589 (2000)

- We can apply it on the wave function:

Example on the Nucleon Distribution Amplitude

- DA is obtained by integrating the transverse momentum degrees of feedom

$$
\begin{array}{r}
\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}^{-}, 0_{\perp}\right) C \phi u_{\downarrow}^{j}\left(z_{2}^{-}, 0_{\perp}\right)\right) \phi d_{\uparrow}^{k}\left(z_{3}^{-}, 0_{\perp}\right) \mid \\
\text { Braun et al., Nucl.Phys. B589 (2000) }
\end{array}
$$

- We can apply it on the wave function:

- The operator then selects the relevant component of the wave function.

Example on the Nucleon Distribution Amplitude

- DA is obtained by integrating the transverse momentum degrees of feedom

$$
\begin{array}{r}
\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}^{-}, 0_{\perp}\right) C h u_{\downarrow}^{j}\left(z_{2}^{-}, 0_{\perp}\right)\right) \phi d_{\uparrow}^{k}\left(z_{3}^{-}, 0_{\perp}\right)|P, \lambda\rangle \rightarrow \varphi\left(x_{1}, x_{2}, x_{3}\right) \\
\text { Braun et al., Nucl.Phys. B589 (2000) }
\end{array}
$$

- We can apply it on the wave function:

- The operator then selects the relevant component of the wave function.

Example on the Nucleon Distribution Amplitude

- DA is obtained by integrating the transverse momentum degrees of feedom

$$
\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}^{-}, 0_{\perp}\right) C h u_{\downarrow}^{j}\left(z_{2}^{-}, 0_{\perp}\right)\right) \phi d_{\uparrow}^{k}\left(z_{3}^{-}, 0_{\perp}\right)|P, \lambda\rangle \rightarrow \varphi\left(x_{1}, x_{2}, x_{3}\right)
$$

Braun et al., Nucl.Phys. B589 (2000)

- We can apply it on the wave function:

- The operator then selects the relevant component of the wave function.
- Our ingredients are:
- Perturbative-like quark and diquark propagator
- Nakanishi based diquark Bethe-Salpeter-like amplitude (green disks)
- Nakanishi based quark-diquark amplitude (dark blue ellipses)

Scalar Diquark part of the nucleon

Modelling the Scalar Diquark DA

- We need to obtain the structure of the scalar diquark itself

$$
=\mathcal{N} \int_{-1}^{1} \mathrm{~d} z \frac{\left(1-z^{2}\right)}{\left(\Lambda_{q}^{2}+\left(q+\frac{z}{2} K\right)^{2}\right)}
$$

- q is the relative momentum between the quarks and K the total diquark momentum
- Λ_{q} is a free parameter to be fit on DSE computations
- $\rho(z, \gamma)=\rho(z)=1-z^{2} \rightarrow$ we keep only the Oth degree coefficient in a Gegenbauer expansion of the Nakanishi weight

Modelling the Scalar Diquark DA

- We need to obtain the structure of the scalar diquark itself

$$
=\mathcal{N} \int_{-1}^{1} \mathrm{~d} z \frac{\left(1-z^{2}\right)}{\left(\Lambda_{q}^{2}+\left(q+\frac{z}{2} K\right)^{2}\right)}
$$

- q is the relative momentum between the quarks and K the total diquark momentum
- Λ_{q} is a free parameter to be fit on DSE computations
- $\rho(z, \gamma)=\rho(z)=1-z^{2} \rightarrow$ we keep only the 0th degree coefficient in a Gegenbauer expansion of the Nakanishi weight
- We couple this with a simple massive fermion propagator:

$$
S(p)=\frac{-i p \cdot \gamma+M}{p^{2}+M^{2}}
$$

Adjusting the parameters

- Mass of the quarks: $M=2 / 5 M_{N}$
- Sum of the frozen mass bigger than the nucleon mass for stability (binding energy)
- Avoid singularities in the complex plane

Adjusting the parameters

- Mass of the quarks: $M=2 / 5 M_{N}$
- Sum of the frozen mass bigger than the nucleon mass for stability (binding energy)
- Avoid singularities in the complex plane
- Width of the diquark BSA $\Lambda_{q}=3 / 5 M_{N}$ fitted on previous computations:

red curve from Segovia et al.,Few Body Syst. 55 (2014) 1185-1222

Scalar Diquark DA

- From that we can compute the scalar diquark DA as:

$$
\phi(x) \propto \int d^{4} q \delta(q \cdot n-x K \cdot n) \operatorname{Tr}\left[S \Gamma^{0 T} S^{T} L^{\downarrow} C^{\dagger} n \cdot \gamma L^{\uparrow}\right]
$$

Scalar Diquark DA

- From that we can compute the scalar diquark DA as:

$$
\phi(x) \propto \int d^{4} q \delta(q \cdot n-x K \cdot n) \operatorname{Tr}\left[S \Gamma^{0 T} S^{T} L^{\downarrow} C^{\dagger} n \cdot \gamma L^{\uparrow}\right]
$$

- We compute Mellin moments \rightarrow avoid difficulties with lightcone in euclidean space

Scalar Diquark DA

- From that we can compute the scalar diquark DA as:

$$
\phi(x) \propto \int d^{4} q \delta(q \cdot n-x K \cdot n) \operatorname{Tr}\left[S \Gamma^{0 T} S^{T} L^{\downarrow} C^{\dagger} n \cdot \gamma L^{\uparrow}\right]
$$

- We compute Mellin moments \rightarrow avoid difficulties with lightcone in euclidean space
- Nakanishi representation \rightarrow analytic treatments of singularities and analytic reconstruction of the function from the moment

$$
\phi(x)=\int_{x}^{1} \mathrm{~d} u \int_{0}^{x} \mathrm{~d} v \frac{F(u, v, x)}{M_{e f f}^{2}\left(u, v, x, M^{2}, \Lambda^{2}\right)+K^{2}}
$$

F and $M_{\text {eff }}$ are computed analytically

Analytic results

- In the specific case $M^{2}=\Lambda_{q}^{2}$, the PDA can be analytically obtained:

$$
\phi(x) \propto \frac{M^{2}}{K^{2}}\left[1-\frac{M^{2}}{K^{2}} \frac{\ln \left[1+\frac{K^{2}}{M^{2}} x(1-x)\right]}{x(1-x)}\right]
$$

C. Mezrag et al., Springer Proc.Phys. 238 (2020) 773-781

Analytic results

- In the specific case $M^{2}=\Lambda_{q}^{2}$, the PDA can be analytically obtained:

$$
\phi(x) \propto \frac{M^{2}}{K^{2}}\left[1-\frac{M^{2}}{K^{2}} \frac{\ln \left[1+\frac{K^{2}}{M^{2}} x(1-x)\right]}{x(1-x)}\right]
$$

C. Mezrag et al., Springer Proc.Phys. 238 (2020) 773-781

- Note that expanding the log, one get:

$$
\phi(x) \propto \frac{1}{2} x(1-x)-\frac{1}{3} K^{2} / M^{2} x^{2}(1-x)^{2}+\ldots
$$

so that:

- at the end point the DA remains linearly decreasing (important impact on observable)
- at vanishing diquark virtuality, one recovers the asymptotic DA

Comparison with DSE results

RL results from Y. Lu et al., Eur.Phys.J.A 57 (2021) 4, 115

Limitations

- Complex plane singularities for large timelike virtualities

$$
\phi(x) \propto \frac{M^{2}}{K^{2}}\left[1-\frac{M^{2}}{K^{2}} \frac{\ln \left[1+\frac{K^{2}}{M^{2}} x(1-x)\right]}{x(1-x)}\right]
$$

- Cut of the \log reached for $K^{2} \leq-4 M^{2}$
- It comes from the poles in the quark propagators when $K^{2} \rightarrow-4 M^{2}$
- Need of spectral representation with running mass to bypass this?

Limitations

- Complex plane singularities for large timelike virtualities

$$
\phi(x) \propto \frac{M^{2}}{K^{2}}\left[1-\frac{M^{2}}{K^{2}} \frac{\ln \left[1+\frac{K^{2}}{M^{2}} x(1-x)\right]}{x(1-x)}\right]
$$

- Cut of the log reached for $K^{2} \leq-4 M^{2}$
- It comes from the poles in the quark propagators when $K^{2} \rightarrow-4 M^{2}$
- Need of spectral representation with running mass to bypass this?
- Virtuality flattening may be too slow compared to what meson masses suggest (may be tuned by modifying the Nakanishi weight ρ)

Limitations

- Complex plane singularities for large timelike virtualities

$$
\phi(x) \propto \frac{M^{2}}{K^{2}}\left[1-\frac{M^{2}}{K^{2}} \frac{\ln \left[1+\frac{K^{2}}{M^{2}} x(1-x)\right]}{x(1-x)}\right]
$$

- Cut of the \log reached for $K^{2} \leq-4 M^{2}$
- It comes from the poles in the quark propagators when $K^{2} \rightarrow-4 M^{2}$
- Need of spectral representation with running mass to bypass this?
- Virtuality flattening may be too slow compared to what meson masses suggest (may be tuned by modifying the Nakanishi weight ρ)

But overall, we expect to gain insights from this simple model

Quark-diquark amplitude

Nucleon Quark-Diquark Amplitude

$$
\bar{\square}=\mathcal{N} \int_{-1}^{1} \mathrm{~d} z \frac{\left(1-z^{2}\right) \tilde{\rho}(z)}{\left(\Lambda^{2}+\left(\ell-\frac{1+3 z}{6} P\right)^{2}\right)^{3}}, \quad \tilde{\rho}(z)=\prod_{j}\left(z-a_{j}\right)\left(z-\bar{a}_{j}\right)
$$

Fits of the parameters through comparison to Chebychev moments:

red curve from Segovia et al.,

Nucleon Quark-Diquark Amplitude

Scalar diquark case

$$
\check{\sim}=\mathcal{N} \int_{-1}^{1} \mathrm{~d} z \frac{\left(1-z^{2}\right) \tilde{\rho}(z)}{\left(\Lambda^{2}+\left(\ell-\frac{1+3 z}{6} P\right)^{2}\right)^{3}}, \quad \tilde{\rho}(z)=\prod_{j}\left(z-a_{j}\right)\left(z-\bar{a}_{j}\right)
$$

Fits of the parameters through comparison to Chebychev moments:

red curves from Segovia et al.,

Nucleon Quark-Diquark Amplitude

Scalar diquark case

$$
\check{\sim}=\mathcal{N} \int_{-1}^{1} \mathrm{~d} z \frac{\left(1-z^{2}\right) \tilde{\rho}(z)}{\left(\Lambda^{2}+\left(\ell-\frac{1+3 z}{6} P\right)^{2}\right)^{3}}, \quad \tilde{\rho}(z)=\prod_{j}\left(z-a_{j}\right)\left(z-\bar{a}_{j}\right)
$$

Fits of the parameters through comparison to Chebychev moments:

red curves from Segovia et al.,
Modification of the $\tilde{\rho}$ Ansatz ? $\tilde{\rho}(z) \rightarrow \tilde{\rho}(\gamma, z)$?

Mellin Moments

- We do not compute the PDA directly but Mellin moments of it:

$$
\left\langle x_{1}^{m} x_{2}^{n}\right\rangle=\int_{0}^{1} \mathrm{~d} x_{1} \int_{0}^{1-x_{1}} \mathrm{~d} x_{2} x_{1}^{m} x_{2}^{n} \varphi\left(x_{1}, x_{2}, 1-x_{1}-x_{2}\right)
$$

- For a general moment $\left\langle x_{1}^{m} x_{2}^{n}\right\rangle$, we change the variable in such a way to write down our moments as:

$$
\left\langle x_{1}^{m} x_{2}^{n}\right\rangle=\int_{0}^{1} \mathrm{~d} \alpha \int_{0}^{1-\alpha} \mathrm{d} \beta \alpha^{m} \beta^{n} f(\alpha, \beta)
$$

- f is a complicated function involving the integration on 6 parameters
- Uniqueness of the Mellin moments of continuous functions allows us to identify f and φ

Preliminary Results

Scalar diquark Only

Asymptotic DA

- Typical symmetry in the pure scalar case
C. Mezrag et al., Phys.Lett. B783 (2018)

Preliminary Results

Scalar diquark Only

Asymptotic DA

- Typical symmetry in the pure scalar case
- Nucleon DA is skewed compared to the asymptotic one
C. Mezrag et al., Phys.Lett. B783 (2018)

Preliminary Results

Scalar diquark Only

Asymptotic DA

- Typical symmetry in the pure scalar case
- Nucleon DA is skewed compared to the asymptotic one
- Deformation along the symmetry axis and orthogonally to it - Impact of the virtuality dependence of the diquark WF

Preliminary Results

Scalar diquark Only

Asymptotic DA

- Typical symmetry in the pure scalar case
- Nucleon DA is skewed compared to the asymptotic one
- Deformation along the symmetry axis and orthogonally to it - Impact of the virtuality dependence of the diquark WF
- These properties are consequences of our quark-diquark picture
C. Mezrag et al., Phys.Lett. B783 (2018)

Preliminary Results

Scalar diquark Only

Asymptotic DA

- Typical symmetry in the pure scalar case
- Nucleon DA is skewed compared to the asymptotic one
- Deformation along the symmetry axis and orthogonally to it - Impact of the virtuality dependence of the diquark WF
- These properties are consequences of our quark-diquark picture
- Improvement in the modelling with respect to our previous work
C. Mezrag et al., Phys.Lett. B783 (2018)

LFWFs and images of the nucleon with GPDs

Generalised Parton Distributions

- Generalised parton distributions are defined as off-forward matrix elements:

$$
\begin{aligned}
& \left.\frac{1}{2} \int \frac{e^{i x P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, \mathrm{z}=0} \\
& =\frac{1}{2 P^{+}}\left[H^{q}(x, \xi, t) \bar{u} \gamma^{+} u+E^{q}(x, \xi, t) \bar{u} \frac{i \sigma^{+\alpha} \Delta_{\alpha}}{2 M} u\right] .
\end{aligned}
$$

D. Müller et al., Fortsch. Phy. 42101 (1994)
X. Ji, Phys. Rev. Lett. 78, 610 (1997)
A. Radyushkin, Phys. Lett. B380, 417 (1996) see also Jianwei Qiu talk

Generalised Parton Distributions

- Generalised parton distributions are defined as off-forward matrix elements:

$$
\begin{aligned}
& \left.\frac{1}{2} \int \frac{e^{i x P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0} \\
& =\frac{1}{2 P^{+}}\left[H^{q}(x, \xi, t) \bar{u} \gamma^{+} u+E^{q}(x, \xi, t) \bar{u} \frac{i \sigma^{+\alpha} \Delta_{\alpha}}{2 M} u\right]
\end{aligned}
$$

D. Müller et al., Fortsch. Phy. 42101 (1994)
X. Ji, Phys. Rev. Lett. 78, 610 (1997)
A. Radyushkin, Phys. Lett. B380, 417 (1996) see also Jianwei Qiu talk

- x : average momentum fraction carried by the active parton
- ξ : skewness parameter $\xi \simeq \frac{x_{B}}{2-x_{B}}$
- t : the Mandelstam variable

Generalised Parton Distributions

- Generalised parton distributions are defined as off-forward matrix elements:

$$
\begin{aligned}
& \left.\frac{1}{2} \int \frac{e^{i x P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0} \\
& =\frac{1}{2 P^{+}}\left[H^{q}(x, \xi, t) \bar{u} \gamma^{+} u+E^{q}(x, \xi, t) \bar{u} \frac{i \sigma^{+\alpha} \Delta_{\alpha}}{2 M} u\right] .
\end{aligned}
$$

D. Müller et al., Fortsch. Phy. 42101 (1994)
X. Ji, Phys. Rev. Lett. 78, 610 (1997)
A. Radyushkin, Phys. Lett. B380, 417 (1996)
see also Jianwei Qiu talk

- They can be accessed in exclusive processes

3D picture of the nucleon

- In the limit $\xi \rightarrow 0$, one recovers a density interpretation:
- 1D in momentum space (x)
- 2D in coordinate space \vec{b}_{\perp} (related to t)
M. Burkardt, Phys. Rev. D62, 071503 (2000)

3D picture of the nucleon

- In the limit $\xi \rightarrow 0$, one recovers a density interpretation:
- 1D in momentum space (x)
- 2D in coordinate space \vec{b}_{\perp} (related to t)
M. Burkardt, Phys. Rev. D62, 071503 (2000)
- Possibility to extract density from experimental data

figure from H. Moutarde et al., EPJC 78 (2018) 890

3D picture of the nucleon

- In the limit $\xi \rightarrow 0$, one recovers a density interpretation:
- 1D in momentum space (x)
- 2D in coordinate space \vec{b}_{\perp} (related to t)
M. Burkardt, Phys. Rev. D62, 071503 (2000)
- Possibility to extract density from experimental data

figure from H. Moutarde et al., EPJC 78 (2018) 890
- Correlation between \times and $b_{\perp} \rightarrow$ going beyond PDF and FF.

3D picture of the nucleon

- In the limit $\xi \rightarrow 0$, one recovers a density interpretation:
- 1D in momentum space (x)
- 2D in coordinate space \vec{b}_{\perp} (related to t)
M. Burkardt, Phys. Rev. D62, 071503 (2000)
- Possibility to extract density from experimental data

figure from H. Moutarde et al., EPJC 78 (2018) 890
- Correlation between \times and $b_{\perp} \rightarrow$ going beyond PDF and FF.
- Caveat: no experimental data at $\xi=0$ \rightarrow extrapolations (and thus model-dependence) are necessary

GPDs and LFWFs

- In the limit $\xi \rightarrow 0$ the connection between GPDs and LFWFs can be computed:

$$
\begin{aligned}
& \left.\frac{1}{2} \int \frac{e^{i x P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{\substack{z^{+}=0, z=0 \\
\xi=0}} \\
& \underset{N=3}{=} \sum_{\beta, \beta^{\prime}} \int\left[\prod_{i=1}^{3} \mathrm{~d} x_{i} \mathrm{~d} k_{\perp}^{i}\right] K_{\beta, \beta^{\prime}}\left(x, \xi, t, k_{\perp}^{i}\right) \psi_{\beta^{\prime}}^{*} \psi_{\beta}
\end{aligned}
$$

GPDs and LFWFs

- In the limit $\xi \rightarrow 0$ the connection between GPDs and LFWFs can be computed:

$$
\begin{aligned}
& \left.\left.\frac{1}{2} \int \frac{e^{i x P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0} ^{\xi=0}\right\} \\
& \underset{N=3}{=} \sum_{\beta, \beta^{\prime}} \int\left[\prod_{i=1}^{3} \mathrm{~d} x_{i} \mathrm{~d} k_{\perp}^{i}\right] K_{\beta, \beta^{\prime}}\left(x, \xi, t, k_{\perp}^{i}\right) \psi_{\beta^{\prime}}^{*} \psi_{\beta}
\end{aligned}
$$

- The impact of LFWFs with definite OAM projection can be followed up to the GPD expressions for $|x| \geq|\xi|$:

$$
\begin{aligned}
H(x, \xi, t) & =F_{H}\left(x, \xi, t, \psi_{1}, \ldots, \psi_{6}\right) \\
E(x, \xi, t) & =F_{E}\left(x, \xi, t, \psi_{5}, \psi_{6}\right)
\end{aligned}
$$

M. Riberdy et al., in preparation

Consequences I: OAM deformation of the nucleon

- OAM projection dependence on the 3D probability density:

$$
F_{H}\left(x, \xi, t, \psi_{1}, \ldots, \psi_{6}\right) \rightarrow \rho\left(x, b_{\perp}, \psi_{1}, \ldots, \psi_{6}\right)
$$

Visualisation of the impact of OAM

Consequences I: OAM deformation of the nucleon

- OAM projection dependence on the 3D probability density:

$$
F_{H}\left(x, \xi, t, \psi_{1}, \ldots, \psi_{6}\right) \rightarrow \rho\left(x, b_{\perp}, \psi_{1}, \ldots, \psi_{6}\right)
$$

Visualisation of the impact of OAM

- NR charged proton radius

$$
\begin{aligned}
& F_{1}(t)=\int \mathrm{d} x H\left(x, 0, t, \psi_{1}, \ldots, \psi_{6}\right) \\
& F_{2}(t)=\int \mathrm{d} x E\left(x, 0, t, \psi_{5}, \psi_{6}\right)
\end{aligned}
$$

Consequences I: OAM deformation of the nucleon

- OAM projection dependence on the 3D probability density:

$$
F_{H}\left(x, \xi, t, \psi_{1}, \ldots, \psi_{6}\right) \rightarrow \rho\left(x, b_{\perp}, \psi_{1}, \ldots, \psi_{6}\right)
$$

Visualisation of the impact of OAM

- NR charged proton radius

$$
\begin{aligned}
& F_{1}(t)=\int \mathrm{d} x H\left(x, 0, t, \psi_{1}, \ldots, \psi_{6}\right) \\
& F_{2}(t)=\int \mathrm{d} x E\left(x, 0, t, \psi_{5}, \psi_{6}\right)
\end{aligned}
$$

- However, no input on pressure or energy distributions (no access to D-term)

Consequences II: Experimental sensibility to OAM

- In principle we could assess the impact of OAM pojection on GPD-sensitive observables

Consequences II: Experimental sensibility to OAM

- In principle we could assess the impact of OAM pojection on GPD-sensitive observables
- but two main difficulties:
- Evolution mixes OAM projections \rightarrow one can draw conclusion only for OAM at the original scale
- amplitude convolution filters the information accessible experimentally

Consequences II: Experimental sensibility to OAM

- In principle we could assess the impact of OAM pojection on GPD-sensitive observables
- but two main difficulties:
- Evolution mixes OAM projections \rightarrow one can draw conclusion only for OAM at the original scale
- amplitude convolution filters the information accessible experimentally
- Observables sensitive to GPD E remain the best ones able to tell us something on OAM projection within the nucleon, but they are hard to measure (requires polarised proton targets or the ability to measure the polarisation of the recoil proton)
O. Bessidskaia Bylund et al., arXiv:2209.04313

Summary and conclusion

Achievements

- CSM compatible framework for Nucleon LFWFs computations
- Based on the Nakanishi representation
- Improved models from the first exploratory work
- Relation between LFWFs and GPDs has been worked out

Work in progress/future work

- Tackling the AV-diquark contributions
- Improvement of the Nakanishi Ansätze
- Computations of GPDs

Thank you for your attention

Back up slides

Nakanishi Representation

At all order of perturbation theory, one can write (Euclidean space):

$$
\Gamma(k, P)=\mathcal{N} \int_{0}^{\infty} \mathrm{d} \gamma \int_{-1}^{1} \mathrm{~d} z \frac{\rho_{n}(\gamma, z)}{\left(\gamma+\left(k+\frac{z}{2} P\right)^{2}\right)^{n}}
$$

We use a "simpler" version of the latter as follow:

$$
\tilde{\Gamma}(q, P)=\mathcal{N} \int_{-1}^{1} \mathrm{~d} z \frac{\rho_{n}(z)}{\left(\Lambda^{2}+\left(q+\frac{z}{2} P\right)^{2}\right)^{n}}
$$

