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The big picture

The Grand Nuclear Landscape
(finite nuclei + extended nucleonic matter)
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@ The nuclear Hamiltonian and the method

@ Some “issue” of chiral Hamiltonians

Light nuclei and neutron matter
@ Medium nuclei

Conclusions
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Nuclear Hamiltonian

Model: non-relativistic nucleons interacting with an effective
nucleon-nucleon force (NN) and three-nucleon interaction (TNI).

R &
H:—%EV%+ZVU+ Z Vi

i<j i<j<k
vij NN fitted on scattering data.

Viji typically constrained to reproduce light systems (A=3,4).

@ “Phenomenological/traditional” interactions (Argonne/lllinois)
@ Local chiral forces up to N>LO (Gezerlis, et al. PRL 111, 032501
(2013), PRC 90, 054323 (2014), Lynn, et al. PRL 116, 062501

(2016))
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Quantum Monte Carlo

Propagation in imaginary time:

Hip(F ... 7)) =Ev(FR ... 7))  (t) = e H=ED)(0)
Ground-state extracted in the limit of t — oc.

Propagation performed by
V(R ) = (RIu(t)) = [ dR'G(R. R 1)u(R"0

@ Importance sampling: G(R,R’,t) = G(R, R, t) V;(R")/V,(R)
@ Constrained-path approximation to control the sign problem.
Unconstrained-path calculation possible in several cases (exact).

GFMC includes all spin-states of nucleons in the w.f., nuclei up to A=12
AFDMC samples spin states, bigger systems, less accurate than GFMC

Ground-state obtained in a non-perturbative way. Systematic
uncertainties within 2-3% (A<6), 5-6% (12<A<16).

See Carlson, et al., Rev. Mod. Phys. 87, 1067 (2015)
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Light nuclei spectrum computed with GFMC
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Carlson, et al., Rev. Mod. Phys. 87, 1067 (2015)

Also radii, densities, matrix elements,

Unfortunately phenomenological Hamiltonians are not useful to address
systematical uncertainties.
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Nuclear Hamiltonian

2N force 3N force 4N force

Al k] - N

o ! A X T -
AR -

Expansion in powers of Q/A, Q~100 MeV, A ~1 GeV.

Long-range physics given by pion-exchanges (no free parameters).

Short-range physics: contact interactions (LECs) to fit. Operators need
to be regulated — cutoff dependency!

Order's expansion provides a way to quantify uncertainties!
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Chiral three-body forces, issue (I)?

C1,C3,Cy Cp Cp

In the Fourier transformation of Vp two possible operator structures arise:

com>
VoL = 56:-/? F4 Z ZT’ Tk { (g ) (ry) + Xi(ri)o () —

i<j<k cyc

8
mg agj O'k(S(I’,'j)(S(rkj):|

™

gAcDm 47
Vb2 = 967A, F2 Z ZTI Tk|: w(rik) — WJ' Uké(r:k):l { (ry')+5(rkj):|

i<j<k cyc

Xii(r) = T(r)Si+ Y(r)oi - oj

Navratil (2007), Tews et al PRC (2016), Lynn et al PRL (2016).

Equivalent only in the limit of an infinite cutoff. Implications in real life?
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Chiral three-body forces, issue (I1)?

C1,C3,C4 [&92] CE

Equivalent forms of operators entering in Vg (Fierz-rearrangement):
1, o0 Ti'T, 00T T, 00T Tk, [(UiXUj)'Uk][(TiXTj)'Tk]

Epelbaum et al (2002). We investigated the following choices:

i<j<k cyc

4 Z 25”‘1 (r5)

X "T i<j<k cyc

Qualitative differences expected, i.e. consider *He vs neutron matter!
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Chiral three-body forces

Coefficients cp and cg fit to reproduce the binding energy of *He and
neutron-*He scattering. — more information on T=3/2 part of
three-body interaction. (vs A=3, 4)
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*He binding energy and p-wave n-*He scattering

Regulator: 6(r) = mexp(—(f/'%)‘l)

Cutoff Ry taken consistently with the two-body interaction.
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No fit can be obtained for Ry = 1.2 fm and Vp; - Issue (1)

Lynn, Tews, Carlson, Gandolfi, Gezerlis, Schmidt, Schwenk PRL (2016).
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A=3, 4 nuclei at N2LO

o)

3d

(uy) (

=8l "%‘I "]"I(‘ THe

Error quantification: define @ = max (/\%v ’,’\7—:) and calculate:

A(N2LO) = max (Q4|©LO|7 @*|010 — Owiol, Q|Ownio — @N2L0>

Epelbaum, Krebs, Meissner (2014).
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Neutron matter at N2LO

EOS of pure neutron matter at N2LO, Ry=1.0 fm
Error quantification estimated as previously.
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Lynn, Tews, Carlson, Gandolfi, Gezerlis, Schmidt, Schwenk, PRL (2016).
Tews, Carlson, Gandolfi, Reddy, arXiv:1801.01923 (2018).

Significant dependence to the choice of Vg - Issue (I1)
Probably even worse for the softer cutoff!
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Heavier nuclei

What about heavier nuclei?

g 8 TR Jea
2R 0 I TR U IS D
= <Theeel i .o dac
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Many chiral Hamiltonians cannot predict both energies and radii.

Strategy: include medium nuclei properties in the fit (but sacrifice
nucleon-nucleon data)?

Ekstrom, Hagen, et al., Phys. Rev. C 91, 051301(R) (2015)
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AFDMC calculations

Energies and charge radii, cutoff 1.0 fm:

35 - Exq
3 o Fone P (a) Ry= 1.0 fm
F 1 b o
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Lonardoni, et al., PRL (2018), PRC (2018).

Qualitative good description of both energies and radii.
Good convergence (although uncertainties still large if LO included).

Different Vg operators give similar results.
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AFDMC calculations

Energies and charge radii, cutoff 1.2 fm:

2 35 ¥ Exp () Ry—121m
4 1O
4 3.0 =¥~ NLO
% N’LO Ex x
g . 25 e+ N’LO E1 % z . I %
2 s g 133 1
= -10

Lonardoni, et al., PRL (2018), PRC (2018).

Qualitative good description up to A=6.
Different Vg operators give very different results for 0.
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Energy contribution

Expectation value of the N°LO energy contributions 1°0:

Potential  Eyin + vj Z V2 v2mS Vb Ve
2b, 1.0 —134(2)

ET, 1.0 —130(2)  —44(1)  —55(1) 0.85(1) 0 8.50(4)
E1, 1.0 —131(2)  —41(1)  —54(1) 0.72(1)  —4.03(5) 15.7(1)
2b, 1.2 —151(3)

ET, 12 —156(7)  —202(3) —101(2) —0.72(9)  —94(2)  —5.43(3)
E1l,1.2 —152(2)  —26(1)  —34(1) 0.94(1) 4.53(8) 1.90(1)

LECs ¢cp and cg for different cutoffs and parametrizations of the
three-body force (other strengths are the same):

Vi Ro (fm) D ce

ET 1.0 0.0 —0.63
E1l 1.0 0.5 0.62
ET 1.2 3.5 0.09
E1l 1.2 —0.75 0.025
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Charge form factor
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Lonardoni, et al., PRL (2018), PRC (2018).

Hard interaction reproduces exp.
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Conclusions

@ Quantum Monte Carlo calculations for larger nuclei is now possible
(at least up to A=16, work in progress...)

@ Chiral EFT provides a way to constrain nuclear interactions and
estimate systematic uncertainties

But...
o Effect of the cutoff important to explore

e Effect of using different (“equivalent”) operators important to
explore. Some working better. How to choose?

Acknowledgments:
J. Carlson (LANL), D. Lonardoni (LANL and FRIB), J. Lynn, A. Schwenk
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Extra slides
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Quantum Monte Carlo

Hip(F ... 7)) =Ev(FR ... 7)) (t) = e H=ED)(0)
Ground-state extracted in the limit of t — oo.

Propagation performed by

G(R,t) = (RIp(1)) = / dR'G(R.R', t)y(R'.0)

e Importance sampling: G(R,R’,t) = G(R, R, t) V;(R")/V,(R)

@ Constrained-path approximation to control the sign problem.
Unconstrained calculation possible in several cases (exact).

Ground—state obtained in a non-perturbative way. Systematic
uncertainties within 1-2 %.
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Recall: propagation in imaginary-time

ef(T+V)AT,¢) ~ eiTATei‘/AT@[}

Kinetic energy is sampled as a diffusion of particles:
_ 2 T _ _R"2 T
e AVAVAN ’(/J(R) —e (R—R')*/2A lﬁ(R) :’(/}(R/)
The (scalar) potential gives the weight of the configuration:
e V(RATY(R) = wy(R)

Algorithm for each time-step:
o do the diffusion: R' = R+ ¢
@ compute the weight w

@ compute observables using the configuration R’ weighted using w
over a trial wave function ¥ .

For spin-dependent potentials things are much worse!
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The configuration weight w is efficiently sampled using the branching
technique:

Configurations are replicated or destroyed with probability
intlw + ¢&]

Note: the re-balancing is the bottleneck limiting the parallel efficiency.

Stefano Gandolfi (LANL) Properties of nuclei with chiral interactions



GFMC and AFDMC

Because the Hamiltonian is state dependent, all spin/isospin states of
nucleons must be included in the wave-function.

Example: spin for 3 neutrons (radial parts also needed in real life):

GFMC wave-function: AFDMC wave-function:
artt a as a3
ol (2)e(2)e(2)]
arir
o= aryy We must change the propagator by using
- ETRRS the Hubbard-Stratonovich transformation:
ary 2
ay |t e%AtO2 _ \/%/dxe_T-f—x\/EO
a g

; ; Auxiliary fields x must also be sampled.
A correlation like uxihary T X mu p

The wave-function is pretty bad, but we

L+ f(r)or- o2 can simulate larger systems (up to

can be used, and the variational wave A 22 100). Operators (except the energy)

function can be very good. Any operator are very hard to be computed, but in some

accurately computed. case there is some trick!
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We first rewrite the potential as:

Vo= Y el - 5+ velr) (365 - 7y - By — 57+ )] =
i<j

13N
= ZJiaAia;jﬂgjﬂ = 2 Z Or21)\"l
iJ n=1
where the new operators are
On = 0jgthnjs
iB
Now we can use the HS transformation to do the propagation:

—AT2 2 1 _2 V—=AATx
e A %ZnAOnwznizﬂ—/dxe >+ AA O"¢

Computational cost ~ (3N)3.
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Three-body forces

Three-body forces, Urbana, lllinois, and local chiral N2LO can be exactly
included in the case of neutrons.

For example:

02 ‘s

1
5[0 X6+ 5 X

cyc

2> " { Xy, X} = aiowf(ri, 17, i)

cyc

The above form can be included in the AFDMC propagator.
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Three-body forces

21, PW _ j2m PW N . B
v = A3 3 2T o T N el ol o Y Rk Xijs
i<j<k v
21, PW S - =
=4A7" > 7 el Z Xioky Xk~jp @
i<j k#i,j
21, PW _ j2m PW e e et 8
ve = A 3 2 Tio 7 Tidlef e o o 1 X i ky Xkpiip
i<j<k e
27, PW
=g S Sl enes ool ok vy Kiakn Xiuip @
i<j<k o
47 4m
27 PW
T, S S AR Tdlef e gli:aj@] (x,-ak,y — JQ,YTA(rI-k)> (kaﬂ - 5“ﬁ—3A(rkj)>
m m
i<j<k v o >
(3)
- vcAA + ch5 + \/‘__5" (4)
27, SW _ 2w, SW o B -
% = A > Y ZikaZkaot ol T
i<j<k o<
27, SW o B -
=A oo T T > ZikaEjka (5)
i<j kF#i,j
Vp=Ap Y "?Uj i T Y XiajglBlr) + Alr)] (6)
i<j ki, j
VE=AE DT T D0 AlidAl) )
i<j k#i,j
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Three-body forces

H =H— V7P L0 v2oPW Lo Vp + a3 Ve . (8)
The Hamiltonian H’ can be exactly included in the AFDMC propagation.
The three constants «; are adjusted in order to have:
(VEE) = (a VIO PY)
(V%) ~ (V)
(V) = (a3 Ve) (9)
Once the ground state W of H’ is calculated with AFDMC as explained
above, the expectation value of the Hamiltonian H is given by
(H) = (WIH'|W) + (W[H — H'|W)
= (V|H'|V) + (W|V2PW 0 v2TPW 0,V — agVE|W)  (10)
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Variational wave function

Ei< E — <1MH|’¢> _ fdrl...der*(rl...rN)Hw*(rl,_,rN)
= <¢|¢> fdrl...der*(rl...rN)i/)*(rl...rN)

— Monte Carlo integration. Variational wave function:

wor = et [ T1 o) [1 5 Tlomttoor o

i<j i<j<k i<j,p k

where OP are spin/isospin operators, f, ujj and f, are obtained by
minimizing the energy. About 30 parameters to optimize.

|®) is a mean-field component, usually HF. Sum of many Slater
determinants needed for open-shell configurations.

BCS correlations can be included using a Pfaffian.
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Variational wave function

(RsIwv) = (RSI[TT ()| [+ D F+ D2 Fe] 10w
i<j i<j i<j<k
(RS|® 1) = Z o[ D{6alris) } ,

Palris si) = nu( D) [Yim (7)o, (5i)]jm,

In particular, we included orbitals in 1S; /5, 1P3/5, 1Py /5, 1Ds/2, 2515,
and 1D3/2.
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The Sign problem in one slide

Evolution in imaginary-time:

Ui(RYW(R', t + dt) = /dR G(R,R, dt)‘i’l((':)) i(R)W(R, t)

note: W(R, t) must be positive to be "Monte Carlo” meaningful.

Fixed-node approximation: solve the problem in a restricted space where
W > 0 (Bosonic problem) = upperbound.

If W is complex:

1/J/(

(RIV(R ¢+ do) = [ dR G(R.R', o)

‘Iw/(R)IW(R 1)

Constrained-path approximation: project the wave-function to the real
axis. Extra weight given by cos Af (phase of w((R ), Re{W} >0 = not
necessarily an upperbound.
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Unconstrained-path

GFMC unconstrained-path propagation:

12C(0%) - AV18 & AVI18+IL7 with various corrs. — (H) — 27 Feb 2010

;o |
”HHWHWH\

Changing the trial wave function gives same results.
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Unconstrained-path

AFDMC unconstrained-path propagation:

°0, AV6"+Coulomb %0, AV7"+Coulomb

858
%

1 Eiﬁiiiﬁgﬁﬁﬁﬁgﬁﬁm 7

E (MeV)
E(MeV)

R | | |
0 0.00025 0.0005 0.00075 0001
T(MeV')

I I
0 0.0005 0.001 0.0015 0.002 0.0025
TMeV')

The difference between CP and UP results is mainly due to the presence
of LS terms in the Hamiltonian. Same for heavier systems.

Work in progress to improve W to improve the constrained-path.
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