Analyzing chiral EFT power counting by RG Analysis plot

Chieh-Jen (Jerry) Yang

ECT* workshop 2018 June/7/2018

Collaborators: H. Griesshammer

The Nuclear Force Problem: Is the Never-Ending Story Coming to an End?

R. Machleidt

Department of Physics, University of Idaho, Moscow, Idaho, U.S.A.

Table 1. Seve	n Decades of Struggle: The Theory of Nuclear Forces	_
1935	Yukawa: Meson Theory	
	The "Pion Theories"	—
1950's	One-Pion Exchange: o.k.	
	Multi-Pion Exchange: disaster	
	Many pions \equiv multi-pion resonances:	
1960's	$\sigma, ho, \omega,$	
	The One-Boson-Exchange Model	
	Refine meson theory:	
1970's	Sophisticated 2π exchange models	
	(Stony Brook, Paris, Bonn)	
	Nuclear physicists discover	
1980's	QCD	
	Quark Cluster Models	
	Nuclear physicists discover EFT	
1990's	Weinberg, van Kolck	
and beyond	Back to Meson Theory!	Answer: Ves. almost!
	But, with Chiral Symmetry	

Nature of the problem: Chiral EFT at NN sector

- Infinitely many diagrams contribute, most of them require renormalization.
- Need to arrange a way to include them based on their importance (there maybe more than one consistent way).
- Weinberg prescription can be used up to the potential level.
- Pure perturbation doesn't work.

Conventional power counting

Epelbaum, Entem, Machleidt, Kaiser, Meissner, ... etc., ~90% of the people

- Arrange diagrams base on Weinberg's power counting (WPC): each derivative on the Lagrangian terms is always suppressed by the underlying scale of chiral EFT, $M_{hi} \sim m_{\sigma}$.
- Iterate potential to all order (in L.S. or Schrodinger eq.), with an ultraviolet Λ .

Carried out to N⁵LO(Q⁶/M⁶_{hi})

D. R. Entem, N. Kaiser, R. Machleidt and Y. Nosyk, PRC 92, 064001.P. Reinert, H. Krebs and E. Epelbaum, arXiv:1711.08821.

V(N^{n ≥ 2}LO) performs as good as high accuracy V_{CDBonn, AV18, etc.,...}, if keep **500**< Λ <**875 MeV** (or, recently, Λ =**350**~**500** MeV).

Conventional power counting

Epelbaum, Entem, Machleidt, Kaiser, Meissner, ... etc., ~90% of the people

- Arrange diagrams base on Weinberg's prescription (WPP): each derivative on the Lagrangian terms is always suppressed by the underlying scale of chiral EFT, M_{hi}~m_σ.
- Iterate potential to all order (in L.S. or Schrodinger eq.), with an ultraviolet Λ .

Carried out to N⁴LO(Q⁵/M⁵_{hi})

D. R. Entem, N. Kaiser, R. Machleidt and Y. Nosyk, PRC 92, 064001.P. Reinert, H. Krebs and E. Epelbaum, arXiv:1711.08821.

V(N^{n ≥ 2}LO) performs as good as high accuracy V_{CDBonn, AV18, etc.,...}, if keep **500**< Λ <**875 MeV** (or, recently, Λ =**350**~**500** MeV).

Conventional power counting

Epelbaum, Entem, Machleidt, Kaiser, Meissner, ... etc., ~90% of the people

Problems of WPC in RG

- Singular attractive potentials demand contact terms. (Nogga, Timmermans, van Kolck (2005))
- Beyond LO: Has RG problem at $\Lambda > 1 \text{ GeV}$ (due to iterate to all order)

Why is that a problem?

Renormalization group (RG)

: included

In the window of $500 < \Lambda < 875$ MeV

- Whether the conventional way happens to represent the reality, or, the problem just got hidden in the apparently o.k. fit of phase shifts ?
- It is safest/more reasonable, to develop a new power counting, which is more EFT.
- The ultimate way to check is through few-body and ab-initio nuclear structure calculations.

In the window of 500 << 875 MeV 350-500 MeV, recently

- Whether the conventional way happens to represent the reality, or, the problem just got hidden in the apparently o.k. fit of phase shifts ?
- It is safest/more reasonable, to develop a new power counting, which is more EFT.
- The ultimate way to check is through few-body and ab-initio nuclear structure calculations.

Motivation for developing new power counting

Some indications: nuclear structure

Talk by R. S. Stroberg, ESNT workshop 2017

New power counting Long & Yang, (2010-2012)

LO: Still iterate to all order (at least for most l < 2).

Start at NLO, do perturbation. $(T = T^{(0)} + T^{(1)} + T^{(2)} + T^{(3)} + ...)$

If V⁽¹⁾ is absent: $T^{(2)} = V^{(2)} + 2V^{(2)}GT^{(0)} + T^{(0)}GV^{(2)}GT^{(0)}.$ One insertion of V⁽²⁾ in T⁽⁰⁾ V⁽²⁾ V⁽²⁾ T⁽⁰⁾ V⁽²⁾ T⁽⁰⁾ V⁽²⁾ T⁽⁰⁾ $V^{(2)}$ $T^{(0)}$ $G = \frac{2M_N}{\pi} \int_0^{\Lambda} \frac{p^2 dp}{p_0^2 - p^2 + i\varepsilon}$

 $T^{(3)} = V^{(3)} + 2V^{(3)}GT^{(0)} + T^{(0)}GV^{(3)}GT^{(0)}.$

3 types of counter terms (determined by RG)

- 1. Primordial: Those renormalize the pion-exchange diagrams. (always there if survived from partial-wave decomposition)
- 2. Distorted –wave counter terms

 $\left(\mathbf{T}^{(0)}\right)\left(\mathbf{V}^{(2)}\right)\left(\mathbf{T}^{(0)}\right)$

could diverge more than Q²

3. Residual counter terms: Decided by the requirement from RG.

e.g., if
$$|T^{(n)}(k;\Lambda) - T^{(n)}(k;\infty)| \ge O(\frac{Q^{n+2}}{M_{hi}^{n+2}})$$
, then need V_{Short}^{n+1} at order n+1.

Results (All RG-invariant)

Table of notations

L&Y	WPC	Potential enters
LO(Q ⁻¹)	WPC(1, or, Q ^{-1*}) *E. Epelbaum, J. Gegelia, Ulf-G. Meißner Nucl. Phys. B925 (2017) 161-185	L&Y: (OPE+proper contact term) _{iter-to-all} WPC: (OPE+wpc contact term) _{iter-to-all}
NLO(Q ⁰)		L&Y: Only 1S0: D(p ²⁺ p' ²)
NNLO(Q ¹)		L&Y: Leading TPE+ proper contact terms.
N3LO(Q ²)	$WPC(Q^2)$	L&Y: Subleading TPE+ proper contact terms. WPC: (Leading TPE+wpc contact term) _{iter-to-all}
	$WPC(Q^3)$	L&Y: Haven't done. WPC: (Subleading TPE+wpc contact term) _{iter-to-all}

Check power counting: Modified-Lepage plot

Any EFT the following must be true:

• For a particular order n, choose (Λ_1, Λ_2) , after renormalized the L.E.C.s

 \rightarrow get (O_n (k,m_{π}; Λ_1), O_n (k, m_{π}; Λ_2)).

- After subtracting each other, the part independent of cutoff (i.e., the physical part) cancels out, and we are left with residual cutoff-dependence, which is of order "n+1" in the expansion.
- Divide the above by O_n (k,m_{π}; Λ_1): => Numerator ~(k/ Λ_{EFT})ⁿ⁺¹. The denominator contains $(m_{\pi}/\Lambda_{EFT})^{n+1}$, which is O(k⁰), so that the slope we will get is "n+1".

$$\frac{\mathcal{O}_n(k, p_{typ}; \Lambda_1) - \mathcal{O}_n(k, p_{typ}; \Lambda_2)}{\mathcal{O}_n(k, p_{typ}; \Lambda_1)} = \left(\frac{k, p_{typ}}{\overline{\Lambda}_{EFT}}\right)^{n+1} \frac{\mathscr{C}_n(\Lambda_1; k, p_{typ}, \overline{\Lambda}_{EFT}) - \mathscr{C}_n(\Lambda_2; k, p_{typ}, \overline{\Lambda}_{EFT})}{\mathscr{C}_n(\Lambda_1; k, p_{typ}, \overline{\Lambda}_{EFT})}$$

Question: how high should one fits the phase shift?

- If we renormalize L.E.C.s near $T_{lab} \rightarrow 0$, then: => The outcoming phase shifts becomes bad in the rest of the place. This is not what Pionful theory is designed for.
- If we renormalize L.E.C.s up to the breakdown scale ($\Lambda_{\rm EFT}$), then:
- \Rightarrow There is no region left for prediction.

Thus, fit up to $k_{cm} \sim 140$ MeV. And use $k_{cm} \subset [160, 450]$ to extracted the slope.

Check effect of different fitting range

Take 3p0 as an example

In the modified PC (Long & Yang)

	LO (1 LEC)	NNLO and $N^{3}LO$ (2 LECs)
fit_a	$k\sim 140~{\rm MeV}$	$k\sim 68~{\rm and}~140~{\rm MeV}$
fit_b	$k\sim 116~{\rm MeV}$	$k\sim 68~{\rm and}~120~{\rm MeV}$
fit_c	$k\sim 116~{\rm MeV}$	$k\sim 92~{\rm and}~140~{\rm MeV}$
fit_d	$k\sim 116~{\rm MeV}$	$k\sim 92$ and 160 ${\rm MeV}$

Have small dependence if the highest fitting point \geq 140 MeV. Otherwise, the effect is not small.

(e.g., (b): highest fitting point $\sim 120 \text{ MeV} \longrightarrow$ behaves more like pionless theory).

Fitting strategy

- In general, perform best fit up to k_{cm}=140 MeV.
- For ${}^{1}S_{0}$ at LO=>fit to a_{0} (because for Λ >500 MeV, the phase shift deviate from Nijmegen a lot.)
- For subleading TPE, try both c₃=-4.7 and c₃
 =-3.4 GeV⁻¹, turns out has almost no impact no the outcoming slope.

Result of the new power counting (Long & Yang)

Phys. Rev. C84, 057001 (2011) Phys. Rev. C85, 034002 (2012) Phys. Rev. C86, 024001 (2012). **S**0

Try the same for WPC

• RG fails at $\Lambda > 1$ GeV. Try $\Lambda = 500 \sim 900$ MeV. Additionally, try $\Lambda = 350 \sim 500$ MeV for uncoupled p-waves.

=>The pre-factor of residual cutoff dep. term may not be O(1). Results might not be that meaningful.

• Fitting strategy: exactly the same as before.

S0

Summary of results

		$LO(Q^{-1}),WPC(Q^{-1})$	NLO(Q ⁰)	NNLO(Q ¹)	$N^{3}LO(Q^{2}),WPC(Q^{2})$	$WPC(Q^3)$
$^{1}\mathbf{S}_{0}$	n+1 extracted	1~1.5	6~7	10.5~11.5		
LY	n+1 predicted	0	1	2		
${}^{1}S_{0}$	n+1 extracted	1~1.3			2.3~3.1 !	6~8
WPC	n+1 predicted	0~2			3	4
$^{3}S_{1}$	n+1 extracted	2~3		6~6.3	5.6~6.5	
LY	n+1 predicted	1		2	3	
${}^{3}S_{1}$	n+1 extracted	2.8~3			2.5~3 !	3.4~5.8
WPC	n+1 predicted	0~2			3	4

Black: Same or better than prediction.

Red: Worse than prediction.

Blue: +1 possible

$^{3}D_{1}$	n+1 extracted	1.5~2	5~5.7	5~6	
LY	n+1 predicted	1	2	3	
³ D ₁	n+1 extracted	1~2		1~1.6 !	0.5~1.5!
WPC	n+1 predicted	0~2		3	4
		8			
E1	n+1 extracted	1.5~2.5	4~5	5~10	
E ₁ LY	n+1 extracted n+1 predicted	1.5~2.5 1	4~5 2	5~10 3	
E ₁ LY E ₁	n+1 extracted n+1 predicted n+1 extracted	1.5~2.5 1 1.5~2.5	4~5 2	5~10 3 0~3 !	0~2*!

		LO(Q ⁻¹),WPC(Q ⁻¹)	NLO(Q ⁰)	NNLO(Q ¹)	$N^{3}LO(Q^{2}),WPC(Q^{2})$	WPC(Q ³)
¹ P ₁	n+1 extracted	2.8~3.3		5.5~6.9	5~6	
LY	n+1 predicted	1 plus 1~1.7		2 plus 1~1.7	3 plus 1~1.7	
${}^{1}P_{1}$	n+1 extracted	3.1~3.5			5.7~7*	5.8~7.2
WPC	n+1 predicted	0~2			3	4
³ P ₀	n+1 extracted	6~7		9~9.5	9~9.5	
LY	n+1 predicted	1 plus 1~1.7#		2 plus 1~1.7#	3 plus 1~1.7 [#]	
³ P ₀ WPC	n+1 extracted	-1~0 (0.7~1) !			7.2~8.6	8~9 (9~10)
	n+1 predicted	0~2			3	4
³ P ₁	n+1 extracted	2~2.2		5.5~5.8	4.5~5.5	
LY	n+1 predicted	1 plus 1~1.7#		2 plus 1~1.7#	3 plus 1~1.7#	
³ P ₁	n+1 extracted	2~2.2			4~5	4.3~4.6
WPC	n+1 predicted	0~2			3	4
³ P ₂	n+1 extracted	5~5.2		5~7*	6.4~6.6	
LY	n+1 predicted	1 plus 1~1.7 [#]		2 plus 1~1.7 [#]	3 plus 1~1.7 [#]	
³ P ₂	n+1 extracted	0.7~0.9			1.5~4.5 !	3~4!
WPC	n+1 predicted	0~2			3	4
$^{3}F_{2}$	n+1 extracted	5.5~7.5		8~9*	10~11	
LY	n+1 predicted	1 plus 1~1.7 [#]		2 plus 1~1.7 [#]	3 plus 1~1.7 [#]	
$^{3}F_{2}$	n+1 extracted	3~4			3.3~4.5	3~4!
WPC	n+1 predicted	0~2			3	4
E ₂	n+1 extracted	8~9		10~13*	12~13*	
LY	n+1 predicted	1 plus 1~1.7 [#]		2 plus 1~1.7 [#]	3 plus 1~1.7 [#]	
E ₂	n+1 extracted	0.4~1.1			2.2~5.5*	1.3~2.6*!
WPC	n+1 predicted	0~2			3	4

Plus 1~1.7 => relative demotion (1p1 w.r.t. 1s0) due to the centrifugal barrier.

M. P. Valderrama, et al, PRC95 054001 (2017).

Blue: Assuming the same demotion for other p-waves.

Observations & Lessons

- In general, new power counting has larger slope than WPC => imply faster convergence, and less cutoff dependence.
- No improvement from the order where leading-TPE enters w.r.t. NLO-TPE, regardless new PC or WPC.=> need $\Delta(1232)$.
- WPC fails in some singular attractive channels (within the limited range Λ =500-900 MeV).

You can do better than prediction, but not worse.

Road Map for the future

Thank you!

(to make use of) all the counter terms which are legitimate (according to a truly RG-invariant theory) to be used.

Quality of the fits (comparable to WPC at the same order)

Perturbation: Difficulties and solution

• Practical problem: Need to evaluate all E_n to do perturbation theory, \otimes .

$$E_n^{nlo} = \langle \psi_n^{LO} | V_{nlo} | \psi_n^{LO} \rangle, E_n^{nnlo} = \sum_{i \neq n} \frac{|\langle \psi_i^{LO} | V_{nnlo} | \psi_n^{LO} \rangle|^2}{E_n^{LO} - E_i^{LO}}$$

• Solution (Back to starting point, thanks Dean Lee & Nir Barnea)

$$H = \underbrace{(H_0 + V_{LO})}_{non-per.} + \lambda V_{nlo} + \lambda^2 V_{nnlo} + \dots$$

$$E_i = E_i^{LO} + \lambda E_i^{nlo} + \lambda^2 E_i^{nnlo} + \dots$$

Still diagonal the matrix, but vary λ to extract contribution at each higher order. S