Bayesian parameter estimation for chiral interactions: NN sector

### Sarah Wesolowski New Ideas in Constraining Nuclear Forces, ECT\* 2018





Dick Furnstahl (OSU) Jordan Melendez (OSU) Matt Pratola (OSU statistics) Daniel Phillips (OU)

Supported in part by NSF, DOE, and the SciDAC NUCLEI project

# Motivation

### **Current landscape of uncertainty quantification for interactions**

- Covariance methods: uncertainty from fitting to data
- Bootstrapping: uncertainty from fitting or numerics
- Truncation error estimates for EFTs: codifying standard EFT protocols
- **Bayesian**: can fit the above methods into this framework



# Outline

**GOAL:** estimate the low-energy constants (LECs) of nuclear interactions, include all information consistently, and provide statistically meaningful uncertainty estimates

E.g. overestimating error bands: "We're going to win so much, you're going to be so sick and tired of winning."

- case study 1. userumess of projected posterior plots

• Case study 2: LEC stability with maximum energy for fit

• Part 2: modeling truncation errors using Gaussian processes

- Brief motivation of the GP model
- Point-wise versus curve-wise implementation
- Posterior for the EFT breakdown scale

# Recent explosion of chiral EFT interactions

Interactions from 2003-4: EM(500, 600 MeV) or family of EGM potentials; used similar non-local regulators and similar fits to NN, 3N

### New generation NN+3N interactions [references at end]

- Non-local: updated EMN and new soft; Ekstrom et al. sim, sat, and with  $\Delta s$
- Local (for QMC): Gezerlis et al. nucleons only; Piarulli et al. with  $\Delta s$
- Semi-local: Bochum-Julich group, SCS (x-space) and SMS (p-space)

**Issues:** power counting, regulator artifacts, EFT convergence, fitting protocols, fine-tuning, over/under-fitting, parameter redundancies, how to do UQ?

### Parameter estimation issues repeat with LECs for currents and for other EFTs

# Propaganda: Follow the Bayes Way



$$\operatorname{pr}(A|B,I) = \frac{\operatorname{pr}(B|A,I)\operatorname{pr}(A|I)}{\operatorname{pr}(B|I)} \Longrightarrow \underbrace{\operatorname{pr}(x|\operatorname{data},I)}_{\operatorname{posterior}} \propto \underbrace{\operatorname{pr}(\operatorname{data}|x,I)}_{\operatorname{likelihood}} \times \underbrace{\operatorname{pr}(x|I)}_{\operatorname{prior}}$$

## Why use Bayesian statistics?

- Parameter estimation: conventional optimization recovered as special case
- Update expectations using Bayes' theorem when have more information
- Assumptions are made explicit (e.g. naturalness of LECs)
- Clear prescriptions for combining errors
- Statistics as diagnostics for *physics*
- Model checking: we can *test* if our UQ model works and study sensitivities
- Model selection: Is the  $\Delta$  needed? Pionless vs. pionful formulations, ...
- Particularly well suited for (any) EFT, but generally suited for theory errors

# Bayesian framework for parameter estimation in EFTs

[See sw et al., J. Phys. G 43, 074001 (2016)]

**Here:** Use parameter estimation for NN phase shifts as test case (SCS potential of EKM)

- Good news: well studied, clear example for comparison, fairly easy computation
- Bad news: numerous and precise data → differences from conventional approach are subtle. Plan: focus on illuminating cases.
- 1. The usefulness of projected posterior plots
- 2. LEC stability with maximum energy for fit
- 3. Combining theory uncertainties (in progress)

**Based on:** Exploring Bayesian parameter estimation for chiral effective field theory using nucleon-nucleon phase shifts, sw, R.J. Furnstahl, D. Phillips (posted soon)





Posterior pdf for vector of  $k^{\text{th}}$  order LECs  $a^{(k)}$  with naturalness assumption

$$\begin{array}{ccc} \operatorname{pr}(\mathbf{a}^{(k)}|k,k_{\max},D(E_{\max})) \propto & e^{-\chi^2_{\operatorname{aug}}/2} e^{\mathbf{B}^T \mathbf{A}^{-1} \mathbf{B}/2} \\ & \swarrow & & \swarrow \\ \text{account for omitted} & \text{use data up to} \\ \operatorname{terms up to} k_{\max} & & \operatorname{energy} E_{\max} \end{array}$$



Posterior pdf for vector of  $k^{\text{th}}$  order LECs  $a^{(k)}$  with naturalness assumption

$$\operatorname{pr}(\mathbf{a}^{(k)}|k, k_{\max}, D(E_{\max})) \propto e^{-\chi_{\operatorname{aug}}^2/2} e^{\mathbf{B}^T \mathbf{A}^{-1} \mathbf{B}/2}$$
  
data EFT prediction at  $k^{\operatorname{th}}$  order  
$$\chi_{\operatorname{aug}}^2 = \sum_{i=1}^N \left(\frac{d_i - t^{(k)}(p_i; \mathbf{a}^{(k)})}{\sigma_i}\right)^2 + \frac{(\mathbf{a}^{(k)})^2}{2\bar{a}_{\operatorname{fix}}^2}$$

Augmented  $\chi^2$  accounts for data errors  $\sigma_i$ and bounded (natural) LECs, here with simple  $\delta$ -function prior at  $\bar{a}_{fix}$ 

$$\underbrace{\mathrm{pr}(\mathbf{a}|D,I)}_{\text{posterior}} \propto \underbrace{\mathrm{pr}(D|\mathbf{a},I)}_{\text{likelihood}} \times \underbrace{\mathrm{pr}(\mathbf{a}|I)}_{\text{prior}}$$

D = data, I = background info.

Posterior pdf for vector of  $k^{th}$  order LECs  $a^{(k)}$  with naturalness assumption

$$\operatorname{pr}(\mathbf{a}^{(k)}|k, k_{\max}, D(E_{\max})) \propto e^{-\chi^2_{\operatorname{aug}}/2} e^{\mathbf{B}^T \mathbf{A}^{-1} \mathbf{B}/2}$$

$$\chi_{\text{aug}}^2 = \sum_{i=1}^N \left( \frac{d_i - t^{(k)}(p_i; \mathbf{a}^{(k)})}{\sigma_i} \right)^2 + \frac{\left( \mathbf{a}^{(k)} \right)^2}{2\bar{a}_{\text{fix}}^2}$$

$$A_{jj'} = \frac{\delta_{j,j'}}{\bar{c}_{\text{fix}}^2} + \sum_{i=1}^N \frac{X_0(p_i)^2 Q_i^{j+j'}}{\sigma_i^2}$$
$$B_j = \sum_{i=1}^N X_0(p_i) Q_i^j \frac{d_i - t^{(k)}(p_i; \mathbf{a}^{(k)})}{\sigma_i^2}$$

Accounts for *truncation error* from omitted higher-order terms

### Ref: Stump et al., PRD 65 014012 (appendix B)

- Consistently include higher-order correlated errors
- Assumed to be same set of coefficients for each datum
- Minimally informative assumptions
- Easy to implement! (more consistent alternatives in progress)

$$\underbrace{\mathrm{pr}(\mathbf{a}|D,I)}_{\text{posterior}} \propto \underbrace{\mathrm{pr}(D|\mathbf{a},I)}_{\text{likelihood}} \times \underbrace{\mathrm{pr}(\mathbf{a}|I)}_{\text{prior}}$$

D = data, I = background info.

Posterior pdf for vector of  $k^{\text{th}}$  order LECs  $\mathbf{a}^{(k)}$  with naturalness assumption

$$\operatorname{pr}(\mathbf{a}^{(k)}|k, k_{\max}, D(E_{\max})) \propto e^{-\chi^2_{\operatorname{aug}}/2} e^{\mathbf{B}^T \mathbf{A}^{-1} \mathbf{B}/2}$$

$$\chi_{\text{aug}}^2 = \sum_{i=1}^N \left( \frac{d_i - t^{(k)}(p_i; \mathbf{a}^{(k)})}{\sigma_i} \right)^2 + \frac{\left( \mathbf{a}^{(k)} \right)^2}{2\bar{a}_{\text{fix}}^2}$$

$$A_{jj'} = \frac{\delta_{j,j'}}{\overline{c}_{\text{fix}}^2} + \sum_{i=1}^N \frac{X_0(p_i)^2 Q_i^{j+j'}}{\sigma_i^2}$$
$$B_j = \sum_{i=1}^N X_0(p_i) Q_i^j \frac{d_i - t^{(k)}(p_i; \mathbf{a}^{(k)})}{\sigma_i^2}$$

For case study 1, we won't include truncation errors, so  $k = k_{max}$ 

$$\operatorname{pr}(\mathbf{a}^{(k)}|k, k_{\max} = k, D(E_{\max})) \propto e^{-\chi_{\operatorname{aug}}^2/2} \qquad \chi_{\operatorname{aug}}^2 = \sum_{i=1}^N \left(\frac{d_i - t^{(k)}(p_i; \mathbf{a}^{(k)})}{\sigma_i}\right)^2 + \frac{\left(\mathbf{a}^{(k)}\right)^2}{2\bar{a}_{\operatorname{fix}}^2}$$



$$\operatorname{pr}(\mathbf{a}^{(k)}|k, k_{\max} = k, D(E_{\max})) \propto e^{-\chi_{\operatorname{aug}}^2/2} \qquad \chi_{\operatorname{aug}}^2 = \sum_{i=1}^N \left(\frac{d_i - t^{(k)}(p_i; \mathbf{a}^{(k)})}{\sigma_i}\right)^2 + \frac{\left(\mathbf{a}^{(k)}\right)^2}{2\bar{a}_{\operatorname{fix}}^2}$$





# Case study 1: The usefulness of projected posteriors $pr(\mathbf{a}^{(k)}|k, k_{\max} = k, D(E_{\max})) \propto e^{-\chi^2_{\text{aug}}/2} \qquad \chi^2_{\text{aug}} = \sum_{i=1}^{N} \left(\frac{d_i - t^{(k)}(p_i; \mathbf{a}^{(k)})}{\sigma_i}\right)^2 + \frac{\left(\mathbf{a}^{(k)}\right)^2}{2\bar{a}_{\text{fix}}^2}$









Reinert et al. find much better behaved SMS fit with three fewer parameters!

| EFT convergence                                                        |                                      |           |
|------------------------------------------------------------------------|--------------------------------------|-----------|
| $X(p) = X_0 \sum_{n=0}^k c_n Q^n,$<br>$Q = \max(p, m_\pi) / \Lambda_b$ | $\Delta_k = \sum_{n=k+1}^{k_{\max}}$ | $c_n Q^n$ |

- How should we choose *E*<sub>max</sub> to fit?
- Operator expansion, so LECs should be independent of data used
- Could distort observables (e.g., energies work but not radii)
- Solution: account for EFT truncation
- *E*<sub>max</sub> plots are simple proxy for Bayesian model selection
- Generally relevant for fitting!



Note: fit is to partial-wave cross section with larger uncertainty

# Outline

**GOAL:** estimate the low-energy constants (LECs) of nuclear interactions, include all information consistently, and provide statistically meaningful uncertainty estimates

• Part I: parameter estimation for chiral EFT using NN phaseshifts

- Setup: Bayesian propaganda and framework
- How to incorporate truncation errors in parameter estimation
- Case study 1: usefulness of projected posterior plots
- Case study 2: LEC stability with maximum energy for fit
- Part 2: modeling truncation errors using Gaussian processes
  - Brief motivation of the GP model
  - Point-wise versus curve-wise implementation
  - Posterior for the EFT breakdown scale

# Statistical model for truncation errors

### Previous work: Furnstahl, Phillips, Klco, sw, PRC 92, 024005 (2015)

- Previous work: used a Bayesian interpretation to develop a statistically meaningful model for truncation errors in EFTs
- Order-by-order convergence predicts size of truncation
- Can validate our predictions, diagnose convergence issues, etc.

#### Wondering how you can do it?

- Eq.(25) in above reference
- Generalizes common prescription
- Error bands are NOT Gaussian
- Model-checking diagnostics:
  - Furnstahl, Phillips, Klco, sw, PRC 92, 024005 (2015)
  - Melendez, Furnstahl, sw PRC
    96, 024003 (2017)

In the limiting case of prior Set  $A_{\epsilon}^{(1)}$ , this integral can be evaluated explicitly [6],

$$d_{k}^{(p)} = \bar{c}_{(k)} Q^{k+1} \times \begin{cases} \frac{n_{c}+1}{n_{c}} p\% & \text{if } p \leqslant \frac{n_{c}}{n_{c}+1}, \\ \left[\frac{1}{(n_{c}+1)(1-p\%)}\right]^{1/n_{c}} & \text{if } p > \frac{n_{c}}{n_{c}+1}, \end{cases}$$
(25)

where  $n_c$  is again the number of nonzero known coefficients. Thus, with these priors, the interval of width  $\bar{c}_{(k)}Q^{k+1}$  about the EFT prediction at order k is a  $n_c/(n_c + 1) * 100\%$  DOB interval, cf. Ref. [6]. Such a theory error bar has often been assigned in previous EFT calculations, and—as we discuss further in Sec. III—corresponds to the prescription formalized in Refs. [10,11]. It is important—e.g., in the context of error propagation—to keep in mind that this prior leads to a distribution of probability for the truncation error that is not Gaussian.

# Improving the model: Gaussian processes

### Gaussian process model for truncation errors:

- Predictions at nearby kinematics are not independent
- Use correlation information to improve truncation predictions
- Learn physics! diagnose breakdown scale + correlation length



# Lessons from Bayesian methods in the NN sector

Tested by "fitting" (sampling posteriors) of NN LECs in partial waves; lessons are general

Case study 1: The usefulness of projected posterior plots

- Important for understanding the full information content of the data
- Most channels look Gaussian, but do statistical test before approximations!
- ◆ Use of projected posterior plots as a *physics diagnostic* illustrated by the fourthorder s-wave LECs → parameter degeneracy

### Case study 2: LEC stability with maximum energy for fit

- What is optimal trade-off between more data to determine LECs more precisely and fit contamination at higher energies of omitted higher-order EFT terms?
- Sensitivity to  $E_{max}$  removed with Bayesian UQ  $\rightarrow$  LECs should be independent
- Accounting for truncation errors; verify with E<sub>max</sub> plots

Gaussian processes: Improving truncation error model using correlation information

- Nearby kinematics do not contain independent information
- Correlation information can be used to learn about the interaction
- The EFT breakdown can be statistically determined by examining convergence

# **Future Bayesian Plans (Collaborators wanted!)**

- Use scattering observables directly for parameter estimation
- Identify appropriate priors for other theoretical expectations such as Wigner symmetry
- Propagate all sources of error, including from LECs, to few- and many-body observables
- Estimate the EFT expansion parameter from the expected convergence pattern of additional observable predictions (uniform matter in progress)
- Account for correlations between LECs from the  $\pi N$ , NN, and few-body sectors
- Assess the impact of available experimental data on the number of orders of the EFT that can be constrained via Bayesian model selection
- Employ Bayesian model checking techniques to verify for observable calculations that the EFT expansion is working ``as advertised"
- Model selection problems (which degrees of freedom to use)?

# References

Some BUQEYE publications on UQ for EFT

- o "A recipe for EFT uncertainty quantification in nuclear physics", J. Phys. G 42, 034028 (2015)
- "Quantifying truncation errors in effective field theory", Phys. Rev. C 92, 024005 (2015) [with Natalie Klco]
- "Bayesian parameter estimation for effective field theories", J. Phys. G 43, 074001 (2016)
- o "Bayesian truncation errors in chiral EFT: nucleon-nucleon observables", Phys. Rev. C 96, 024003 (2017)

Recent publications on fitting chiral EFT interactions

- D. R. Entem, R. Machleidt, and Y. Nosyk. "High-quality two-nucleon potentials up to fifth order of the chiral expansion," Phys. Rev. C 96, 024004, 2017.
- B. Carlsson, A. Ekström, C. Forssén, D. F. Strömberg, O. Lilja, et al. "Uncertainty analysis and order-by-order optimization of chiral nuclear interactions," Phys. Rev. X, 011019, 2015.
- A. Gezerlis, I. Tews, E. Epelbaum, M. Freunek, S. Gandolfi, K. Hebeler, A. Nogga, A. Schwenk. "Local chiral effective field theory interactions and quantum Monte Carlo applications," Phys.Rev. C 90, 054323 (2014).
- M. Piarulli, L. Girlanda, R. Schiavilla, R. Navarro P erez, J. E. Amaro, and E. Ruiz Arriola. "Minimally nonlocal nucleon-nucleon potentials with chiral two-pion exchange including resonances," Phys. Rev. C, 024003, 2015.
- E. Epelbaum, H. Krebs, and U. G. Meißner. "Improved chiral nucleon-nucleon potential up to next-to-next-to-next-to-leading order," Eur. Phys. J. A 51, 53, 2015.
- P. Reinert, H. Krebs, and E. Epelbaum. "Semilocal momentum-space regularized chiral two-nucleon potentials up to fifth order," arXiv:1711.08821 2017.

# Back-up Slides

Now fitting to partial-wave cross section: Not completely Gaussian, but close





#### Less impact from neglected higher-order terms at higher EFT orders (larger k)

Here including truncation error for  ${}^{3}P_{1}$  at N<sup>3</sup>LO makes parameter estimates less  $E_{max}$  dependent and gives larger uncertainty (blow up to see details)



# Different prior assumptions for truncation errors



Furnstahl, Phillips, Klco, sw, PRC 92, 024005 (2015)

# Credible Interval Diagnostic



Accuracy of three weather forecasting services

Source: "The Signal and the Noise" by Nate Silver | Author: Randy Olson (randalolson.com / @randal olson)

- Tests model against reality
- Generalized to GPs in Bastos and O'Hagan (2009)
- Called "consistency plots" in Melendez et al. (2017)

## Nuclear Matter [PRELIMINARY]

- First application to 3-body forces
- Uncertainty helps compare to empirical saturation

