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INTRODUCTION



ONE-BULLET OVERVIEW OF WHAT | WILL TALK ABOUT

What information can be inferred?! from available
few-nucleon data23 to state—of-the-art “models”4 of
the strong force between nucleons?

1using either frequentist or bayesian approaches.
2Here: N and NN scattering data

3...plus A=2-3 bound-state observables
4 effective field theories => systematically improvable



FIVE-BULLET OVERVIEW OF WHAT | WILL NOT TALK ABOUT

What are the predictions of these few-body constrained
Hamiltonians for many-body observables...

Different power-counting schemes (but | will offer the Bayesian
viewpoint on this)...

Details of the computational tools that we are using: the nsopt
code base, Automatic differentiation, MCMC algorithmes, ...

The facts that Sweden eliminated both the Netherlands and Italy
in the World Cup qualifier (I'm actually a bit sorry about that), plus
the observation that the German national team has not won a
single game this year.

Inference from the above data on to the probability that Sweden
will beat Germany in the World Cup on June 23rd.
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Inference

“the act of passing from one proposition, statement, or

judgment considered as true to another whose truth is
believed to follow from that of the former” (Webster)

Do premises A, B, ... = hypothesis, H?

» Assume that hypothesis H; is a model M; with parameters «;.

» Inductive inference: Premises bear on truth/falsity of H, but don't
allow its definite determination

» Statistical Inference: Quantify the strength of inductive inferences
from data and other premises to hypotheses about the phenomena
producing the data.

» Quantify via probabilities, or averages calculated using probabilities.
Frequentists and Bayesians use probabilities very different for this.



DATA AND ITS IMPORTANCE FOR EFFECTIVE FIELD THEORIES

Short-range physics for an EFT is encoded in LECs.

These LECs can be inferred by confrontation with (low-
energy) observables.

Many issues for chiral EFT remain:
regulator artefacts,
convergence,
The choice of relevant degrees-of-freedom

such issues can only be adressed with proper uncertainty
quantification (UQ).



Work with A. Johansson and A. Ekstrom

BAYESIAN POSTERIORS IN THE
NUCLEON-NUCLEON SECTOR



THE BAYESIAN VIEWPOINT
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Parametric models

Assume that hypothesis H; is a model M; with
parameters p;.

In Bayesian statistics we assess the hypotheses by
calculating their probabilities p(Hj| . . .) conditional on
known and/or presumed information using the rules of
probability theory.

Parameter estimation:
Assume that the model M; is true:
Compute: p(pi| Dobs, M, 1)

Model comparison:
Compute ratio: p(Dobs| Mi, 1) / p(Dobs | M;, 1)



Bayesian parameter estimation

Bayes’ theorem (follows from probability product rule):

posterior likelihood prior
p(D|p, Hp(p|I)

p(p|D, 1) =

il p(D|I)

Bayesian evidence

Marginalization: p(p:1|D, ) :/dpg...dpkp(p\D,I)

For many lessons and suggestions on the use of Bayesian methods
in Effective Field Theories, see work by the BUQEYE collaboration

(and talk by Sarah).

Here we report on progress in implementing Bayesian methods for
parameter estimation in Chiral EFT (up to N3LO) using NN scattering

data (phase shifts).



NN PHASE SHIFT OPTIMIZATION

Let us consider the task of determining a set of low-energy
constants (LECs) by fitting to phase shifts.

p(élSOaclSO|D7]) X P(D|C~'150, Clsoaf)p(élsoacwo\])

posterior likelihood prior



The 150(np) channel @ NLO/N2LO: Prior distribution
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The 150(np) channel @ N2LO0: Posterior distribution
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The 150(np) channel @ N2LO0: Posterior distribution
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The 150(np) channel @ N2LO0: Posterior distribution
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The 150(np) channel @ N2LO0: Posterior distribution

p(a|D, 1) x p(D]a, 1)
x exp(—x?/2)

Here, compare
to best-estimate
from chi-squared
minimization

arg max(y?




The 150(np) channel @ N3L0 with redundant parameter
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The 150(np) channel @ N3LO
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BAYESIAN EVIDENCE

1S0, Em(a)x=300 MeV order
I 3 N3LO
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The deuteron channel




Expectation integrals, error propagation

Expectation integrals for observables can be performed
using the posterior pdf

(O(a)) = / dep(ee| D, )O(cx)

LS 0fay)

J=1

2\*—‘

\

The MCMC algorithm generates N samples
{a;} according to the posterior pdf



Deuteron ohservahles

rg (fm)

107 samples




Deuteron ohservahles

107 samples
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A DATA-CENTRIC VIEW ON NUCLEAR
FORCES: CHI-SQUARED MINIMIZATION



OPTIMIZATION STRATEGY

Low-energy constants (LECs) need to be fitted to experimental data.

@ =) @A Y @+ Y, @+ Y i ()

1 c NN ke N le3N

# parameters that are allowed to vary:

(1-3 per channel) 10 2+1=3 26: N2LO
(1-8 per channel) 2+1=3 41: N3LO

FIT NN FIT Cp.Ce
CONTACTS TO -} (+ Ctimigo)

SIMULTANEQUS

CONTACTS TO OPTIMIZATION

FIT zN-SECTOR .} FIT NN .}
NN PHASE SHIFTS

T0 7N DATA

NN DATA T0 A=3 DATA




INPUT AND TECHNOLOGY

7N scattering NN scattering

e WI08 database e Granada 13 database

e Tib between 10-70 MeV e Tiab between 0-290 MeV

o Nyata = 1347 e Nyata = 4753 (np + pp)

e R.Workman et al. (2012) e R.Navarro Pérez et al. (2013)

All 6000 residuals computed on 1 node in ~90 sec.

A=2,3 bound states On 1 node in ~10 sec
e 2H,3H,3He [binding energy,
radius, Q(2H), 3H half life] + derivatives! (x2-20 cost)

Alternatively... theoretical analysis of data

7N scattering NN scattering

e Roy-Steiner analysis e Phase shifts from partial wave
M. Hoferichter et al. (2015) analysis




OPTIMIZATION STRATEGY

Low-energy constants (LECs) need to be fitted to experimental data.

expr

(P =) (Ozt'heo(ﬁ) v ) =) i@

Otot,s p

» Derivative-free optimization using POUNDerS was used in our earliest
works

» More efficient minimization algorithms (Levenberg-Marquardt,
Newton), and statistical error analysis require derivatives

87”'2- and 827’1'
op; Op;Opi,

» Numerical derivation using finite differences is plagued by low
numerical precision and is computationally costly.

» Instead, we use Automatic Differentiation (AD)



TOTAL ERROR BUDGET

: E.g., NCSM Negl
The total error budget is Ag/ 5 / eglected
2 52 2 2

Otot — eXp + U method T Onumerlcal T U model

At a given chiral order v, the omitted diagrams should be of

order
v+1
O ((Q/A)")
Still needs to be converted to actual numbers 6model

We translate this EFT knowledge into an error in the
scattering amplitudes

Q v+1
afj;gz{X —C. (A—> . z€{NN,rN)}
X

which is then propagated to an error in the observable.
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Quadratic error propagation vs Brute force sampling

1
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Systematic uncertainties: input data, regulator cutoff
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Systematic uncertainties: input data, regulator cutoff
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CONCLUSION



OUTLOOK

The inclusion of more data in the objective function
requires other approaches to the optimization problem
needed. (See also Andreas’ presentation.)

The frequentist approach does not offer an easy and

transparent method for handling systematic uncertainties

or imposing prior knowledge.

Bayesian parameter estimation is advantageous, but costly.
avoiding the need to ‘judge’, a priori, what data can be
included in order to safely avoid overfitting.
offers a viable approach to include prior knowledge of
certain parameters from Roy-Steiner analysis.

Investigate other chiral EFT power-counting schemes via
Bayesian evidence.




QUESTIONS

How to best combine different kinds of experimental data
(such as NN scattering and A=3 bound-state observables)?

And how to combine this with (prior) information from a
theoretical analysis (RS egs., sub-threshold parameters)?

Feasible ways to evaluate multi-dimensional posterior
distributions, and perform sub-sequent error propagation?

What are the most relevant tests of various power
counting schemes given the Bayesian framework?



