Chiral nuclear forces at the precision frontier

- Patrick Reinert, Hermann Krebs, EE, EPJA 54 (2018) 86 -

4

The framework

- For a general discussion of renormalization and power counting see materials of the KITP Program Frontiers in Nuclear Physics (2016):
- tutorial on nuclear EFT (EE), http://online.kitp.ucsb.edu/online/nuclear16/epelbaum/
- nuclear EFT-the crux of the matter I (Birse), http://online.kitp.ucsb.edu/online/nuclear16/birse/
- nuclear EFT-the crux of the matter II (EE), http://online.kitp.ucsb.edu/online/nuclear16/epelbaum2/
- EE, Gegelia, Meißner, NPB 925 (2017) 161: identified renorm. conditions ($\mu_{1} \sim \Lambda_{b}, \mu_{\mathrm{i}} \sim \mathrm{Q}$) yielding a consistent expansion for systems close to the unitary limit with NDA scaling of LECs (W. counting). No contradiction with KSW/RG-based counting (different renorm. cond.)!

The framework

- For a general discussion of renormalization and power counting see materials of the KITP Program Frontiers in Nuclear Physics (2016):
- tutorial on nuclear EFT (EE), http://online.kitp.ucsb.edu/online/nuclear16/epelbaum/
— nuclear EFT-the crux of the matter I (Birse), http://online.kitp.ucsb.edu/online/nuclear16/birse/
- nuclear EFT-the crux of the matter II (EE), http://online.kitp.ucsb.edu/online/nuclear16/epelbaum2/
- EE, Gegelia, Meißner, NPB 925 (2017) 161: identified renorm. conditions ($\mu_{1} \sim \Lambda_{b}, \mu_{\mathrm{i}} \sim \mathrm{Q}$) yielding a consistent expansion for systems close to the unitary limit with NDA scaling of LECs (W. counting). No contradiction with KSW/RG-based counting (different renorm. cond.)!

From chiral Lagrangians to nuclear systems

Step 1: Derive (and renormalize) nuclear potentials and currents in ChPT [Method of UT, s-matrix matching, TOPT]. We assume NDA for contacts...

Step 2: Introduce a cutoff \wedge which in a nonrelativistic approach must be kept finite, $\wedge \sim \Lambda_{b}$ [Lepage '97; EE, Meißner '06; EE, Gegelia '09]. Nontrivial: maintaining the symmetries...
\longrightarrow talk by Hermann Krebs
Step 3: Analyze NN scattering data to fix bare LECs $\mathrm{X}_{\mathrm{i}}(\Lambda)$ (i.e. implicit renormalization)
Step 4: Use ab-initio methods to calculate observables [FY, Lattice, NCSM, GFMC, CC, IMSRG, ...] and estimate uncertainty

Chiral expansion of the nuclear forces

LO (Q^{0})

Weinberg '90

NLO (Q2)

Ordonez, van Kolck '92

van Kolck '94; EE et al. '02
[parameter-free]

$N^{3} L O\left(Q^{4}\right)$

Meißner,'08, '11

Girlanda, Kievsky, Viviani '11 Krebs, Gasparyan, EE '12,'13 (short-range loop contrib. still missing)

- Much more involved than just calculating Feynman diagrams...
- A similar program is being pursued for in chiral EFT with explicit $\Delta(1232)$ DOF

Chiral expansion of the nuclear forces weominel

Two-nucleon force

The long-range part of the nuclear force

The long-range part of nuclear forces and currents is completely determined by the chiral symmetry of QCD + experimental information on $\pi \mathrm{N}$ scattering

The long-range part of the nuclear force

The long-range part of nuclear forces and currents is completely determined by the chiral symmetry of QCD + experimental information on $\pi \mathrm{N}$ scattering

Pion-nucleon scattering up to \mathbf{Q}^{4} in heavy-baryon ChPT
Fettes, Meißner '00; Krebs, Gasparyan, EE '12

Order Q:

Order Q2:

Order Q ${ }^{3}$:

Order Q4:

Determination of πN LECs

Matching ChPT to π N Roy-Steiner equations

Hoferichter, Ruiz de Elvira, Kubis, Meißner, PRL 115 (2015) 092301

- χ expansion of the $\pi \mathrm{N}$ amplitude expected to converge best within the Mandelstam triangle
- Subthreshold coefficients (from RS analysis) provide a natural matching point to ChPT

$$
\bar{X}=\sum_{m, n} x_{m n} \nu^{2 m+k} t^{n}, \quad X=\left\{A^{ \pm}, B^{ \pm}\right\}
$$

- Closer to the kinematics relevant for nuclear forces...

Determination of πN LECs

Matching ChPT to $\pi \mathrm{N}$ Roy-Steiner equations

Hoferichter, Ruiz de Elvira, Kubis, Meißner, PRL 115 (2015) 092301

- χ expansion of the $\pi \mathrm{N}$ amplitude expected to converge best within the Mandelstam triangle
- Subthreshold coefficients (from RS analysis) provide a natural matching point to ChPT

$$
\bar{X}=\sum_{m, n} x_{m n} \nu^{2 m+k} t^{n}, \quad X=\left\{A^{ \pm}, B^{ \pm}\right\}
$$

- Closer to the kinematics relevant for nuclear forces...

Relevant LECs (in GeV-n) extracted from π N scattering

$\left.\begin{array}{lcccccccccc}\hline \hline & c_{1} & c_{2} & c_{3} & c_{4} & \bar{d}_{1}+\bar{d}_{2} & \bar{d}_{3} & \bar{d}_{5} & \bar{d}_{14}-\bar{d}_{15} & \bar{e}_{14} & \bar{e}_{17} \\ \hline\left[Q^{4}\right]_{\mathrm{HB}, \mathrm{NN}}, \text { GW PWA } & -1.13 & 3.69 & -5.51 & 3.71 & 5.57 & -5.35 & \mathbf{0 . 0 2} & \mathbf{- 1 0 . 2 6} & \mathbf{1 . 7 5} & -\mathbf{0 . 5 8} \\ {\left[Q^{4}\right]_{\mathrm{HB}, \mathrm{NN}}, \text { KH PWA }} & -0.75 & 3.49 & -4.77 & 3.34 & 6.21 & -6.83 & \mathbf{0 . 7 8} & \mathbf{- 1 2 . 0 2} & 1.52 & -\mathbf{0 . 3 7}\end{array}\right\}$ Krebs, Gasparyan, EE,

- Some LECs show sizable correlations (especially c_{1} and c_{3})...

Determination of πN LECS

Matching ChPT to π N Roy-Steiner equations

Hoferichter, Ruiz de Elvira, Kubis, Meißner, PRL 115 (2015) 092301

- χ expansion of the $\pi \mathrm{N}$ amplitude expected to converge best within the Mandelstam triangle
- Subthreshold coefficients (from RS analysis) provide a natural matching point to ChPT

$$
\bar{X}=\sum_{m, n} x_{m n} \nu^{2 m+k} t^{n}, \quad X=\left\{A^{ \pm}, B^{ \pm}\right\}
$$

- Closer to the kinematics relevant for nuclear forces...

Relevant LECs (in GeV^{-n}) extracted from $\pi \mathrm{N}$ scattering

	c_{1}	c_{2}	c_{3}	c_{4}	$\bar{d}_{1}+\bar{d}_{2}$	\bar{d}_{3}	\bar{d}_{5}	$\bar{d}_{14}-\bar{d}_{15}$	\bar{e}_{14}	\bar{e}_{17}	Krebs, Gasparyan, EE, PRC85 (12) 054006
$\left[Q^{4}\right]_{\mathrm{HB}, \mathrm{NN}}$, GW PWA	-1.13	3.69	-5.51	3.71	5.57	-5.35	0.02	-10.26	1.75	-0.58	
$\left[Q^{4}\right]_{\text {HB, }}$ nN, KH PWA	-0.75	3.49	-4.77	3.34	6.21	-6.83	0.78	-12.02	1.52	-0.37 \}	
$\left[Q^{4}\right]_{\mathrm{HB}, \mathrm{NN}}$, Roy-Steiner	-1.10	3.57	-5.54	4.17	6.18	-8.91	0.86	-12.18	1.18	-0.18	Hoferichter et al., PRL 115 (15) 092301
$\left[Q^{4}\right]_{\text {covariant }}$, data	-0.82	3.56	-4.59	3.44	5.43	-4.58	-0.40	-9.94	-0.63	-0.90	Siemens et al., PRC94 (16) 014620

- Some LECs show sizable correlations (especially c_{1} and c_{3})...
- EKM N4LO [EE, Krebs, Meißner, PRL 115 (2015) 122301]: Q4 fit to KH PWA
- RKE N4LO [Reinert, Krebs, EE, EPJA 54 (2018) 88]: Q 4 fit to RS and Q ${ }^{4}$ fit to KH PWA

With the LECs taken from $\pi \mathrm{N}$, the long-range NN force is completely fixed (parameter-free)

Regularzation

The cutoff \wedge has to be kept finite, $\wedge \sim \Lambda_{b}$ (unless all counterterms are taken into account in the calculations) [Lepage '97; EE, Gegelia '09]. In practice, low values of Λ are preferred:

- many-body methods require soft interactions,
- spurious deeply-bound states for $\Lambda>\Lambda^{\text {crit }}$ make calculations for $\mathrm{A}>3$ unfeasible...
\longrightarrow it is crucial to employ a regulator that minimizes finite- \wedge artifacts!

Regularzation

The cutoff Λ has to be kept finite, $\Lambda \sim \Lambda_{b}$ (unless all counterterms are taken into account in the calculations) [Lepage '97; EE, Gegelia '09]. In practice, low values of Λ are preferred:

- many-body methods require soft interactions,
- spurious deeply-bound states for $\Lambda>\Lambda^{\text {crit }}$ make calculations for $\mathrm{A}>3$ unfeasible...
\longrightarrow it is crucial to employ a regulator that minimizes finite- \wedge artifacts!
Nonlocal: $V_{1 \pi}^{\mathrm{reg}} \propto \frac{e^{-\frac{p^{\prime 4}+p^{4}}{\Lambda^{4}}}}{\vec{q}^{2}+M_{\pi}^{2}} \longrightarrow \frac{1}{\vec{q}^{2}+M_{\pi}^{2}} \underbrace{\left(1-\frac{p^{\prime 4}+p^{4}}{\Lambda^{4}}+\mathcal{O}\left(\Lambda^{-8}\right)\right)}_{\text {affect long-range interactions... }}$

EE, Glöckle, Meißner '04;
Entem, Machleidt '03;
Entem, Machleidt, Nosyk '17; ...

Regularzation

The cutoff Λ has to be kept finite, $\Lambda \sim \Lambda_{b}$ (unless all counterterms are taken into account in the calculations) [Lepage '97; EE, Gegelia '09]. In practice, low values of Λ are preferred:

- many-body methods require soft interactions,
- spurious deeply-bound states for $\Lambda>\Lambda^{\text {crit }}$ make calculations for $\mathrm{A}>3$ unfeasible...
\longrightarrow it is crucial to employ a regulator that minimizes finite- \wedge artifacts!
Nonlocal: $V_{1 \pi}^{\mathrm{reg}} \propto \frac{e^{-\frac{p^{\prime 4}+p^{4}}{\Lambda^{4}}}}{\vec{q}^{2}+M_{\pi}^{2}} \longrightarrow \frac{1}{\vec{q}^{2}+M_{\pi}^{2}} \underbrace{\left(1-\frac{p^{\prime 4}+p^{4}}{\Lambda^{4}}+\mathcal{O}\left(\Lambda^{-8}\right)\right)}_{\text {affect long-range interactions... }}$

EE, Glöckle, Meißner '04;
Entem, Machleidt '03;
Entem, Machleidt, Nosyk '17; ...
$\underset{\text { Linspired by }}{\text { Local: }} V_{1 \pi}^{\text {reg }} \propto \frac{e^{-\frac{\vec{q}^{2}+M_{\pi}^{2}}{\Lambda^{2}}}}{\vec{q}^{2}+M_{\pi}^{2}} \longrightarrow \frac{1}{\vec{q}^{2}+M_{\pi}^{2}}(1+$ short-range terms $)$ Reinert, Krebs, EE '18; Thomas Rijken]

\longrightarrow does not affect long-range physics at any order in 1/^²-expansion

- Application to 2π exchange does not require re-calculating the corresponding diagrams:

$$
V(q)=\frac{2}{\pi} \int_{2 M_{\pi}}^{\infty} \mu d \mu \frac{\rho(\mu)}{q^{2}+\mu^{2}}+\ldots \xrightarrow{\text { reg. }} V_{\Lambda}(q)=e^{-\frac{q^{2}}{2 \Lambda^{2}}} \frac{2}{\pi} \int_{2 M_{\pi}}^{\infty} \mu d \mu \frac{\rho(\mu)}{q^{2}+\mu^{2}} e^{-\frac{\mu^{2}}{2 \Lambda^{2}}}+\underbrace{\ldots}_{\substack{\text { polynomial } \\ \text { in } q^{2}, M_{\pi}}}
$$

- Convention: choose polynomial terms such that $\left.\Delta^{n} V_{\Lambda, \text { long }}(\vec{r})\right|_{r=0}=0$

Regularization

Regularized 2π-exchange potential: $\quad W_{\mathrm{C}, \Lambda}(q)=e^{-\frac{q^{2}}{2 \Lambda^{2}}} \frac{2}{\pi} \int_{2 M_{\pi}^{2}}^{\infty} \mu d \mu \frac{\rho(\mu)}{q^{2}+\mu^{2}} e^{-\frac{\mu^{2}}{2 \Lambda^{2}}}$
Various regularization approaches

Does it matter in practice?

Regularzation

- Can be straightforwardly applied to 3NF and currents up to N2LO, e.g.:

Leading electromagnetic 2 N current

$$
\vec{J}_{1 \pi}^{\mathrm{LO}}=i e \frac{g_{A}^{2}}{4 F_{\pi}^{2}}\left[\vec{\tau}_{1} \times \vec{\tau}_{2}\right]^{3} \frac{\vec{\sigma}_{2} \cdot \vec{q}_{2}}{{\overrightarrow{q_{2}}}^{2}+M_{\pi}^{2}}\left(\vec{q}_{1} \frac{\vec{\sigma}_{1} \cdot \vec{q}_{1}}{{\overrightarrow{q_{1}}}^{2}+M_{\pi}^{2}}-\vec{\sigma}_{1}\right)+1 \leftrightarrow 2
$$

Unregularized current fulfills the continuity equation:

$\vec{k}_{\gamma} \cdot \vec{J}_{1 \pi}^{\mathrm{LO}}=\left(\vec{q}_{1}+\vec{q}_{2}\right) \cdot \vec{J}_{1 \pi}^{\mathrm{LO}}=i e \frac{g_{A}^{2}}{4 F_{\pi}^{2}}\left[\vec{\tau}_{1} \times \vec{\tau}_{2}\right]^{3} \frac{\vec{\sigma}_{1} \cdot \vec{q}_{1} \vec{\sigma}_{2} \cdot \vec{q}_{1}}{\vec{q}_{1}{ }^{2}+M_{\pi}^{2}}+1 \leftrightarrow 2=\left[V_{1 \pi}, \rho^{\mathrm{LO}}\right]$
Introducing FFs in $V_{1 \pi}$ requires (phenomenological) Riska prescription to maintain current conservation [Riska '84].

Regularzation

- Can be straightforwardly applied to 3NF and currents up to N2LO, e.g.:

Leading electromagnetic 2 N current

$$
\vec{J}_{1 \pi}^{\mathrm{LO}}=i e \frac{g_{A}^{2}}{4 F_{\pi}^{2}}\left[\vec{\tau}_{1} \times \vec{\tau}_{2}\right]^{3} \frac{\vec{\sigma}_{2} \cdot \vec{q}_{2}}{{\overrightarrow{q_{2}}}^{2}+M_{\pi}^{2}}\left(\vec{q}_{1} \frac{\vec{\sigma}_{1} \cdot \vec{q}_{1}}{{\overrightarrow{q_{1}}}^{2}+M_{\pi}^{2}}-\vec{\sigma}_{1}\right)+1 \leftrightarrow 2
$$

Unregularized current fulfills the continuity equation:

$$
\vec{k}_{\gamma} \cdot \vec{J}_{1 \pi}^{\mathrm{LO}}=\left(\vec{q}_{1}+\vec{q}_{2}\right) \cdot \vec{J}_{1 \pi}^{\mathrm{LO}}=i e \frac{g_{A}^{2}}{4 F_{\pi}^{2}}\left[\vec{\tau}_{1} \times \vec{\tau}_{2}\right]^{3} \frac{\vec{\sigma}_{1} \cdot \vec{q}_{1} \vec{\sigma}_{2} \cdot \vec{q}_{1}}{\vec{q}_{1}^{2}+M_{\pi}^{2}}+1 \leftrightarrow 2=\left[V_{1 \pi}, \rho^{\mathrm{LO}}\right]
$$

Introducing FFs in $V_{1 \pi}$ requires (phenomenological) Riska prescription to maintain current conservation [Riska '84].

Regularization of (2), (3) straightforward; for (1) use the Feynman trick:

$$
\frac{1}{\omega_{1}^{2} \omega_{2}^{2}}=-\frac{1}{2 M_{\pi}} \frac{\partial}{\partial M_{\pi}} \int_{0}^{1} d x \frac{1}{\left(x{\overrightarrow{q_{1}}}^{2}+(1-x) \vec{q}_{2}^{2}+M_{\pi}^{2}\right)} \stackrel{\text { reg. }}{\left(\frac{e^{-\omega_{1}^{2} / \Lambda^{2}}}{\omega_{1}^{2}}-\frac{e^{-\omega_{2}^{2} / \Lambda^{2}}}{\omega_{2}^{2}}\right) \frac{1}{\omega_{2}^{2}-\omega_{1}^{2}}} \underbrace{(2)}_{\text {coincides with the Riska prescription! }}
$$

Regularkation

- Can be straightforwardly applied to 3NF and currents up to N2LO, e.g.:

Leading electromagnetic 2 N current

$$
\vec{J}_{1 \pi}^{\mathrm{LO}}=i e \frac{g_{A}^{2}}{4 F_{\pi}^{2}}\left[\vec{\tau}_{1} \times \vec{\tau}_{2}\right]^{3} \frac{\vec{\sigma}_{2} \cdot \vec{q}_{2}}{{\overrightarrow{q_{2}}}^{2}+M_{\pi}^{2}}\left(\vec{q}_{1} \frac{\vec{\sigma}_{1} \cdot \vec{q}_{1}}{{\overrightarrow{q_{1}}}^{2}+M_{\pi}^{2}}-\vec{\sigma}_{1}\right)+1 \leftrightarrow 2
$$

Unregularized current fulfills the continuity equation:

$\vec{k}_{\gamma} \cdot \vec{J}_{1 \pi}^{\mathrm{LO}}=\left(\vec{q}_{1}+\vec{q}_{2}\right) \cdot \vec{J}_{1 \pi}^{\mathrm{LO}}=i e \frac{g_{A}^{2}}{4 F_{\pi}^{2}}\left[\vec{\tau}_{1} \times \vec{\tau}_{2}\right]^{3} \frac{\vec{\sigma}_{1} \cdot \vec{q}_{1} \vec{\sigma}_{2} \cdot \vec{q}_{1}}{\vec{q}_{1}{ }^{2}+M_{\pi}^{2}}+1 \leftrightarrow 2=\left[V_{1 \pi}, \rho^{\mathrm{LO}}\right]$
Introducing FFs in $V_{1 \pi}$ requires (phenomenological) Riska prescription to maintain current conservation [Riska '84].

Regularization of (2), (3) straightforward; for (1) use the Feynman trick:

$$
\frac{1}{\omega_{1}^{2} \omega_{2}^{2}}=-\frac{1}{2 M_{\pi}} \frac{\partial}{\partial M_{\pi}} \int_{0}^{1} d x \frac{1}{\left(x{\overrightarrow{q_{1}}}^{2}+(1-x) \vec{q}_{2}^{2}+M_{\pi}^{2}\right)} \stackrel{\text { reg. }}{\left(\frac{e^{-\omega_{1}^{2} / \Lambda^{2}}}{\omega_{1}^{2}}-\frac{e^{-\omega_{2}^{2} / \Lambda^{2}}}{\omega_{2}^{2}}\right) \frac{1}{\omega_{2}^{2}-\omega_{1}^{2}}} \underbrace{\left({ }^{2}\right.}_{\text {coincides with the Riska prescription! }}
$$

- Application to $>2 \mathrm{NF}$ and currents beyond N2LO is nontrivial (contrary to NN, short-range 3NF, 4NF and currents are constrained by chiral symmetry...)
\longrightarrow talk by Hermann Krebs

Contact interactions

- Weinberg's counting:

LO [Q0]:	2 operators (S-waves)
NLO [Q²]:	+ 7 operators (S-, P-waves and ε_{1})
N2LO [Q ${ }^{3}$]:	no new isospin-conserving operators
$\mathrm{N}^{3} \mathrm{LO}$ [Q4] :	+ 15 operators (S-, P-, D-waves and $\varepsilon_{1}, \varepsilon_{2}$)
N4LO [Q ${ }^{5}$]:	no new isospin-conserving operators
$\mathrm{N}^{4} \mathrm{LO}+\left[\mathrm{Q}^{6}\right]$:	+ 4 operators (F-waves)

- Use a simple nonlocal Gaussian regulator for contacts
- Fits to data at N3LO \& beyond tend to converge extremely slow indicating some redundancy [Hammer, Furnstahl '00, Beane, Savage '01, Wesolowski et al.'16]

$$
\begin{aligned}
\left.\left.\left\langle^{1} S_{0}, p^{\prime}\right| V_{\text {cont }}\right|^{1} S_{0}, p\right\rangle & =\tilde{C}_{1 S 0}+C_{1 S 0}\left(p^{2}+p^{\prime 2}\right)+D_{1 S 0} p^{2} p^{\prime 2}+D_{1 S 0}^{\mathrm{off}}\left(p^{2}-p^{\prime 2}\right)^{2} \\
\left\langle^{3} S_{1}, p^{\prime} \mid V_{\text {cont }}{ }^{3} S_{1}, p\right\rangle & =\tilde{C}_{3 S 1}+C_{3 S 1}\left(p^{2}+p^{\prime 2}\right)+D_{3 S 1} p^{2} p^{\prime 2}+D_{3 S 1}^{\mathrm{of}}\left(p^{2}-p^{\prime 2}\right)^{2} \\
\left.\left.\left\langle^{3} S_{1}, p^{\prime}\right| V_{\text {cont }}\right|^{3} D_{1}, p\right\rangle & =C_{\epsilon 1} p^{2}+D_{\epsilon 1} p^{2} p^{\prime 2}+D_{\epsilon 1}^{\text {off }} p^{2}\left(p^{2}-p^{\prime 2}\right)
\end{aligned}
$$

(Short-range) UTs $U=e^{\gamma_{1} T_{1}+\gamma_{2} T_{2}+\gamma_{3} T_{3}}$ with

$$
T_{1}=\vec{k} \cdot \vec{q}, \quad T_{2}=\vec{k} \cdot \vec{q} \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}, \quad T_{3}=\vec{\sigma}_{1} \cdot \vec{k} \vec{\sigma}_{2} \cdot \vec{q}+1 \leftrightarrow 2 .
$$

Induced terms in the Hamiltonian: $\delta \boldsymbol{H}=\boldsymbol{U}^{\dagger} \boldsymbol{H}^{(0)} \boldsymbol{U}=\underbrace{\sum_{i} \gamma_{i}\left[\boldsymbol{H}_{\mathrm{kin}}^{(0)}, \boldsymbol{T}_{i}\right]}+\ldots$

$$
\text { have the form of } V_{\mathrm{cont}}^{(4)} \rightarrow 3 \text { terms can be eliminated (modulo higher-order terms...) }
$$

The UT also affects short-range 3NFs and current operators starting from N4².

Correlations between various LECs

Contact interactions

Removal of the redundant terms leads to softer potentials (good for many-body!)
Tool: Weinberg's eigenvalue analysis: $G_{0}\left(\boldsymbol{E}^{+}\right) V|\Psi\rangle=\eta_{i}\left(\boldsymbol{E}^{+}\right)|\Psi\rangle$

$$
T(\underbrace{E^{+}}_{E+i \epsilon})=V+V G_{0}\left(E^{+}\right) T\left(E^{+}\right)=\sum_{n=0}^{\infty} V\left(G_{0}\left(E^{+}\right) V\right)^{n} \leftarrow \text { converges at } E \text { iff } \max \left(\left|\eta_{i}\left(E^{+}\right)\right|\right)<1
$$

The largest repulsive Weinberg eigenvalues in S-waves

NN data analysis

- To fix NN contact interactions, use scattering data together with $\mathrm{B}_{\mathrm{d}}=2.224575(9) \mathrm{MeV}$ and $\mathrm{b}_{\mathrm{np}}=3.7405(9) \mathrm{fm}$.
- Since 1950-es, ~3000 proton-proton +5000 neutron-proton scattering data below 350 MeV have been measured.
- However, certain data are mutually incompatible within errors and have to be rejected. 2013 Granada database [Navarro-Perez et al., PRC 88 (2013) 064002], rejection rate: $31 \% \mathrm{np}, 11 \% \mathrm{pp}$: 2158 proton-proton +2697 neutron-proton data below $\mathrm{E}_{\text {lab }}=300 \mathrm{MeV}$

- After removal of the redundant contact terms find essentially „unique" minima in the χ^{2}.
- Significant correlations in the ${ }^{1} \mathrm{~S}_{0},{ }^{3} \mathrm{~S}_{1}-3 \mathrm{D}_{1}$ channels. Still, all LECs are accurately determined..

Partial wave analysis

Partial wave analysis

P. Reinert, H. Krebs, EE, EPJA 54 (2018) 88

Description of the np \& pp data at various chiral orders

$\boldsymbol{E}_{\text {lab }}$ bin	LO (Q^{0})	NLO (Q2)	$\mathrm{N}^{2} \mathrm{LO}\left(\mathrm{Q}^{3}\right)$	$\mathrm{N}^{3} \mathrm{LO}\left(\mathrm{Q}^{4}\right)$	$\mathrm{N}^{4} \mathrm{LO}\left(\mathrm{Q}^{5}\right)$	$\mathrm{N}^{4} \mathrm{LO}^{+}$
neutron-proton scattering data						
0-100	73	2.2	1.2	1.08	1.08	1.07
0-200	62	5.4	1.8	1.09	1.08	1.07
0-300	75	14	4.4	1.99	1.18	1.06
proton-proton scattering data						
0-100	2300	10	2.1	0.91	0.88	0.86
0-200	1780	91	33	2.00	1.42	0.95
0-300	1380	89	38	3.42	1.67	1.00
	2 LECs	+ 1 IB LECs		+ 12 LECs	+ 1 LEC (np)	+ 4 LEC

Partial wave analysis

P. Reinert, H. Krebs, EE, EPJA 54 (2018) 88

Description of the np \& pp data at various chiral orders

Clear evidence of the (parameter-free) chiral 2π-exchange!

Partial wave analysis

P. Reinert, H. Krebs, EE, EPJA 54 (2018) 88

Description of the np \& pp data at various chiral orders

$\boldsymbol{E}_{\text {lab }}$ bin	LO (\mathbf{Q}^{0})	NLO (Q2)	$\mathrm{N}^{2} \mathrm{LO}$	$\left(Q^{3}\right)$	$\mathrm{N}^{3} \mathrm{LO}\left(\mathrm{Q}^{4}\right)$	$\mathrm{N}^{4} \mathrm{LO}\left(\mathrm{Q}^{5}\right)$	$\mathrm{N}^{4} \mathrm{LO}^{+}$
neutron-proton scattering data							
0-100	73	2.2	1.2		1.08	1.08	1.07
0-200	62	$5.4{ }^{\text {no new }}$	1.8		1.09	1.08	1.07
0-300	75	$14 \xrightarrow{\text { Lecs }}$	4.4		1.99	1.18	1.06
proton-proton scattering data							
0-100	2300	10	2.1		$0.91{ }_{\text {c }}^{\substack{\text { no new } \\ \text { LECs }}}$	0.88	0.86
0-200	1780	91	33		$2.00 \xrightarrow{ }$	1.42	0.95
0-300	1380	89	38		3.42	1.67	1.00
2 LECs + 7 + 1 IB LECs					+ 12 LECs +1 LEC (np)		+ 4 LEC

Clear evidence of the (parameter-free) chiral 2π-exchange!
Chiral nuclear forces versus high-precision phenomenological potentials

$E_{\text {lab }}$ bin	CD Bonn ${ }_{(43)}$	Nijm $\mathrm{I}_{(41)}$	Nijm $\mathrm{II}_{(47)}$	Reid93(50)	$\mathrm{N}^{4} \mathrm{LO}^{+}{ }_{(27+1)}$, this work
neutron-proton scattering data					
0-100	1.08	1.06	1.07	1.08	1.07
0-200	1.08	1.07	1.07	1.09	1.07
0-300	1.09	1.09	1.10	1.11	1.06
proton-proton scattering data					
0-100	0.88	0.87	0.87	0.85	0.86
0-200	0.98	0.99	1.00	0.99	0.95
0-300	1.01	1.05	1.06	1.04	1.00

State-of-the-art NN potentials

neutron-proton data

proton-proton data

Error analysis

1. Truncation error [use the algorithm of ee, Krebs, Meißner, EPJA 51 (2015) 53]

2. Statistical uncertainties

Assume $\chi^{2}(c) \approx \chi_{\min }^{2}+\frac{1}{2}\left(c-c_{\min }\right)^{T} H\left(c-c_{\min }\right) \quad$ where $\quad H_{i j}=\left.\frac{\partial^{2} \chi^{2}}{\partial c_{i} \partial c_{j}}\right|_{c=c_{\min }}$
Quadratic approximation is employed to propagate statistical errors in observables
$O(c)=O\left(c_{\min }\right)+J_{O}\left(c-c_{\min }\right)+\frac{1}{2}\left(c-c_{\min }\right)^{T} H_{O}\left(c-c_{\min }\right) \quad$ see also: Carlsson et al., PRX 6 (16) 011019
3. Uncertainties due to $\pi \mathbf{N}$ LECs $\mathbf{c}_{1,2,3,4}, \mathbf{d}_{1,2,3,5,14,15}$ and $\mathbf{e}_{14,17}$

Estimated based on the results using a different set of LECs (KH PWA of $\pi \mathrm{N}$ scattering) see EE, Krebs, Meißner, PRL 115 (15) 122301

4. Choice of $E_{\max }$ in the fits

Uncertainty estimated at $\mathrm{N}^{4} \mathrm{LO} / \mathrm{N}^{4} \mathrm{LO}+$ by performing fits with $E_{\max }=220 \ldots 300 \mathrm{MeV}$

$\boldsymbol{E}_{\text {lab }}$ bin	220 MeV	260 MeV	300 MeV
neutron-proton scattering data			
$0-100$	1.07		
$0-200$	1.06	1.07	1.08
$0-300$	1.10	1.06	1.07
proton-proton scattering data			
$0-100$	0.86	0.86	1.06
$0-200$	0.95	0.95	
$0-300$	1.00	1.00	0.87

$\mathrm{N}^{4} \mathrm{LO}^{+}, \Lambda=450 \mathrm{MeV}$

Error analysis

In most cases, the uncertainty is dominated by truncation errors. At N4LO and at very low energies, other sources of errors become comparable (especially $\pi \mathrm{N}$ LECs...).

Example: deuteron asymptotic normalizations (relevant for nuclear astrophysics)

Our determination:

$$
\begin{gathered}
\text { truncation error } \downarrow \downarrow \underset{\downarrow}{\downarrow} \downarrow \sqrt{\downarrow \mathrm{N} \text { LECs }} \\
\text { statistical error variation of } \mathrm{E}_{\max } \\
A_{S}=0.8847_{(-3)}^{(+3)}(3)(5)(1) \mathrm{fm}^{-1 / 2} \\
\eta \equiv \frac{A_{D}}{A_{S}}=0.0255_{(-1)}^{(+1)}(1)(4)(1)
\end{gathered}
$$

Exp: $A_{S}=0.8781(44) \mathrm{fm}^{-1 / 2}, \quad \eta=0.0256(4)$ Borbely et al. ' 85 Rodning, Knutson '90

Nijmegen PWA [errors are ,educated guesses"] Stoks et al. '95

$$
A_{S}=0.8845(8) \mathrm{fm}^{-1 / 2}, \quad \eta=0.0256(4)
$$

Granada PWA [errors purely statistical] Navarro Perez et al. ${ }^{13}$

$$
A_{S}=0.8829(4) \mathrm{fm}^{-1 / 2}, \quad \eta=0.0249(1)
$$

Three-nucleon forces

N2LO: tree-level graphs, 2 new LECs van Kolck '94; EE et al '02

N3LO: leading 1 loop, parameter-free Ishikawa, Robilotta '08; Bernard, EE, Krebs, Meißner '08, '11
N4LO: full 1 loop, almost completely worked out, several new LECs
Girlanda, Kievski, Viviani '11; Krebs, Gasparyan, EE '12,'13; EE, Gasparyan, Krebs, Schat '14

Three-nucleon forces

N2LO: tree-level graphs, 2 new LECs van Kolck '94; EE et al '02

LENPIC: Low Energy Nuclear Physics International Collaboration

Three-nucleon forces

N2LO: tree-level graphs, 2 new LECs van Kolck '94; EE et al '02

Determination of the LECs $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{E}}$

- Triton BE ($\mathrm{C}_{\mathrm{D}}-\mathrm{C}_{\mathrm{E}}$ correlation)

- Explore various possibilities and let theory and/or data decide...


```
pd minimum of do/d0 at 135 MeV [Sekiguchi et al.'02]
nd \sigmatot at 135 MeV [Abfalterer et al.'01]
pd minimum of do/d0 at 108 MeV [Ermisch et al.'03]
nd \mp@subsup{\sigma}{tot }{*}}\mathbf{at}108\textrm{MeV}\mathrm{ [Abfalterer et al.'01]
pd minimum of d\sigma/d0 at 70 MeV [Sekiguchi et al.'02]
nd \sigma}\mp@subsup{\sigma}{\mathrm{ tot }}{}\mathrm{ at 70 MeV [Abfalterer et al.'01]
nd scattering length 2a [Schoen et al.'03]
    LENPIC, to appear
    (based on r-space-regularized potentials, R = 0.9 fm
```

LENPIC: Low Energy Nuclear Physics International Collaboration

Three-nucleon forces

N2LO: tree-level graphs, 2 new LECs van Kolck '94; EE et al '02

Determination of the LECs $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{E}}$

- Triton BE ($\mathrm{C}_{\mathrm{D}}-\mathrm{C}_{\mathrm{E}}$ correlation)

- Explore various possibilities and let theory and/or data decide...


```
pd minimum of do/d0 at 135 MeV [Sekiguchi et al.'02]
nd \sigmatot at 135 MeV [Abfalterer et al.'01]
pd minimum of do/d0 at 108 MeV [Ermisch et al.'03]
nd \mp@subsup{\sigma}{tot }{*}}\mathbf{at}108\textrm{MeV}\mathrm{ [Abfalterer et al.'01]
pd minimum of d\sigma/d0 at 70 MeV [Sekiguchi et al.'02]
nd \sigma}\mp@subsup{\sigma}{\mathrm{ tot }}{}\mathrm{ at 70 MeV [Abfalterer et al.'01]
nd scattering length 2a [Schoen et al.'03]
    LENPIC, to appear
    (based on r-space-regularized potentials, R = 0.9 fm
    yields the strongest constraint...
```

LENPIC: Low Energy Nuclear Physics International Collaboration Kyusm=e

Detiermination of cd, ce (prellminary)

Sensitivity to the ${ }^{3} \mathrm{H} \mathrm{BE}$: changing $\mathrm{E}_{3 \mathrm{H}}=8.482 \mathrm{MeV}$ by +-70 keV significantly affects C_{E} (e.g. for $\Lambda=450 \mathrm{MeV}$: $\delta C_{E} \sim 15 \%$) but has almost no effect on C_{D} ($\delta C_{D} \sim 0.05 \%$), so that $\delta \mathrm{E}_{3 \mathrm{H}}$ is almost completely generated by $\delta \mathrm{C}_{\mathrm{E}} \rightarrow$ no sizable correlations between $\mathrm{CD}_{\mathrm{D}}, \mathrm{C}_{\mathrm{E}}$

LENPIC: Low Energy Nuclear Physics International Collaboration

RUE
universitstbonn

Nd total cross section at 70 MeV (preliminary)

- Similar improvement is found for many other few-N observables
- Radii of medium-mass nuclei seem to be underestimated (by $\sim 15 \%$ for ${ }^{16} \mathrm{O}$)

LENPIC: Low Energy Nuclear Physics International Collaboration

RUE
univer sitstbonn
TEFHんIS:HF

x mon_{4} $\underset{\text { kyumas }}{1}$ givin SIPN DATRIUMF

Radil of medium-mass nuclei

- Calculations are incomplete: 3NFs and MECs are missing...

LENPIC: Low Energy Nuclear Physics International Collaboration

Radil of medium-mass nuclei

- Calculations are incomplete: 3NFs and MECs are missing...
- Expected to be correlated with the results for ${ }^{2} \mathrm{H}$ radius, but effects seem to increase with A .

	$r_{\boldsymbol{D}},{ }^{2} \mathrm{H}(\mathrm{fm})$	$r_{\boldsymbol{p}},{ }^{3} \mathrm{H}(\mathrm{fm})$	$r_{\boldsymbol{p}},{ }^{4} \mathrm{He}(\mathrm{fm})$
AV18/AV18+UIX	$1.967(-0.4 \%)$	$1.584(-1 \%)$	$1.44(-2 \%)$

LENPIC: Low Energy Nuclear Physics International Collaboration

Radil of medium-mass nuclei

- Calculations are incomplete: 3NFs and MECs are missing...
- Expected to be correlated with the results for ${ }^{2} \mathrm{H}$ radius, but effects seem to increase with A .

	$r_{\boldsymbol{D}},{ }^{2} \mathrm{H}(\mathrm{fm})$	$r_{\boldsymbol{p}},{ }^{3} \mathrm{H}(\mathrm{fm})$	$r_{\boldsymbol{p}},{ }^{4} \mathrm{He}(\mathrm{fm})$
AV18/AV18+UIX	$1.967(-0.4 \%)$	$1.584(-1 \%)$	$1.44(-2 \%)$

- What could be the reason that the N2LO potentials by Ekström et al. are doing a good job?

$$
\text { NNLO }_{\text {sat: }}: r_{D}=1.978 \mathrm{fm}(+0.13 \%) \quad \Delta N N L O(450): r_{D}=1.982 \mathrm{fm}(+0.3 \%)
$$

However, NN data seem to prefer smaller r_{D} :

	RKE N4 LO^{+}	Granada PWA (δ-shell $)$	Nijm I	Nijm II	Reid93	CD-Bonn	Exp.
$\boldsymbol{r}_{\boldsymbol{D}},{ }^{2} \mathrm{H}(\mathrm{fm})$	$1.965 \ldots 1.968$	1.965	1.967	1.968	1.969	1.966	1.975

Using r_{D} as a constraint in the fits increases $\chi^{2 / d a t u m ~ c o n s i d e r a b l y ~(s t a n d a r d ~ f i t ~ p r o t o c o l) . . . ~}$

LENPIC: Low Energy Nuclear Physics International Collaboration
universitátbonn

Radil of medium-mass nuclei

- Calculations are incomplete: 3NFs and MECs are missing...
- Expected to be correlated with the results for ${ }^{2} \mathrm{H}$ radius, but effects seem to increase with A .

	$r_{\boldsymbol{D}},{ }^{2} \mathrm{H}(\mathrm{fm})$	$\boldsymbol{r}_{\boldsymbol{p}},{ }^{3} \mathrm{H}(\mathrm{fm})$	$r_{\boldsymbol{p}},{ }^{4} \mathrm{He}(\mathrm{fm})$
AV18/AV18+UIX	$1.967(-0.4 \%)$	$1.584(-1 \%)$	$1.44(-2 \%)$

- What could be the reason that the N2LO potentials by Ekström et al. are doing a good job?

$$
\text { NNLO }_{\text {sat }}: r_{D}=1.978 \mathrm{fm}(+0.13 \%) \quad \Delta \mathrm{NNLO}(450): r_{\mathrm{D}}=1.982 \mathrm{fm}(+0.3 \%)
$$

However, NN data seem to prefer smaller r_{D} :

	RKE N4 LO^{+}	Granada PWA (δ-shell $)$	Nijm I	Nijm II	Reid93	CD-Bonn	Exp.
$\boldsymbol{r}_{\boldsymbol{D}},{ }^{2} \mathrm{H}(\mathrm{fm})$	$1.965 \ldots 1.968$	1.965	1.967	1.968	1.969	1.966	1.975

Using r_{D} as a constraint in the fits increases $\chi^{2 / d a t u m ~ c o n s i d e r a b l y ~(s t a n d a r d ~ f i t ~ p r o t o c o l) . . . ~}$

- Work in progress with the Darmstadt group: using alternative choices for redundant contact terms can reshuffle some N4 LO contributions from 3NF and MECs into the 2NF. Hope to better understand the impact of missing contributions...

LENPIC: Low Energy Nuclear Physics International Collaboration
RUE universitstbonn

- derivation of the nuclear Hamiltonian at N3LO completed already in 2011; derivation of $\mathrm{N}^{4} \mathrm{LO}$ corrections done for $\mathrm{V}_{2 \mathrm{~N}}$ \& almost done for $\mathrm{V}_{3 \mathrm{~N}}$ (new LECs...) and $\mathrm{V}_{4 \mathrm{~N}}$
- accurate \& precise 2 N potentials at $\mathrm{N}^{4} \mathrm{LO}^{+}$are available,
- promising results for few-N systems based on 2NF + 3NF@N2LO [LENPIC]

summary

- derivation of the nuclear Hamiltonian at N3LO completed already in 2011; derivation of $N^{4} L O$ corrections done for $\mathrm{V}_{2 N} \&$ almost done for $\mathrm{V}_{3 \mathrm{~N}}$ (new LECs...) and $\mathrm{V}_{4 \mathrm{~N}}$
- accurate \& precise 2 N potentials at $\mathrm{N}^{4} \mathrm{LO}^{+}$are available,
- promising results for few-N systems based on 2NF + 3NF@N2LO [LENPIC]

Various consistency checks done - so far no indication of the need to depart from NDA:

- cutoff dependence decreases with increasing chiral orders for $\Lambda \sim \Lambda_{b}$

summary

$\mathrm{N}^{4} \mathrm{LO}\left[\mathrm{C}_{0}+\mathrm{C}_{2} \mathrm{p}^{2}+\mathrm{C}_{4} \mathrm{p}^{4}\right]$

summary

- derivation of the nuclear Hamiltonian at N3LO completed already in 2011; derivation of $N^{4} L O$ corrections done for $\mathrm{V}_{2 N} \&$ almost done for $\mathrm{V}_{3 \mathrm{~N}}$ (new LECs...) and $\mathrm{V}_{4 \mathrm{~N}}$
- accurate \& precise 2 N potentials at $\mathrm{N}^{4} \mathrm{LO}^{+}$are available,
- promising results for few-N systems based on 2NF + 3NF@N2LO [LENPIC]

Various consistency checks done - so far no indication of the need to depart from NDA:

- cutoff dependence decreases with increasing chiral orders for $\Lambda \sim \Lambda_{b}$
- so far, all LECs come out of a natural size

Natural units for the LECs according to NDA:

$$
\left|\tilde{C}_{i}\right| \sim \frac{4 \pi}{F_{\pi}^{2}}, \quad\left|C_{i}\right| \sim \frac{4 \pi}{F_{\pi}^{2} \Lambda_{b}^{2}}, \quad\left|D_{i}\right| \sim \frac{4 \pi}{F_{\pi}^{2} \Lambda_{b}^{4}}, \quad\left|E_{i}\right| \sim \frac{4 \pi}{F_{\pi}^{2} \Lambda_{b}^{6}}
$$

Assuming $\Lambda_{b}=600 \mathrm{MeV}$ [EE, Krebs, Meißner EPJA 51 (15) 53; Furnstahl, KIco, Phillips, Wesolowski, PRC 92 (15) 024005], all LECs come out of a natural size.

Absolute values of the LECs in natural units

Natural units for the LECs according to NDA:

$$
\left|\tilde{C}_{i}\right| \sim \frac{4 \pi}{F_{\pi}^{2}}, \quad\left|C_{i}\right| \sim \frac{4 \pi}{F_{\pi}^{2} \Lambda_{b}^{2}}, \quad\left|D_{i}\right| \sim \frac{4 \pi}{F_{\pi}^{2} \Lambda_{b}^{4}}, \quad\left|E_{i}\right| \sim \frac{4 \pi}{F_{\pi}^{2} \Lambda_{b}^{6}}
$$

Assuming $\Lambda_{b}=600 \mathrm{MeV}$ [EE, Krebs, Meißner EPJA 51 (15) 53; Furnstahl, KIco, Phillips, Wesolowski, PRC 92 (15) 024005], all LECs come out of a natural size.

Absolute values of the LECs in natural units

summary

- derivation of the nuclear Hamiltonian at N3LO completed already in 2011; derivation of $\mathrm{N}^{4} \mathrm{LO}$ corrections done for $\mathrm{V}_{2 \mathrm{~N}} \&$ almost done for $\mathrm{V}_{3 \mathrm{~N}}$ (new LECs...) and $\mathrm{V}_{4 \mathrm{~N}}$
- accurate \& precise 2 N potentials at $\mathrm{N}^{4} \mathrm{LO}^{+}$are available,
- promising results for few-N systems based on 2NF + 3NF@N2LO [LENPIC]

Various consistency checks done - so far no indication of the need to depart from NDA:

- cutoff dependence decreases with increasing chiral orders for $\Lambda \sim \Lambda_{b}$
- so far, all LECs come out of a natural size
- the covariant matrix has no large eigenvalues \rightarrow no redundancy in the contact terms

Eigenvalues of the covariance matrix

$$
\Sigma=2 \frac{\chi^{2}}{N_{\mathrm{dof}}} H^{-1}
$$

for LECs taken in natural units ($\mathrm{N}^{4} \mathrm{LO}^{+}, \Lambda=450 \mathrm{MeV}$)

$$
\begin{aligned}
& 4.274396 \mathrm{e}-02 \\
& 2.474783 \mathrm{e}-02 \\
& 1.902965 \mathrm{e}-02 \\
& 1.035190 \mathrm{e}-02 \\
& 6.300807 \mathrm{e}-03 \\
& 3.912243 \mathrm{e}-03 \\
& 2.902483 \mathrm{e}-03 \\
& 2.251440 \mathrm{e}-03 \\
& 1.902579 \mathrm{e}-03 \\
& 1.089075 \mathrm{e}-03 \\
& 9.322493 \mathrm{e}-04 \\
& 5.588222 \mathrm{e}-04 \\
& 3.562153 \mathrm{e}-04 \\
& 1.610448 \mathrm{e}-04 \\
& 1.409259 \mathrm{e}-04 \\
& 1.229603 \mathrm{e}-04 \\
& 8.654795 \mathrm{e}-05 \\
& 4.958497 \mathrm{e}-05 \\
& 4.316301 \mathrm{e}-05 \\
& 3.576713 \mathrm{e}-05 \\
& 1.911708 \mathrm{e}-05 \\
& 1.448694 \mathrm{e}-05 \\
& 8.518138 \mathrm{e}-06 \\
& 8.268942 \mathrm{e}-07 \\
& 4.213655 \mathrm{e}-10 \\
& 2.063609 \mathrm{e}-11 \\
& 1.614358 \mathrm{e}-11
\end{aligned}
$$

summary

- derivation of the nuclear Hamiltonian at N3LO completed already in 2011; derivation of $\mathrm{N}^{4} \mathrm{LO}$ corrections done for $\mathrm{V}_{2 \mathrm{~N}}$ \& almost done for $\mathrm{V}_{3 \mathrm{~N}}$ (new LECs...) and $\mathrm{V}_{4 \mathrm{~N}}$
- accurate \& precise 2 N potentials at $\mathrm{N}^{4} \mathrm{LO}^{+}$are available,
- promising results for few-N systems based on 2NF + 3NF@N2LO [LENPIC]

Various consistency checks done - so far no indication of the need to depart from NDA:

- cutoff dependence decreases with increasing chiral orders for $\Lambda \sim \Lambda_{b}$
- so far, all LECs come out of a natural size
- the covariant matrix has no large eigenvalues \rightarrow no redundancy in the contact terms
- (parameter-free) TPE@N2LO and N4LO improves the description of NN data

summary

- derivation of the nuclear Hamiltonian at N3LO completed already in 2011; derivation of $\mathrm{N}^{4} \mathrm{LO}$ corrections done for $\mathrm{V}_{2 \mathrm{~N}}$ \& almost done for $\mathrm{V}_{3 \mathrm{~N}}$ (new LECs...) and $\mathrm{V}_{4 \mathrm{~N}}$
- accurate \& precise 2 N potentials at $\mathrm{N}^{4} \mathrm{LO}^{+}$are available,
- promising results for few-N systems based on 2NF + 3NF@N2LO [LENPIC]

Various consistency checks done - so far no indication of the need to depart from NDA:

- cutoff dependence decreases with increasing chiral orders for $\Lambda \sim \Lambda_{b}$
- so far, all LECs come out of a natural size
- the covariant matrix has no large eigenvalues \rightarrow no redundancy in the contact terms
- (parameter-free) TPE@N2LO and N4LO improves the description of NN data
- higher-order contributions to observable suppressed after (implicit) renormalization, e.g.:

$$
\begin{aligned}
& \mathrm{E}_{\text {lab }}=96 \mathrm{MeV} {[\mathrm{p}=212 \mathrm{MeV}]: } \\
& \mathrm{Q}=212 / 600 \sim 0.35 \sigma_{\text {tot }}=84.8-\underbrace{9.7}_{\text {expect: }}+\underbrace{3.2}_{\sim 11}-\underbrace{0.8}_{\sim 4}+\underbrace{0.5}_{\sim 1.3}=78.0 \mathrm{mb} \\
&\text { (for } \Lambda=500 \mathrm{MeV})
\end{aligned}
$$

summary

- derivation of the nuclear Hamiltonian at N3LO completed already in 2011; derivation of $N^{4} L O$ corrections done for $\mathrm{V}_{2 N} \&$ almost done for $\mathrm{V}_{3 \mathrm{~N}}$ (new LECs...) and $\mathrm{V}_{4 \mathrm{~N}}$
- accurate \& precise 2 N potentials at $\mathrm{N}^{4} \mathrm{LO}^{+}$are available,
- promising results for few-N systems based on 2NF + 3NF@N2LO [LENPIC]

Various consistency checks done - so far no indication of the need to depart from NDA:

- cutoff dependence decreases with increasing chiral orders for $\Lambda \sim \Lambda_{b}$
- so far, all LECs come out of a natural size
- the covariant matrix has no large eigenvalues \rightarrow no redundancy in the contact terms
- (parameter-free) TPE@N2LO and N4LO improves the description of NN data
- higher-order contributions to observable suppressed after (implicit) renormalization, e.g.:

$$
\begin{aligned}
& \mathrm{E}_{\text {lab }}=96 \mathrm{MeV} {[\mathrm{p}=212 \mathrm{MeV}]: } \\
& \mathrm{Q}=212 / 600 \sim 0.35 \sigma_{\text {tot }}=84.8-\underbrace{9.7}_{\text {expect: }}+\underbrace{3.2}_{\sim 11}-\underbrace{0.8}_{\sim 4}+\underbrace{0.5}_{\sim 1.3}=78.0 \mathrm{mb} \\
&\text { (for } \Lambda=500 \mathrm{MeV})
\end{aligned}
$$

- 3NF@N2LO of a natural size, no enhancement for CD_{D} as suggested by Birse' RG analysis

- all contributions are of natural size: $\left\langle\mathrm{V}_{3 N}>\sim\left(\mathrm{M}_{\pi} / \Lambda_{b}\right)^{3}<\mathrm{V}_{2 N}>\sim 650 \mathrm{keV}\right.$
- no support of the RG analysis by Birse: $\mathbf{V}_{2 \pi} \sim \mathbf{Q}^{3}, \quad \mathrm{~V}_{\mathrm{D}} \sim \mathbf{Q}^{5 / 4}, \quad \mathrm{~V}_{\mathrm{E}} \sim \mathbf{Q}(>3)$ [M. Birse, Phil. Trans. Roy. Soc. Lond. A369 (2011) 2662-2678]

summary

- derivation of the nuclear Hamiltonian at N3LO completed already in 2011; derivation of $N^{4} L O$ corrections done for $\mathrm{V}_{2 N} \&$ almost done for $\mathrm{V}_{3 \mathrm{~N}}$ (new LECs...) and $\mathrm{V}_{4 \mathrm{~N}}$
- accurate \& precise 2 N potentials at $\mathrm{N}^{4} \mathrm{LO}^{+}$are available,
- promising results for few-N systems based on 2NF + 3NF@N2LO [LENPIC]

Various consistency checks done - so far no indication of the need to depart from NDA:

- cutoff dependence decreases with increasing chiral orders for $\Lambda \sim \Lambda_{b}$
- so far, all LECs come out of a natural size
- the covariant matrix has no large eigenvalues \rightarrow no redundancy in the contact terms
- (parameter-free) TPE@N2LO and N4LO improves the description of NN data
- higher-order contributions to observable suppressed after (implicit) renormalization, e.g.:

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{lab}}=96 \mathrm{MeV}[\mathrm{p}=212 \mathrm{MeV}]: \sigma_{\text {tot }}=84.8-\underbrace{9.7}_{\sim 11}+\underbrace{3.2}_{\sim 4}-\underbrace{0.8}_{\sim 1.3}+\underbrace{0.5}_{\sim 0.5}=78.0 \mathrm{mb} \\
& \mathrm{Q}=212 / 600 \sim 0.35 \rightarrow \text { expect: } \\
& \text { (for } \wedge=500 \mathrm{MeV} \text {) }
\end{aligned}
$$

- 3NF@N2LO of a natural size, no enhancement for C_{D} as suggested by Birse' RG analysis
- perfect description of $n p+p p$ data with $27+1$ (cutoff) parameters. Looking forward to see results from the competition: „If all proposals are renormalised and fit NN data with the same χ^{2}, the one with the least number of parameters wins."

summary

- derivation of the nuclear Hamiltonian at N3LO completed already in 2011; derivation of $N^{4} L O$ corrections done for $\mathrm{V}_{2 N} \&$ almost done for $\mathrm{V}_{3 \mathrm{~N}}$ (new LECs...) and $\mathrm{V}_{4 \mathrm{~N}}$
- accurate \& precise 2 N potentials at $\mathrm{N}^{4} \mathrm{LO}^{+}$are available,
- promising results for few-N systems based on 2NF + 3NF@N2LO [LENPIC]

Various consistency checks done - so far no indication of the need to depart from NDA:

- cutoff dependence decreases with increasing chiral orders for $\Lambda \sim \Lambda_{b}$
- so far, all LECs come out of a natural size
- the covariant matrix has no large eigenvalues \rightarrow no redundancy in the contact terms
- (parameter-free) TPE@N2LO and N4LO improves the description of NN data
- higher-order contributions to observable suppressed after (implicit) renormalization, e.g.:

$$
\begin{aligned}
& E_{\text {lab }}=96 \mathrm{MeV}[p=212 \mathrm{MeV}]: \sigma_{\text {tot }}=84.8-\underbrace{9.7}_{\sim 11}+\underbrace{3.2}_{\sim 4}-\underbrace{0.8}_{\sim 1.3}+\underbrace{0.5}_{\sim 0.5}=78.0 \mathrm{mb} \\
& \mathbf{Q}=212 / 600 \sim 0.35 \rightarrow \text { expect: } \\
& \text { (for } \wedge=500 \mathrm{MeV} \text {) }
\end{aligned}
$$

- 3NF@N2LO of a natural size, no enhancement for CD_{D} as suggested by Birse' RG analysis
- perfect description of $n p+p p$ data with $27+1$ (cutoff) parameters. Looking forward to see results from the competition: „If all proposals are renormalised and fit NN data with the same χ^{2}, the one with the least number of parameters wins."

