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The “basic model” of nuclear theory
One of the major goals of nuclear theory is to achieve a comprehensive description of the 
wealth of data and peculiarities exhibited by nuclear systems. We would like to have a 
“good” description of:

Nucleon-nucleon (NN) scattering data: “thousands” of experimental data available 
such as differential and total cross sections, polarizations, asymmetries, etc…
The spectra, properties, and transition of nuclei: binding energies, radii, magnetic 
moments, beta decays rates, weak/radiative captures, electroweak form factors, etc.
The nucleonic matter equation of state: neutrons stars with masses of order twice 
the solar mass

Inputs for the basic model:

Many-body interactions 
between the constituents
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Figure 23: Chiral 2NF without and with �-isobar degrees of freedom. Arrows indicate the shift of strength when explicit �’s
are added to the theory. Note that the �-full theory consists of the diagrams involving �’s plus the �-less ones. Double lines
represent �-isobars; remaining notation as in Fig. 1.

relevant to our present discussion)
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where � is a four-component spinor in both spin and isospin space representing the �-isobar and hA and
DT are LECs.5 Moreover, Si are 2 ⇥ 4 spin transition matrices which satisfy SiSj† = (2�ij � i⇥ijk⇧k)/3
and T a are similar isospin matrices with T aT b† = (2�ab � i⇥abc⌃ c)/3. Notice that, due to the heavy baryon
expansion, the mass of the �-isobar, M�, has disappeared and only the small mass di⇥erence �M enters.

The LECs of the ⌅N Lagrangian are usually extracted in the analysis of ⌅-N scattering data and clearly
come out di⇥erently in the �-full theory as compared to the �-less one. While in the �-less theory, the
magnitude of the LECs c3 and c4 is about 3-5 GeV�1 (cf. Table 2), they turn out to be around 1 GeV�1 in
the �-full theory [221].

In the 2NF, the virtual excitation of�-isobars requires at least one loop and, thus, the contribution occurs
first at ⇤ = 2 (NLO), see Fig. 23. The � contributions to the 2PE were first evaluated in Refs. [53, 54, 220]
using time-ordered perturbation theory and later by Kaiser et al. [56] in covariant perturbation theory.

5Our convention for hA is consistent with Refs. [54, 56, 70, 107] and di⇥ers by a factor of two from Refs. [218, 221, 223].
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Figure 24: The 3NF without and with �-isobar degrees of freedom. Arrows indicate the shift of strength when explicit �’s
are added to the theory. Note that the �-full theory consists of the diagrams involving �’s plus the �-less ones. Double lines
represent �-isobars; remaining notation as in Fig. 1.

Recently, also the NNLO contributions have been worked out [221]. Krebs et al. [221] verified the consistency
between the �-full and �-less theories by showing that the contributions due to intermediate �-excitations,
expanded in powers of 1/�M , can be absorbed into a redefinition of the LECs of the �-less theory. The
corresponding shift of the LECs c3, c4 is given by

c3 = �2c4 = � h2
A

9�M
. (6.2)

Using hA = 3gA/
⇥
2 (large Nc value), almost all of c3 and an appreciable part of c4 is explained by the �

resonance.
The studies of Refs. [56, 221] confirm that a large amount of the intermediate-range attraction of the 2NF

is shifted from NNLO to NLO with the explicit introduction of the �-isobar. However, it is also found that
the NNLO 2PE potential of the �-less theory provides a very good approximation to the NNLO potential
in the �-full theory.

The � isobar also changes the 3NF scenario, see Fig. 24. The leading 2PE 3NF is promoted to NLO.
In the �-full theory, this term has the same mathematical form as the corresponding term in the �-less
theory, Eqs. (5.2) and (5.3), provided one chooses c1 = 0 and c3, c4 according to Eq. (6.2). Note that the
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Figure 1. Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and
dashed lines pions. Small dots, large solid dots, solid squares, triangles, diamonds,
and stars denote vertices of index � = 0, 1, 2, 3, 4, and 6, respectively. Further
explanations are given in the text.

The ability to calculate observables (in principle) to any degree of accuracy gives the

theory its predictive power.

3.2. The ranking of nuclear forces

As shown in Fig. 1, nuclear forces appear in ranked orders in accordance with the power

counting scheme.

The lowest power is � = 0, also known as the leading order (LO). At LO we

have only two contact contributions with no momentum dependence (� Q0). They are
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‣First generation of chiral NN potential up to N3LO:
Entem-Machleidt PRC 68, 041001 2003; Epelbaum-Gloeckle-Meissner JNP A747, 362 2005 

Chiral 2N potentials: recent developments

‣New generation of chiral NN potentials up to N4LO: improved choice of the regulator, no SFR: 
Epelbaum et al. PRL 112, 102501 2014; EPJ A51, 53 2015; PRL 115, 122301 2015

‣Chiral 2π and 3π exchange up to N4LO and up to N5LO in NN peripheral scattering:
Entem et al. PRC 91, 014002 2015; PRC 92, 064001 2015, PRC 96, 024004 2017

‣Semilocal momentum-space regularized chiral NN potentials up to N4LO and N4LO+ 
(LENPIC collaboration):
arXiv: 1705.01530v1 2017, arXiv:1711.08821 2017, arXiv:1802.08584 2018

‣N2LO potential with Δ-isobar; Ekström et al.  PRC 97, 024332 2018
……………………

‣Optimized N2LO NN potential (πN LECs are tuned to NN peripheral scattering):
Ekström et al. PRL 110, 192502 2013; JPG 42, 034003 2015

‣N2LO potential: a simultaneous fit of NN and 3N forces to low NN data (Elab=35 MeV), 
deuteron BE, BE and CR of hydrogen, helium, carbon and oxygen isotopes:
Carlsson et al. PRC 91, 051301(R) 2015

‣Improved nuclear matter calculations from chiral low-momentum interactions
Hebeler et al. PRC 83, 031301(R) (2011).



Nonlocalities due to contact interactions and to regulator functions

Many of the available versions of chiral potentials are formulated in momentum-
space and are strongly nonlocal:                              hard to use in QMC methods

Note:
p ! �ir

p

p0Regularization 
schemes for NN interactions

V3NV

p0
1 p0

2

p1 p2

Separation of long- and 
short-range physics

p = (p1 � p2)/2

p0 = (p0
1 � p0

2)/2

q = (p1 � p0
1)

VNN(p,p0) ! exp


� [(p2 + p02)/�2]n

�
VNN(p,p0)

VNN(p,p0) ! exp


� [(p0 � p)2/�2]n

�
VNN(p,p0)

Nonlocal regulator

Local regulator

Chiral potentials and QMC

‣ 

‣  Local NN potential up to N2LO:
Gezerlis et al. PRL 111, 032501 2013; PRC 90, 054323 2014; Lynn et al. PRL 113, 192501 
2014
Minimally nonlocal/local NN potentials including N2LO Δ-contributions and N3LO contacts:
Piarulli et al. PRC 91, 024003 2015; PRC 94, 054007 2016

H  (R; s1, .., sA; t1, .., tA) = E (R; s1, .., sA; t1, .., tA)

We use QMC (VMC, GFMC, AFDMC) and HH methods to solve the many-body 
Schrödinger equation



v12 = vEM
12 + vL12 + vS12

LO : Q0

NLO : Q2

N2LO : Q3

k

p -p

-p0p0

vS12 : short-range contact component up to order N3LO (Q4) parametrized by (2+7+11) CI 
and (2+4) IB LECs  

A “Semi-phenomenological” local chiral NN potential with 𝝙’s

vEM
12 : EM component including corrections up to ↵2

O
l=7,...,11
12 = L · S , L · S ⌧1 · ⌧2 , (L · S)2 , L2

, L2 �1 · �2

O
l=1,...,6
12 = [1 , �1 · �2 , S12]� [1 , ⌧1 · ⌧2]

Ol=12,...,16
12 = T12 , (�
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1 + �z2 ) , �1 · �2 T12 , S12 T12 , L · ST12

O
l=7,...,11
12 = L · S , L · S ⌧1 · ⌧2 , (L · S)2 , L2

, L2 �1 · �2

O
l=1,...,6
12 = [1 , �1 · �2 , S12]� [1 , ⌧1 · ⌧2]

Ol=12,...,16
12 = T12 , (�

z
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O
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Ol=12,...,16
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1 + �z2 ) , �1 · �2 T12 , S12 T12 , L · ST12

‣  known LECs:     ,     ,       Dependence on gA,
F� and hA = 3 gA/

p
2

Dependence on gA,
F� and hA = 3 gA/

p
2

b3 + b8 (L(2)
�N�)

c1, c2, c3, c4 (L(2)
�N )‣  unknown LECs:                               

(Krebs at al. EPJ A32, 127 2007)
b3 + b8 (L(2)

�N�)

c1, c2, c3, c4 (L(2)
�N )

Dependence on gA,
F� and hA = 3 gA/

p
2

‣  the functional form taken as                                       with                                  a (b) models

In coordinate-space it reads as:

v12 ⌘ v
L
12 + v

S
12 =

16X

l=1

v
l(r)Ol

12v12 ⌘ v
L
12 + v

S
12 =

16X

l=1

v
l(r)Ol

12

‣  dependence only on the momentum transfer k=p′-p

: chiral OPE and TPE component with 𝝙’s vL12



The 26 LECs are fixed by fitting the pp and np Granada database up to two ranges 
of  Elab = 125 MeV and 200 MeV, the deuteron BE and the nn scattering length

To minimizing the χ2  we have used the Practical Optimization Using No Derivatives (for 
Squares), POUNDers (M. Kortelainen, PRC 82, 024313 2010) 
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Fitting procedure: NN PWA and database

Models a (b) cutoff~500 MeV 
(600 MeV) in momentum-space



c1 c3 c4

 Inclusion of 3N forces at N2LO:

1) Fit to:
cD

Local chiral 3N potential with 𝝙’s

w/o 3N with 3N

Model cD cE E0(
3
H) E0(

3
He) E0(

4
He)

2and E0(
3
He) E0(

4
He)

Ia 3.666 –1.638 –7.825 –7.083 –25.15 1.085 –7.728 –28.31

Ib –2.061 –0.982 –7.606 –6.878 –23.99 1.284 –7.730 –28.31

IIa 1.278 –1.029 –7.956 –7.206 –25.80 0.993 –7.723 –28.17

IIb –4.480 –0.412 –7.874 –7.126 –25.31 1.073 –7.720 –28.17

courtesy of Laura E. Marcucci 
(Universita’ di Pisa)

w/o 3N with 3N

Model cD cE E0(
3
H) E0(

3
He) E0(

4
He)

2and E0(
3
He) E0(

4
He)

Ia* –0.635(255) –0.09(8) –7.825 –7.083 –25.15 1.085 –7.728 –28.31

Ib* –4.705(285) 0.550(150) –7.606 –6.878 –23.99 1.284 –7.730 –28.31

IIa* –0.610(280) –0.350(100) –7.956 –7.206 –25.80 0.993 –7.723 –28.17

IIb* –5.250(310) 0.05(180) –7.874 –7.126 –25.31 1.073 –7.720 –28.17

2and =(0.645± 0.010) fm
‣              

‣              

2) Fit to:
cE

‣              

‣ GT m.e. in 3H 𝜷-decay          

-4 -3 -2 -1 0 1 2 3 4
cD

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

G
T th

/G
T ex

p

linear fit: f(cD)=1.00651+0.0102375 cD; χ2/datum=0.999953

400k MC configs.; NVIa with tau12, RS=0.8 fm-1

1.0026

0.9974

cD=[-0.89; -0.38]
cE=[-0.01; -0.17]

Model Ia Model Ia*

courtesy of Laura E. Marcucci 
(Universita’ di Pisa)

Ia*



Ab initio methods: HH and QMC

Quantum Monte Carlo (QMC) methods encompass a large family of computational 
methods whose common aim is the study of complex quantum systems  

VMC, GFMC: sampling in coordinate space

AFDMC: sampling in coordinate space + spin-isospin coordinate

limited number of nucleons A=12 (new developments for A=13)

larger nuclei  & neutron matter

CVMC: sampling in coordinate space + cluster expansion
closed shell nuclei (+/- 1): A=40
Pieper, et al., Phys. Rev. C 46, 1741 (1992)

Phys. Rev. Lett. 120, 122502 (2018)

R.B. Wiringa, PRC 43, 1585 (1991) 

Carlson, et al., Rev. Mod. Phys. 87, 1067 (2015)

Schmidt and Fantoni, Phys. Lett. B 446, 99 (1999)

Carlson, et al., Rev. Mod. Phys. 87, 1067 (2015)

Hyperspherical Harmonics (HH) expansion for A=3 and 4 bound and continuum states

| i =
X

µ

cµ |�µi cµ from E =
h |H| i
h | i

HH basis

{
Kievsky et al., JPG: NPP 35, 063101 (2008)

https://en.wikipedia.org/wiki/Quantum_system


QMC: Variational Monte Carlo (VMC)

Minimize the expectation value of H: ET =
⇥�T |H|�T ⇤
⇥�T |�T ⇤

� E0

Trial wave function (involves variational 
parameters): 

| T i =
h
1 +

X

i<j<k

Uijk

i h
S
Y

i<j

(1 + Uij)
i
| Ji

The search in the parameter space is made using COBYLA (Constrained Optimization 
BY Linear Approximations) algorithm available in NLopt library 

R.B. Wiringa, PRC 43, 1585 (1991)

(s-shell nuclei): Jastrow wave function, fully antisymmetric|⇥J� =
hQ

i<j fc(rij)
i
|�(JMTTz)� (s-shell nuclei): Jastrow wave

function, fully antisymmetric
S
Q

i<j represents a symmetrized product: represents a symmetrized product

Uij =
X

p=2,6

up(rij)O
p
ij : pair correlation operators

Uijk =
X

x

✏x V
x
ijk : three-body correlation operators

| T i are spin-isospin vectors in 3A dimension with 2A
✓

A
Z

◆



QMC: Diffusion Monte Carlo (DMC)

The diffusion Monte Carlo (DMC) method (ex. GFMC or AFDMC) overcomes the 
limitations of VMC by using a projection technique to determine the true ground-state

| T i =
X

n

cn| ni H| ni = En| ni

|�(⌧ = 0)� = |�T �lim
⌧!1

| (⌧)i = lim
⌧!1

e�(H�E0) ⌧ | T i = c0| 0i

where τ is the imaginary time

J. Carlson et al., Rev. Mod. Phys. 87, 1067 (2015)

Basic model

Chiral 2N
interactions

Chiral 3N
interactions

EWK
interactions

EWK QE
response

Outlook

GFMC for A  12
RMP by Carlson et al. (2015)

Propagation in imaginary time

E0 = lim
⌧!1

h V |H e
�⌧ H | V i

h V |e�⌧ H | V i
Exponential growth with A (in 12C st-states ⇠ 4⇥ 10

6)

 V =

X

s2A

X

t2A

�st(r1, . . . , rA)�st(1, . . . , A)

The method relies on the observation that       can be expanded in the complete set of 
eigenstates of the Hamiltonian according to

 T

The evaluation of         is done stochastically in small time steps Δτ (τ = n Δτ) using a 

Green’s function formulation

 (⌧)



Spectra of Light Nuclei: Phenomenology vs 𝝌EFT

Piarulli et al. PRL 120, 052503 (2018)

The rms from experiment is 0.72 MeV for NV2+3-Ia compared to 0.80 MeV for AV18+IL7

w/o 3N with 3N

Model cD cE E0(
3
H) E0(

3
He) E0(

4
He)

2and E0(
3
He) E0(

4
He)

Ia 3.666 –1.638 –7.825 –7.083 –25.15 1.085 –7.728 –28.31

Ib –2.061 –0.982 –7.606 –6.878 –23.99 1.284 –7.730 –28.31

IIa 1.278 –1.029 –7.956 –7.206 –25.80 0.993 –7.723 –28.17

IIb –4.480 –0.412 –7.874 –7.126 –25.31 1.073 –7.720 –28.17

repulsion (attraction ) in light-nuclei (the opposite effect in PNM)

repulsion (attraction) in light-nuclei (same effect in PNM but very small)



Energies of Light Nuclei: Model-dependence

w/o 3N with 3N

Model cD cE E0(
3
H) E0(

3
He) E0(

4
He)

2and E0(
3
He) E0(

4
He)

Ia 3.666 –1.638 –7.825 –7.083 –25.15 1.085 –7.728 –28.31

Ib –2.061 –0.982 –7.606 –6.878 –23.99 1.284 –7.730 –28.31

IIa 1.278 –1.029 –7.956 –7.206 –25.80 0.993 –7.723 –28.17

IIb –4.480 –0.412 –7.874 –7.126 –25.31 1.073 –7.720 –28.17

Model-dependence for NV2+3 up to 7-8% of the total binding energy

repulsion (attraction ) in light-nuclei (the opposite effect in PNM)

repulsion (attraction) in light-nuclei (same effect in PNM but very small)

Fit type (1)
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EoS of PNM is very sensitive to the choice of the 3N force; particularly the short-range 
part of the 3N which is the less understood

AFDMC: Preliminary
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Cutoff sensitivity: modest in NV2 models; large in NV2+3 models
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w/o 3N with 3N

Model cD cE E0(
3
H) E0(

3
He) E0(

4
He)

2and E0(
3
He) E0(

4
He)

Ia 3.666 –1.638 –7.825 –7.083 –25.15 1.085 –7.728 –28.31

Ib –2.061 –0.982 –7.606 –6.878 –23.99 1.284 –7.730 –28.31

IIa 1.278 –1.029 –7.956 –7.206 –25.80 0.993 –7.723 –28.17

IIb –4.480 –0.412 –7.874 –7.126 –25.31 1.073 –7.720 –28.17

Fit type (1)



Polarization observables in pd elastic scattering at 3 MeV: HH calculations with the NV2+3 
models Ia-Ib (IIa-IIb), are shown by the green (blue) band. The black dashed line are 
results obtained with only the two-body interaction NV2-Ia

 subleading contact terms in 3N interaction???



Energies of Light Nuclei: Model-dependence

w/o 3N with 3N

Model cD cE E0(
3
H) E0(

3
He) E0(

4
He)

2and E0(
3
He) E0(

4
He)

Ia 3.666 –1.638 –7.825 –7.083 –25.15 1.085 –7.728 –28.31

Ib –2.061 –0.982 –7.606 –6.878 –23.99 1.284 –7.730 –28.31

IIa 1.278 –1.029 –7.956 –7.206 –25.80 0.993 –7.723 –28.17

IIb –4.480 –0.412 –7.874 –7.126 –25.31 1.073 –7.720 –28.17

w/o 3N with 3N

Model cD cE E0(
3
H) E0(

3
He) E0(

4
He)

2and E0(
3
He) E0(

4
He)

Ia* –0.635(255) –0.09(8) –7.825 –7.083 –25.15 1.085 –7.728 –28.31

Ib* –4.705(285) 0.550(150) –7.606 –6.878 –23.99 1.284 –7.730 –28.31

IIa* –0.610(280) –0.350(100) –7.956 –7.206 –25.80 0.993 –7.723 –28.17

IIb* –5.250(310) 0.05(180) –7.874 –7.126 –25.31 1.073 –7.720 –28.17

Model-dependence for NV2+3  up to 7-8% of the total binding energy
Model-dependence for NV2+3* up to 2-3% of the total binding energy

Fit type (1) Fit type (2)



3N subleading contact terms

There are 146 3N contact operators with two derivatives; but Fierz identities lead to 10 
independent operator structure; a possible choice

 For consistency these operators should go along with NN1 and (multi-pion exchange) 3N 
potentials at N4LO2

1Entem et al. (2015) and Epelbaum et al. (2015); 2Bernard et al. (2008) and (2011)

However it is worth the effort to test them in calculations of few-body reactions (p-d and 
p-3He Ay) and spectra of light-nuclei



Energies of Light Nuclei: inclusion-subleadings

w/o 3N with 3N

Model cD cE E0(
3
H) E0(

3
He) E0(

4
He)

2and E0(
3
He) E0(

4
He)

Ia* –0.635(255) –0.09(8) –7.825 –7.083 –25.15 1.085 –7.728 –28.31

Ib* –4.705(285) 0.550(150) –7.606 –6.878 –23.99 1.284 –7.730 –28.31

IIa* –0.610(280) –0.350(100) –7.956 –7.206 –25.80 0.993 –7.723 –28.17

IIb* –5.250(310) 0.05(180) –7.874 –7.126 –25.31 1.073 –7.720 –28.17

w/o 3N with 3N

Model cD cE E0(
3
H) E0(

3
He) E0(

4
He)

2and E0(
3
He) E0(

4
He)

Ia* –0.635(255) –0.09(8) –7.825 –7.083 –25.15 1.085 –7.728 –28.31

Ib* –4.705(285) 0.550(150) –7.606 –6.878 –23.99 1.284 –7.730 –28.31

IIa* –0.610(280) –0.350(100) –7.956 –7.206 –25.80 0.993 –7.723 –28.17

IIb* –5.250(310) 0.05(180) –7.874 –7.126 –25.31 1.073 –7.720 –28.17

(GFMC)

Preliminary

‣E5 and E6  are helping mostly with 10B 
even if the splitting is not quite solved 
‣E7 and E8  are helping mostly to get A=8 

nuclei



We are testing our models of NN+3N interactions with Δ-isobar based on chiral EFT 
framework in both light-nuclei and infinite nuclear matter

Conclusions 

For the time being, we are interested in studying the model-dependence of the nuclear 
observables by exploring different cutoffs and range of energies used to fit the NN 
interactions as well as analyzing different strategies fo fit the TNI 

We are investigating the effect of subleading 3N contact interactions in light-nuclei (we 
will do so also for infinite nuclear matter)

We mainly focused our attention on studying the spectra of nuclei up to A=12 and EoS of 
infinite neutron matter

It looks like that the formulation of the TNI with only       and       terms is too simplistic if 
we want to have a good descriptions of spectra, properties of light-nuclei, infinite nuclear 
matter, three-body observables with a certain degree of accuracy



Outlook

QMC calculations of the electromagnetic structure (and reactions) using local 
interactions with Δ-isobar and corresponding currents ( in collaboration with S. Pastore 
et al.)

‣ EM currents with Δ-isobar up to one loop have been derived in momentum space 
(Pastore et al. PRC78(2008)064002 )
‣ tree-level contributions with Δ-isobar are fully developed in r-space
‣ one loop contributions with Δ-isobar need to be workout in r-space & in the codes 

(on going project)

QMC calculations of beta-decays using local interactions with Δ-isobar and 
corresponding axial currents (on going project in collaboration with S. Pastore et al.)

‣ Axial currents without Δ-isobar up to one loop have been fully derived in r-space (A. 
Baroni et al. PRC93(2016)015501 )
‣ tree-level contributions with Δ-isobar are fully developed in r-space
‣ one loop contributions with Δ-isobar need to be workout in r-space & in the codes 

(on going project)


