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NEW IDEAS IN CONSTRAINING NUCLEAR FORCES

a precise description of the
strong nuclear interaction.

To what extent can nuclei be described
in effective field theories of quantum
Chromo dynamiCS ? Several talks this week !

“Fitting Interactions”

How to estimate the uncertainties in
— theoretical predictions from effective
field theory “? | Several talks this week !
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A possible scenario: we need to optimize a set of LECs in an EFT by minimizing some
objective function that includes experimental data for a class of observables that is
computationally expensive: e.g. 3N scattering data, and/or A>4 many-body observable(s),
and/or nuclear matter, ...

Budget: ~50-100 function evaluations ~(10-20-...) dimensional parameter space.
+ Some type of simulation/surrogate computation should be invoked.

« Ab initio methods can run with reduced fidelity.

» Exploiting/extracting derivatives is most likely out of the question.

* In this talk I will focus on a possible method to handle expensive objective functions.

Chalmers University of Technology
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AN OPTIMIZATION PROBLEM

(finding global optimizers is generally intractable)

A typical objective function is a non-linear least squares .L1600
function, or some other measure of the goodness of fit. 11400

71200
We are after the point estimate of the parameter vector of the L1000

nuclear interaction model.

T 800
Goal: find ‘optimal’ parameter vector(s) T 600
T 400
(9* = arg min F(Q) + 200
0c X CR4
Ad(ditional challenges in a realistic application 2?)?)00
to nuclear forces: 0
400 200 Y
« high-dimensional parameter domain, 10 < d < 30 e 400
X —400

» often several local optima, cases with ~100 local optima exist

Chalmers University of Technology 4
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BAYESIAN INFERENCE AND PARAMETER ESTIMATION

Bayes formulation of statistics offers a convenient method to guard against overfitting, to incorporating prior
knowledge (naturalness, the EFT error scaling), and to quantitatively compare models to each other!

L(ikelir||ood ) PEior| )
Posterior P(D a’l P(all
P(a|D,I) = P(DID

Toolbox: Evidence (normalization)

Marginalization
P(aq1|D,I) = /da2 ...dapP(a|D,I)

If you can do Markov Chain Monte Carlo sampling then you can afford to
do Bayes !

P(Dl|a,I) = /dc,;H ...de,  P(Dl|cpy1...cy..,a, 1) There exists “discounted” versions where you apprimate your Likelihood
and therefore obtain an approximate description of your posterior.

XP(cpq1--Copo )
Model comparison (Bayes factors)

P(M,|D) — f P(Dla, My)P(a|M;)da Tomorrow: Christian Forssen, Sarah Wesolowski gf’(,\,";g[jo‘u‘saagtejlaj‘é,ﬁgé 43, 074001 (2016)
P(My|D) [ P(D|b, M3)P(b|Ms)db M. Schindler, D. Phillips, Ann. Phys. 324, 682 (2009)
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Exploit known structure (sum-of-squares) and setup interpolating
quadratic model of each residual F; (x) centered around xX.

1 i
+ —(x — xk)TH,g )(z — Tk)

a0 = Filei) + (@ —a0) g + 5

Solve for g, and H, by interpolating to subset of common
function values. A master model uses second order information

POUNDERSs exploits the known ‘squared-
sum’ structure of the objective function!

@ +0) = F(@n) + 07> Fi(wg® + 5Tz( DT + Fy(ap) HD) 6

1=1 1=1

Stefan Wild, Argonne National Laboratory, Preprint ANL/MCS-P5120-0414

Chalmers University of Technology
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NNLOg,r— POUNDERS & AB INITIO IN ASMALL SPACE

Simultaneous optimization of the chiral

JR— | .4. : — Expt NN+NNN interaction at NNLO to charge
% -5k : g : radii and binding energies of 3H, 34He, 4C,
s —6F : ! g 80 and binding energies of 2224250 and
- -g}“g . NN-data (T, <35 MeV).
S —of .i i =
T o - ™ Ve o 20 omEED
— — Fe) LR
! : . : wEE
. ' : 3 : L
‘:"_ -0.2F : ‘ ! @ < CTEEE NNLO :
s ' ‘ ‘ ' Vm = T ..
a4 -0.4H ¢ NNLO : o v -9 * post'lc.|0n
06: ‘ '“t. i ': W e Og | * prediction
Y ‘He *He “C 0 “Ca ®Ca ®Ni a 0 20 40

A.Ekstrdm, et al. Phys. Rev C 91, 051301(R) (2015)

Chalmers University of Technology
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MACHINE LEARNING (s zssimueste o
THIS 15 YOUR MACHINE LEARNING SYSTET?  Arthur Samuel. 1959

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSWERS ON THE OTHER SIDE.

WHAT IF THE ANSLEERS ARE. LJRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT

hidden layer output layer

Typically requires huge amounts of training data. Which we
do not have in the scenario that | am discussing here today.

Chalmers University of Technology 8
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MACHINE LEARNING WITH GAUSSIAN PROCESSES

Gaussian process: a collection of random variables, any finite number of

which have joint Gaussian distributions.
(Rasmussen & Williams, Gaussian Processes for Machine Learning)

A GP is a distribution of possible functions f(x) that are consistent with observed data. In a
Bayesian view, it begins with a prior, and updates a posterior as new data comes in.

For some point(s) x* For some x, we have observed
. | we would like to estimate f(x*)

| the outcome f(x).
o © ©

® @ We want the conditional probability of f(x*)

fla®)le”, z, f(x)

m—p>
X

Chalmers University of Technology 9
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(2 )~ () (o o)

Easy to get the conditional probability of
one of the variables, given the other.

"Gaussian Process”

f p K K7
We express the covariance ( f* ) NN [( ,LL* )7( (K*)T K** )]

of the output in terms of

the input. 1 5
COV(f(xp)a f(:l?q)) — k(xpa :EQ) — eXp _§|xp o xQ‘
The prediction f*, conditioned on | X*, X, f ~ N[K(X*, X)K(X, X)_lf,

the observations, given a

covariance function, is given by: K(X*, X*) - K(X*, X)K(X, X)_lK(X, X*)] Cost: O(N3)

Rasmussen & Williams, Gaussian Processes for Machine Learning.
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BAYESIAN OPTI M IZATION When your objective function is

Jonas Mockus (2013). Bayesian approach to global optimization: theory and applications. Kluwer Academic. expensive to evaluate !

iteration 0 H iteration 1 : Setup prior belief about the function.
_ 1 e 1€ QL Z This is often a Gaussian process
2 o TN A | TN
=] j —~ p(f) =GP (f; 1 K)
fNS :
_ ' ' __ Confront prior with some data
o teration 2 _ e : Dy = 21,22, ... Tns f1, f2, - [l
X 01 17700 /0 N : —
& 11 5 - Update the posterior description of the
N\ TN Unknown function
iteration 4 iteration 5 p(f|D13”) - gP(f? 'uf|Dl:n’ Kf|D1:n)
~ (1): ? ﬁ AR ’% \ A~ Decide where to sample next
T : | < Ln+1
00 02 04 06 08 1.0 00 02 04 06 08 1.0 Augment the data and update the
X X Gaussian process Dj.+1

Chalmers University of Technology 25
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ACQUISITION FUNCTION

iteration 5 :
) :
Expected Improvement x,,.1 = argmax A(x) | 7 % /ﬁ A
1 ~ 7
It is not clear at the outset which acquisition function \
will work best. Problem specific, but El is commonly used. P ;
0.0 0.2 0.4 0.6 0.8 1.0
frin: insofar lowest recorded function value. X
Reward expected reduction in f
.A(x) - <u(x)> - f o) maX(O, Frmin = f(x))p(f(x)\Dln) df in proportion to the reduction.
fmin - [L(CU)D fmin - ,U(x)D
= (foin — (x)p)® +o(x)pN 0,1
(frnln ,LL( )D) ( O‘(LE)D ( )D O‘(LE)D
Exploitation Exploration
Sampling areas of Sampling areas of

likely improvement high uncertainty

Chalmers University of Technology
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BAYESIAN OPTIMIZATION

Exploitation vs. Exploration

10

8
>
X
= 6

>
4
P -

- 24 It can be challenging to scale Bayesian
local minima and explore the parameter optimization to multi-dimensional
domain. It can exploit prior assumptions oJ parameter domains. So, how far can
about the function, and utilize all previous 0 we take this approach in nuclear
function evaluations. physics applications?

Chalmers University of Technology
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BAYESIAN OPTIMIZATION

Bayesian optimization

f(x,y)

200 400
K0 =200 _400

—200 400

| l
0 0.25 0.5 0.75 1
Acquisition function

Iteration = 1

Chalmers University of Technology
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NP SCATTERING, BELOW 75 MEV

R. Navarro-Perez et al, Phys. Rev. C 88, 064002 (2013).

NN Simple enough to benchmark different BayesOpt
\ / algorithms. Complex enough provide a realistic setting.

LO 94 0* ‘,:':| a3 Theoretical model (N2LO chiral EFT) has 12 parameters.

We have a model that we want to minimize. We then
'} \/ sample how well different solvers (optimization algorithms)
® ©. = perform by varying the starting points.

11/ We use the same 24 quasi-random (Sobol) starting points
+... for all solvers.

| Benchmarking 12 different BayesOpt solvers:
NNLO +: ¢ F Crae 3 Gaussian process kernels (RBF, Matern 3/2, Matern 5/2)
| « 2 Acquisition functions (El, LCB)
... « With and without Automatic Relevance Determination (ARD)

Chalmers University of Technology



CHALMERS

UNIVERSITY OF TECHNOLOGY

DATA PROFILES FOR BENCHMARKING

1 tp.s
ds(a)—ﬁsme peP: i _|_1<oz

The data profile enables direct comparison between a set of optimization algorithms § all of
which applied to a set of optimization problems P . For each (s, p) & § x P, the performance
measure #,»> 0 denotes the number of function evaluations that are required for optimization
algorithm s, applied to a problem p, to satisfy some convergence criterion. Thus, ds(a) is the
fraction of problems that can be solved within a function calls. The performance measure
can be normalized to d, + 1 (dimensional normalization) for comparing optimizers across

different spaces.

J.J. Moré, S.M. Wild, Benchmarking Derivative-Free Optimization Algorithms, SIAM J.
Optim. 20 (2009) 172-191. doi:10.1137/080724083.

Chalmers University of Technology
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convergence criterion: 90% reduction

DATA PROFILES Fxo) — £(a) > (1 7)(Flao) — fi).

1.0 BO: Expected Improvement BO: Lower Confidence Bound
: =le— =1le-01
e Matern 3/2 (ard) T e
Matern 3/2
—— Matern 5/2 (ard)
0.8 === Matern 5/2
—_ Squared exponential (ard)
S Squared exponential
fo]
o 0.6
=
o ; i
S e ) S———
c 0.4 - E—
D - gl -I- -‘q-_-
0-2 2" F""EF-'.-"-"-‘-
’P
] ,
0.0 ‘

0 50 100 150 200 250 O 50 100 150 200 250
Function evaluations a Function evaluations a

Chalmers University of Technology
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convergence criterion: 90% reduction

DATA PROFILES Fxo) — £(a) > (1 7)(Flao) — fi).

10 BO: Expected Improvement POUNDERs
= PO Matern 3/2 (ard) e a9 i SEEE1y
Matern3/2 .. Step init 6=0.25
-~ Matern 5/2 (2rd) . Step init 6 =0.20
0.8 --- Matern 5/2 I S Step init 6 = 0.15
—_ Squared exponential (ard) Step init 6= 0.10
3 Squared exponential Step init 6 = 0.05
5 :
o 0.6
=
e _'—.IT_I o 0 ! L
o i — - -
< 0.4 =4 - § e
+J - o
S FE e
D .,':.'::.
’ :'.'-5-:.
0.0 .
0 50 100 150 200 250 O 50 100 150 200 250
Function evaluations a Function evaluations a

Chalmers University of Technology
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TRACES (MINIMUM CHI-SQ VS ITERATION)

BayesOpt — El — Matern 3/2 POUNDERSs - Initial step length 0.3
5000- 5000-
4000- L 4000-
S S
= =
S 3000- S 3000-
W | e 0 o 0
2000- il 2000- ‘
1000- : = l S —— 1000-
0 50 100 150 200 250 0 >5 TOO 150 200 250

Function evaluations a Lower Chi-Sq Function evaluations a
Chalmers University of Technology
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COMMENTS

. It is challenging to handle expensive objectives. Any additional information should be
incorporated. Next steps:
Exploit that the objective function is sum of squared residuals. (ignored in BayesOpt now)

Exploit any additive structure in the objective function. (ignored in BayesOpt and
POUNDERSs now)

. BayesOpt can be infinitely tweaked and can balance exploration-exploitation
strategies. It is not designed to locate the exact point of an optimum.

. POUNDERSs is easy to use (!), can find a rather good minimizer fast, however only
when launched with an optimal initial step length. Less explorative.

. For EFT: BayesOpt[El,Matern] exhibits overall good performance with small spread.

. Suggested strategy: Initiate optimization with BayesOpt. Refine with POUNDERSs, and
thereafter with possibly existing higher-order methods.

2018-06-05 Chalmers University of Technology
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