Uncertainty Quantification

for

Nuclear Many-Body Calculations

Corbinian Wellenhofer (Technical University Darmstadt)

with: C. Drischler, J.W. Holt, N. Kaiser, A. Schwenk, W. Weise

ECT* workshop

"New ideas for constraining nuclear forces"

June 05, 2018

The Nuclear-Many-Body Problem

www2.astro.puc.cl

	neutron star
origin	core-collapse supernova
radius	$\sim 10 \text{km}$
mass	~ 10 ³⁰ kg
$ ho_0$	$0.16\text{fm}^{-3} \simeq 3 \times 10^{14} \text{g/cm}^3$

Neutron stars are the most compact objects in the universe (apart from BHs)

The Nuclear-Many-Body Problem

www2.astro.puc.cl

	neutron star
origin	core-collapse supernova
radius	~ 10 km
mass	~ 10 ³⁰ kg
$ ho_0$	$0.16\text{fm}^{-3} \simeq 3 \times 10^{14} \text{g/cm}^3$

Neutron stars are the most compact objects in the universe (apart from BHs)

Task: Calculate Nuclear Many-Body Properties Including Uncertainties

- ground-state properties (neutron star structure)
- thermodynamic potentials (supernovae, neutron star mergers)
- transport properties (supernovae, neutron star mergers)

MBPT + chiral EFT provides a consistent and systematic framework for this

Uncertainties governed by:

many-body truncations \rightarrow MBPT order-by-order convergence

The Nuclear-Many-Body Problem

www2.astro.puc.cl

	neutron star
origin	core-collapse supernova
radius	~ 10 km
mass	~ 10 ³⁰ kg
$ ho_0$	$0.16\text{fm}^{-3} \simeq 3 \times 10^{14} \text{g/cm}^3$

Neutron stars are the most compact objects in the universe (apart from BHs)

Task: Calculate Nuclear Many-Body Properties Including Uncertainties

- ground-state properties (neutron star structure)
- thermodynamic potentials (supernovae, neutron star mergers)
- transport properties (supernovae, neutron star mergers)

MBPT + chiral EFT provides a consistent and systematic framework for this

Uncertainties governed by:

many-body truncations \rightarrow MBPT order-by-order convergence

effective description of nuclear interactions \rightarrow EFT power counting

R.Machleidt; "Chiral symmetry and the nucleon-nucleon interaction, Symmetry 8 (2016)

Part 1: Dilute Fermi Gas

EFT without pions Higher-order many-body calculations in pionless EFT

Lagrangian

$$\begin{aligned} \mathscr{L}_{\mathsf{EFT}}[\psi] = \psi^{\dagger} \left[i\partial_t + \frac{\vec{\nabla}^2}{2M} \right] \psi - \frac{C_0}{2} (\psi^{\dagger}\psi)^2 + \frac{C_2}{16} \left[(\psi\psi)^{\dagger} (\psi\vec{\nabla}^2\psi) + h.c. \right] \\ + \frac{C_2'}{8} (\psi\vec{\nabla}\psi)^{\dagger} \cdot (\psi\vec{\nabla}\psi) - \frac{D_0}{6} (\psi^{\dagger}\psi)^3 + \dots \end{aligned}$$

Lagrangian

$$\begin{aligned} \mathscr{L}_{\mathsf{EFT}}[\psi] = \psi^{\dagger} \left[i\partial_t + \frac{\vec{\nabla}^2}{2M} \right] \psi - \frac{C_0}{2} (\psi^{\dagger}\psi)^2 + \frac{C_2}{16} \left[(\psi\psi)^{\dagger} (\psi\vec{\nabla}^2\psi) + h.c. \right] \\ + \frac{C_2'}{8} (\psi\vec{\nabla}\psi)^{\dagger} \cdot (\psi\vec{\nabla}\psi) - \frac{D_0}{6} (\psi^{\dagger}\psi)^3 + \dots \end{aligned}$$

Renormalization

• divergent loop integrals (NN):
$$I_{\psi\psi} = \frac{1}{2\pi} \int_{0}^{\infty} d^{3}q \frac{q^{0}}{q^{2} - p^{2} - i\epsilon} = \infty$$

Lagrangian

$$\begin{aligned} \mathscr{L}_{\mathsf{EFT}}[\psi] = \psi^{\dagger} \left[i\partial_t + \frac{\vec{\nabla}^2}{2M} \right] \psi - \frac{C_0}{2} (\psi^{\dagger}\psi)^2 + \frac{C_2}{16} \left[(\psi\psi)^{\dagger} (\psi\vec{\nabla}^2\psi) + h.c. \right] \\ + \frac{C_2'}{8} (\psi\vec{\nabla}\psi)^{\dagger} \cdot (\psi\vec{\nabla}\psi) - \frac{D_0}{6} (\psi^{\dagger}\psi)^3 + \dots \end{aligned}$$

Renormalization

• divergent loop integrals (NN):
$$I_{\psi\psi} = \frac{1}{2\pi} \int_{0}^{\Lambda} d^3q \frac{q^0}{q^2 - p^2 - i\epsilon} = 2\Lambda + i\pi p + O(\Lambda^{-1})$$

Lagrangian

$$\begin{aligned} \mathscr{L}_{\mathsf{EFT}}[\psi] = \psi^{\dagger} \left[i\partial_t + \frac{\vec{\nabla}^2}{2M} \right] \psi - \frac{C_0}{2} (\psi^{\dagger}\psi)^2 + \frac{C_2}{16} \left[(\psi\psi)^{\dagger} (\psi\vec{\nabla}^2\psi) + h.c. \right] \\ + \frac{C_2'}{8} (\psi\vec{\nabla}\psi)^{\dagger} \cdot (\psi\vec{\nabla}\psi) - \frac{D_0}{6} (\psi^{\dagger}\psi)^3 + \dots \end{aligned}$$

Renormalization

• divergent loop integrals (NN): $I_{\psi\psi} = \frac{1}{2\pi} \int_{0}^{\Lambda} d^3q \frac{q^0}{q^2 - p^2 - i\epsilon} = 2\Lambda + i\pi p + O(\Lambda^{-1})$

• particle-particle bubbles (MBPT):
$$I_{\text{MBPT}} = \frac{1}{2\pi} \int_{k_{\text{T}}}^{\Lambda} d^3 q \frac{q^0}{q^2 - \rho^2} =$$

Lagrangian

$$\begin{aligned} \mathscr{L}_{\mathsf{EFT}}[\psi] = \psi^{\dagger} \left[i\partial_t + \frac{\vec{\nabla}^2}{2M} \right] \psi - \frac{C_0}{2} (\psi^{\dagger}\psi)^2 + \frac{C_2}{16} \left[(\psi\psi)^{\dagger} (\psi\vec{\nabla}^2\psi) + h.c. \right] \\ + \frac{C_2'}{8} (\psi\vec{\nabla}\psi)^{\dagger} \cdot (\psi\vec{\nabla}\psi) - \frac{D_0}{6} (\psi^{\dagger}\psi)^3 + \dots \end{aligned}$$

Renormalization

- divergent loop integrals (NN): $I_{\psi\psi} = \frac{1}{2\pi} \int_{0}^{\Lambda} d^3q \frac{q^0}{q^2 p^2 i\epsilon} = 2\Lambda + i\pi p + O(\Lambda^{-1})$
- particle-particle bubbles (MBPT): $I_{\text{MBPT}} = I_{\text{fin}} + \frac{1}{2\pi} \int_{0}^{\Lambda} d^3 q \frac{q^0}{q^2 p^2} = 2\Lambda + I_{\text{fin}} + O(\Lambda^{-1})$

Lagrangian

$$\begin{aligned} \mathscr{L}_{\mathsf{EFT}}[\psi] = \psi^{\dagger} \left[i\partial_t + \frac{\vec{\nabla}^2}{2M} \right] \psi - \frac{C_0}{2} (\psi^{\dagger}\psi)^2 + \frac{C_2}{16} \left[(\psi\psi)^{\dagger} (\psi\vec{\nabla}^2\psi) + h.c. \right] \\ + \frac{C_2'}{8} (\psi\vec{\nabla}\psi)^{\dagger} \cdot (\psi\vec{\nabla}\psi) - \frac{D_0}{6} (\psi^{\dagger}\psi)^3 + \dots \end{aligned}$$

Renormalization

- divergent loop integrals (NN): $I_{\psi\psi} = \frac{1}{2\pi} \int_{0}^{\Lambda} d^3q \frac{q^0}{q^2 p^2 i\epsilon} = 2\Lambda + i\pi p + O(\Lambda^{-1})$
- particle-particle bubbles (MBPT): $I_{\text{MBPT}} = I_{\text{fin}} + \frac{1}{2\pi} \int_{0}^{\Lambda} d^{3}q \frac{q^{0}}{q^{2}-p^{2}} = 2\Lambda + I_{\text{fin}} + O(\Lambda^{-1})$

 \Rightarrow same counterterms regularize NN and MBPT! Cutoff independent results for $\Lambda \rightarrow \infty$

Pionless EFT (II): LEC Fixing & Power Counting, k_F Expansion

LEC Fixing: match two-body LECs to effective-range expansion

$$C_0 = rac{4\pi a_s}{M}, \qquad C_2 = C_0 rac{a_s r_s}{2}, \qquad C_2' = rac{4\pi a_p^2}{M}$$

0

• Power counting for natural LECs: $|C_0| \sim 1/\Lambda_{\chi}$, $|C_2| \sim |C_2'| \sim 1/(\Lambda_{\chi})^3$

Pionless EFT (II): LEC Fixing & Power Counting, k_F Expansion

LEC Fixing: match two-body LECs to effective-range expansion

$$C_0 = rac{4\pi a_s}{M}, \qquad C_2 = C_0 rac{a_s r_s}{2}, \qquad C_2' = rac{4\pi a_p^3}{M}$$

• Power counting for natural LECs: $|C_0| \sim 1/\Lambda_{\chi}, |C_2| \sim |C'_2| \sim 1/(\Lambda_{\chi})^3$

• EFT power counting and MBPT(n) in direct correspondence, T = 0: MBPT(n) ~ $k_{\rm F}^n$

Fermi-momentum expansion for ground-state energy density $E(k_{\rm F})$

MBPT(1): 1 diag, MBPT(2)=1(2), MBPT(3)=3(15), MBPT(4)=33(..), MBPT(5)=668(..)

Pionless EFT (II): LEC Fixing & Power Counting, k_F Expansion

LEC Fixing: match two-body LECs to effective-range expansion

$$C_0 = rac{4\pi a_s}{M}, \qquad C_2 = C_0 rac{a_s r_s}{2}, \qquad C_2' = rac{4\pi a_p^3}{M}$$

• Power counting for natural LECs: $|C_0| \sim 1/\Lambda_{\chi}, |C_2| \sim |C'_2| \sim 1/(\Lambda_{\chi})^3$

EFT power counting and MBPT(n) in direct correspondence, T = 0: MBPT(n) ~ k_Eⁿ

Fermi-momentum expansion for ground-state energy density $E(k_{\rm F})$

$$\begin{split} \mathsf{E}(k_{\rm F}) &\simeq \varrho \frac{k_{\rm F}^2}{2M} \bigg[\frac{3}{5} + (g-1) \bigg\{ \frac{2}{3\pi} k_{\rm F} a_{\rm s} + \frac{4}{35\pi^2} (11 - 2\ln 2) (k_{\rm F} a_{\rm s})^2 \\ &+ \big(0.0755732 + 0.0573879 (g-3) \big) (k_{\rm F} a_{\rm s})^3 \bigg\} + \frac{1}{10\pi} (g-1) (k_{\rm F} a_{\rm s})^2 k_{\rm F} r_{\rm s} + \frac{1}{5\pi} (g+1) (k_{\rm F} a_{\rm p})^3 \\ &+ E_4 (k_{\rm F}) + O(k_{\rm F}^5 \ln |k_{\rm F}|) \bigg] \\ \end{split}$$

- MBPT(1): 1 diag, MBPT(2)=1(2), MBPT(3)=3(15), MBPT(4)=33(..), MBPT(5)=668(..)
- Logarithmic divergences, first in MBPT(4): ~ (g 2) (k_Fa_s)⁴ ln|k_Fa_s|
 - \rightarrow Pauli blocked for g = 2
 - $\rightarrow g \ge 2$: $D_0(\Lambda)$ counterterm, $D_0(\Lambda_0)$ needs to be fixed by 3N (or many-body) data

Pionless EFT (IV): Contributions to $(k_{\rm F}a_s)^4$ Term

Numerical calculations carried out using novel Monte-Carlo Framework for MBPT

Drischler, Hebeler, Schwenk; "Chiral interactions up to N3LO and nuclear saturation ", arXiv:1710.08220 (2017)

Table : Diagrams with * (**) have power (logarithmic) divergencies.

diagram	type	g factor	value	
11*	pp ladder	1	+0.0383	—
12*+15*	pp-hh ladder	1	+0.0099	11-16: N. Kaiser: "Resummation of fermionic in-medium
13+14*	pp-hh ladder	1	+0.0050	ladders to all orders", NPA 860 (2011)
16	hh ladder	1	-0.0007	
IA1	ph ladder (ring)	g(g - 3) + 4	-0.0037	
IA2	ph ladder	g(g-3) + 4	-0.0033	
IA3	ph ladder	g(g-3) + 4	-0.0017	
II1*+II2*	skeleton	g – 3	+0.0292	
113+114	skeleton	g – 3	-0.0034	
115**	skeleton	g – 3	+0.0617	Regular diagrams: G.A. Baker; "Singularity
II6**,*	skeleton	g – 3	-0.0080	Structure of the Perturbation Series for the Ground-State
117+1112	skeleton	g – 3	+0.0039	Energy of a Many-Fermion System", RMP 43 (1971)
ll8+ll11	skeleton	g – 3	+0.0077	
119	skeleton	g – 3	-0.0010	
II10	skeleton	g – 3	-0.0003	
IIA1**	skeleton	3 <i>g</i> – 5	+0.0619	
IIA2+IIA4	skeleton	3g – 5	+0.0041	
IIA3	skeleton	3g – 5	-0.0005	
IIA5	skeleton	3 <i>g</i> – 5	+0.0035	
IIA6	skeleton	3g – 5	+0.0033	
1**,*	2-2 non-skeleton	g – 1	-0.0123	
1112	2-2 non-skeleton	g – 1	-0.0032	
1117+1118*	2-2 non-skeleton	g – 1	-0.0357	
1119+11110	2-2 non-skeleton	a – 1	+0.0049	

Pionless EFT (V): Convergence of the Fermi-Momentum Expansion

g=2, set $a_p=r_s=0$

 $E/E_0 \simeq 1 + 0.35368k_Fa_s + 0.18554(k_Fa_s)^2 + 0.03031(k_Fa_s)^3 - 0.0476(5)(k_Fa_s)^4$

Pionless EFT (V): Convergence of the Fermi-Momentum Expansion

g = 2, set $a_p = r_s = 0$

 $E/E_0 \simeq 1 + 0.35368k_Fa_s + 0.18554(k_Fa_s)^2 + 0.03031(k_Fa_s)^3 - 0.0476(5)(k_Fa_s)^4$

• compare with results extracted from Quantum Monte-Carlo simulations

Gandolfi, Gezerlis, Carlson; Ann.Rev.Nucl.Part.Sci. 65 (2015)

Wellenhofer, Drischler, Schwenk; in preparation (2018)

Pionless EFT (V): Convergence of the Fermi-Momentum Expansion

g = 2, set $a_p = r_s = 0$

 $E/E_0 \simeq 1 + 0.35368k_Fa_s + 0.18554(k_Fa_s)^2 + 0.03031(k_Fa_s)^3 - 0.0476(5)(k_Fa_s)^4$

• compare with results extracted from Quantum Monte-Carlo simulations

Gandolfi, Gezerlis, Carlson; Ann.Rev.Nucl.Part.Sci. 65 (2015)

Wellenhofer, Drischler, Schwenk; in preparation (2018)

k_Fa_s expansion constitutes unique MBPT series — but in general MBPT series not unique!

MBPT:
$$\mathcal{H} = \mathcal{T}_{kin} + \mathcal{V} = (\mathcal{T}_{kin} + \mathcal{U}_{HF}) + (\mathcal{V} - \mathcal{U}_{HF})$$

reference system perturbation "mean-field theory" "correlations"

- momentum independent interaction (~ a_s) $\rightarrow U_{HF} = \text{const.}$, no effect
- chiral EFT interactions → perturbation series depends on reference Hamiltonian!

Part 1: Dilute Fermi Gas

EFT without pions Higher-order many-body calculations in pionless EFT

Part 2: Nuclear Matter

Chiral EFT and nuclear potentials

Higher-order many-body calculations with chiral nuclear potentials

R.Machleidt; "Chiral symmetry and the nucleon-nucleon interaction, Symmetry 8 (2016)

Simplest Case (e.g., EFT for Photon-Photon Scattering)

- Renormalization; e.g., subtraction of divergencies in perturbation theory, $\Lambda \rightarrow \infty$
- LEC Fixing: 'bare' LECs ci matched to fundamental theory
- Power Counting: ~ $(Q/\Lambda_{\chi})^n$ for observables (requires natural c_i 's)

Simplest Case (e.g., EFT for Photon-Photon Scattering)

- Renormalization; e.g., subtraction of divergencies in perturbation theory, $\Lambda \rightarrow \infty$
- LEC Fixing: 'bare' LECs ci matched to fundamental theory
- Power Counting: ~ $(Q/\Lambda_{\chi})^n$ for observables (requires natural c_i 's)

Renormalization, LEC Fixing, Power Counting

Simplest Case (e.g., EFT for Photon-Photon Scattering)

- Renormalization; e.g., subtraction of divergencies in perturbation theory, $\Lambda \rightarrow \infty$
- LEC Fixing: 'bare' LECs ci matched to fundamental theory
- Power Counting: ~ $(Q/\Lambda_{\chi})^n$ for observables (requires natural c_i 's)

'Potential EFT' (Standard Approach)			
Weinberg; "Nuclear forces from chiral lagrangians" Phys.Lett.B (1990)	```		
 Regularization; e.g., sharp cutoff Λ c_i(n, Λ) fit to data Power Counting: ~ (Q/Λ_χ)ⁿ for potentials 	$\left\{\begin{array}{l} \text{nuclear potentials:} \\ V_{NN}(n,\Lambda,c_i(n,\Lambda)), \\ V_{3N}(n \geq 3,\Lambda,c_i(n,\Lambda)), \ldots \end{array}\right.$		

Renormalization, LEC Fixing, Power Counting

Simplest Case (e.g., EFT for Photon-Photon Scattering)

- Renormalization; e.g., subtraction of divergencies in perturbation theory, $\Lambda \rightarrow \infty$
- LEC Fixing: 'bare' LECs ci matched to fundamental theory
- Power Counting: ~ $(Q/\Lambda_{\chi})^n$ for observables (requires natural c_i 's)

'Potential EFT' (Standard Approach)			
Weinberg; "Nuclear forces from chiral lagrangians" Phys.Lett.B (1990)			
• Regularization; e.g., sharp cutoff Λ	$\begin{cases} \text{nuclear potentials:} \\ V_{NN}(n,\Lambda,c_i(n,\Lambda)), \\ V_{3N}(n \ge 3,\Lambda,c_i(n,\Lambda)), \dots \end{cases} \end{cases}$		
• $C_i(n, \Lambda)$ in to data • Power Counting: ~ $(Q/\Lambda_{\chi})^n$ for potentials			
Uncertainties via: EFT orders, cutoff variation, fit ambiguities			

Simplest Case (e.g., EFT for Photon-Photon Scattering)

- Renormalization; e.g., subtraction of divergencies in perturbation theory, $\Lambda \rightarrow \infty$
- LEC Fixing: 'bare' LECs ci matched to fundamental theory
- Power Counting: ~ (Q/Λ_χ)ⁿ for observables (requires natural c_i's)

'Potential EFT' (Standard Approach)			
Weinberg; "Nuclear forces from chiral lagrangians" Phys.Lett.B (1990)	```		
• Regularization; e.g., sharp cutoff A	nuclear potentials:		
• $c_i(n, \Lambda)$ fit to data	$V_{NN}(n,\Lambda,c_i(n,\Lambda)),$		
• Power Counting: ~ $(Q/\Lambda_{\chi})^n$ for potentials	$\int V_{3N}(n \geq 3, \Lambda, c_i(n, \Lambda)), \dots$		
Incertainties via: EET orders, cutoff variation, fit ambiguities			

- KSW approach: PDS scheme, C₀ to all orders, otherwise perturbative Kaplan, Savage, Wise; "Two-nucleon systems from effective field theory" NPB 534 (1998)
- NTvK approach: renormalize 'potential EFT' via additional contacts at each order Nogga, Timmermans, van Kolck; "Renormalization of one-pion exchange and power counting", PRC 72 (2005)

Chiral Potentials: Cutoff Variation and Fit Ambiguities

N3LO two-nucleon + N2LO three-nucleon potential

- nonlocal regulator $f(p, p') = \exp[-(p/\Lambda)^{2\nu}] (p'/\Lambda)^{2\nu}]$
- low-momentum potentials ($\Lambda \lesssim 500$ MeV) required for MBPT convergence
- "n3lo": c_i's from fits to phase shifts, c_D & c_E from fits to ³H binding energy and ³H-³He Gamow-Teller matrix element (→ c_D issue!)

Entem, Machleidt; PRC 68 (2003), Gazit; Phys.Lett.B 666 (2008), Coraggio, Holt et al.; PRC 87 (2013) + PRC 89 (2014)

• "VLK": NN potential from RG evolution of n3lo500, Nijmegen values for 3N c_i's, c_D & c_E from fits to ³H, ³He, ⁴He binding energies

Bogner, Furnstahl, Schwenk, Nogga; NPA 763 (2005), Nogga, Bogner, Schwenk; PRC 70 (2004)

	Λ (fm ⁻¹)	ν	CE	CD	c ₁ (GeV ⁻¹)	$c_3 ({\rm GeV}^{-1})$	c_4 (GeV ⁻¹)
n3lo414	2.1	10	-0.072	-0.4	-0.81	-3.0	3.4
n3lo450	2.3	3	-0.106	-0.24	-0.81	-3.4	3.4
n3lo500	2.5	2	-0.205	-0.20	-0.81	-3.2	5.4
VLK21	2.1	∞	-0.625	-2.062	-0.76	-4.78	3.96
VLK23	2.3	∞	-0.822	-2.785	-0.76	-4.78	3.96

Second-Order MBPT with "n3lo" and "VLK" Potentials

VLK21 & VLK23: pressure isotherm crossing (large c₃ artifact?)

Second-Order MBPT with "n3lo" and "VLK" Potentials

Isospin-symmetric nuclear matter: $\delta := (\rho_n - \rho_p)/\rho = 0$, $Y := \rho_p/\rho = 1/2$

- saturation point: n3lo414, n3lo450, n3lo500, VLK21, VLK23 (n3lo500 nonperturbative?)
- VLK21 & VLK23: pressure isotherm crossing (large c₃ artifact?)

Pure neutron matter ($\delta = 1, Y = 0$)

$\bar{E}_{sym} := \bar{E}(\delta = 1) - \bar{E}(\delta = 0)$

Wellenhofer, Holt, Kaiser, Weise; PRC 89 (2014)

Wellenhofer, Holt, Kaiser; PRC 92 (2015)

Formalism for Improved MBPT Calculations

Two formalisms in MBPT: Feynman (Fourier/Matsubara space) vs. Goldstone ("direct")

Self-consistent propagators in Feynman formalism

$$\Sigma(\zeta_{\ell}) = \underbrace{\bigcirc}_{\ell} + \underbrace{\longrightarrow}_{\ell} + \underbrace{\bigoplus}_{\ell} + \underbrace{\longrightarrow}_{\ell} + \underbrace{\bigoplus}_{\ell} + \underbrace{\bigoplus}_{\ell} + \underbrace{\bigoplus}_{\ell} + \underbrace{\bigoplus}_{\ell} + \underbrace{\bigoplus}_{\ell}$$

 Luttinger, <u>PRC 1961</u>: existence of a Fermi surface for (normal) <u>interacting</u> Fermi fluids & the low-lying elementary excitations have quasiparticle form (approximately)

Formalism for Improved MBPT Calculations

Two formalisms in MBPT: Feynman (Fourier/Matsubara space) vs. Goldstone ("direct")

Self-consistent propagators in Feynman formalism

$$\Sigma(\zeta_{\ell}) = \underbrace{\bigcirc}_{+} + \underbrace{\longrightarrow}_{+} + \underbrace{\longrightarrow}_{+} + \underbrace{\frown}_{+} + \underbrace{\frown}_{+} + \underbrace{\frown}_{+} = \mathcal{G}_{r}(\zeta_{\ell'}) = \int_{2\pi}^{d\omega} \frac{A_{r}(\omega)}{\zeta_{\ell'}-\omega}$$

• Luttinger, <u>PRC 1961</u>: existence of a Fermi surface for (normal) <u>interacting</u> Fermi fluids & the low-lying elementary excitations have quasiparticle form (approximately)

Self-consistent SP potential $\mathcal{U} = \sum_{r} U_r(\{\varepsilon_i\}) a_r^{\dagger} a_r$ in Goldstone formalism

$$\mathcal{H} = \underbrace{(\mathcal{T}_{kin} + \mathcal{U})}_{\text{reference system } \mathcal{T}} + \underbrace{(\mathcal{V} - \mathcal{U})}_{\text{perturbation}}, \text{ with } \varepsilon_k = k^2/(2M) + U_r(\{\varepsilon_i\}) \text{ self-consistently}$$

• usual choice: $U_r = \frac{\delta \Omega_1}{\delta n_r}, \text{ MBPT}(n)$ with fixed spectrum

Formalism for Improved MBPT Calculations

Two formalisms in MBPT: Feynman (Fourier/Matsubara space) vs. Goldstone ("direct")

Self-consistent propagators in Feynman formalism

$$\Sigma(\zeta_{\ell}) = \underbrace{\bigcirc}_{+} + \underbrace{\longrightarrow}_{+} + \underbrace{\longrightarrow}_{+} + \underbrace{\frown}_{+} + \underbrace{\frown}_{+} + \underbrace{\frown}_{+} = \mathcal{G}_{r}(\zeta_{\ell'}) = \int_{2\pi}^{d\omega} \frac{A_{r}(\omega)}{\zeta_{\ell'}-\omega}$$

• Luttinger, <u>PRC 1961</u>: existence of a Fermi surface for (normal) <u>interacting</u> Fermi fluids & the low-lying elementary excitations have quasiparticle form (approximately)

Self-consistent SP potential $\mathcal{U} = \sum_{r} U_r(\{\varepsilon_i\}) a_r^{\dagger} a_r$ in Goldstone formalism

$$\mathcal{H} = \underbrace{(\mathcal{T}_{kin} + \mathcal{U})}_{\text{reference system }\mathcal{T}} + \underbrace{(\mathcal{V} - \mathcal{U})}_{\text{perturbation}}, \text{ with } \varepsilon_k = k^2/(2M) + U_r(\{\varepsilon_i\}) \text{ self-consistently}$$

$$\bullet \text{ usual choice: } U_r = \frac{\delta \Omega_1}{\delta n_r}, \text{ MBPT(n) with fixed spectrum}$$

$$\bullet \text{ (suggested) generalization: MBPT(n) with } U_{n;r} = \frac{\delta \widetilde{\Omega}_{n,normal}^{******}}{\delta n_r}$$

$$\to \text{ cancellation of certain classes of diagrams to all orders}$$

$$\to \text{ statistical-quasiparticle relations, } F(\mathcal{T}, \mu) \xrightarrow{\mathcal{T} \rightarrow 0} E(k_F)$$
"At each new order, not only is new information about 'correlations' included, but this information automatically improves the reference point." Wetlenhoter, arXiv:1804.03040

Pionless EFT (Natural LECs) and Dilute Fermi Systems

- Exact cutoff independence for Λ → ∞, two-body LECs c_i matched to scattering parameters, EFT power counting for observables
- Uncertainties: EFT orders
- Perturbation series for $E(k_{\rm F})$ evaluated up to fourth order, convergence for $k_{\rm F}a_{\rm S} \leq 0.8$

Pionless EFT (Natural LECs) and Dilute Fermi Systems

- Exact cutoff independence for Λ → ∞, two-body LECs c_i matched to scattering parameters, EFT power counting for observables
- Uncertainties: EFT orders
- Perturbation series for $E(k_{\rm F})$ evaluated up to fourth order, convergence for $k_{\rm F}a_{\rm s} \leq 0.8$

Chiral EFT Potentials and Nuclear Matter

- Finite cutoff Λ , $c_i(n, \Lambda)$ via fits to (few-body) data, EFT power counting for potentials
- Few-body systems nonperturbative, MBPT for nuclear matter
- MBPT convergence studies require self-consistent renormalization!
- Uncertainties: (U1) EFT orders, (U2) cutoff variation, (U3) fit ambiguities

Uncertainties: (U1) EFT orders, (U2) cutoff variation, (U3) fit ambiguities

- Expectation for uncertainties, should U3,U2 < U1 ?
- What is the status/prospect on U3 ?

Treatment of many-body constraints (saturation point, binding energies, ...)

- Postselection of EFT potentials vs. LECs fit to many-body observables
- Conceptual issues, impact of postselection/fit on extrapolation error-bands?

Assessment of 'nonstandard' organization schemes for many-body calculations

- KSW approach \rightarrow in-medium χ PT, but how fix LECs?
- NTvK approach(es) → what is the benefit/relevance of this for MBPT?

Thank you for your attention!

Special thanks to:

My collaborators: Christian Drischler, Kai Hebeler, Jeremy Holt, Norbert Kaiser, Achim Schwenk, Wolfram Weise

The organizers: Andreas Ekström, Jason Holt, Joel Lynn, Ingo Tews

Backup: Leading Logarithmic Divergencies in Pionless EFT

To extract divergent part, set bounded integration variables to zero

$$D1^{\text{div}} = (C_0)^4 \xi' \int_{\eta}^{\Lambda/k_{\text{F}}} d^3 \alpha \frac{1}{\alpha^2} \int_{\eta}^{\Lambda/k_{\text{F}}} d^3 \gamma \frac{1}{(\alpha^2 + \gamma^2)^2} = \frac{(C_0)^4 \xi'}{2} \text{Ti}_2(\Lambda/(k_{\text{F}}\eta)) + O(1)$$
$$= -(C_0)^4 \xi \ln(\Lambda/k_{\text{F}}) + O(1)$$

$$Ti_{2}(x) = \int_{0}^{x} dy \frac{\arctan y}{y} = Ti_{2}(1/x) + (\pi/2)sgn(x)\ln|x|$$
$$Ti_{2}(0) = 0$$

Renormalization via three-body coupling D₀

RGE:
$$\frac{\partial}{\partial \Lambda} \left[-(C_0)^4 \xi_{3N} \ln \Lambda + D_0(\Lambda) \right] = 0$$

$$\Rightarrow D_0(\Lambda) = D_0(\Lambda_0) + (C_0)^4 \xi_{3N} \ln |\Lambda/\Lambda_0|$$

$$\Rightarrow E_4^{\text{reg}} = \overbrace{E_4 + (C_0)^4 \xi \ln(\Lambda/k_{\text{F}})}^{\text{finite,}} + E_1^{D_0(\Lambda_0)} + (C_0)^4 \xi \ln|k_{\text{F}}/\Lambda_0|$$

Backup: Leading Logarithmic Divergencies in Pionless EFT

To extract divergent part, set bounded integration variables to zero

$$(II5,IIA1,D1)^{\text{div}} = (C_0)^4 \xi' \int_{\eta}^{\Lambda/k_{\text{F}}} d^3 \alpha \frac{1}{\alpha^2} \int_{\eta}^{\Lambda/k_{\text{F}}} d^3 \gamma \frac{1}{(\alpha^2 + \gamma^2)^2} = \frac{(C_0)^4 \xi'}{2} \text{Ti}_2(\Lambda/(k_{\text{F}}\eta)) + O(1)$$
$$= -(C_0)^4 \xi \ln(\Lambda/k_{\text{F}}) + O(1)$$

$$Ti_{2}(x) = \int_{0}^{2} dy \frac{\arctan y}{y} = Ti_{2}(1/x) + (\pi/2)sgn(x) \ln |x|$$
$$Ti_{2}(0) = 0$$

II6

III1

Renormalization via three-body coupling D_0

RGE:
$$\frac{\partial}{\partial \Lambda} \left[-(C_0)^4 \xi_{3N} \ln \Lambda + D_0(\Lambda) \right] = 0$$

$$\Rightarrow D_0(\Lambda) = D_0(\Lambda_0) + (C_0)^4 \xi_{3N} \ln |\Lambda/\Lambda_0|$$

$$\Rightarrow E_4^{\text{reg}} = \overbrace{E_4 + (C_0)^4 \xi \ln(\Lambda/k_F)}^{\text{finite,}} + E_1^{D_0(\Lambda_0)} + (C_0)^4 \xi \ln|k_F/\Lambda_0|$$