

Enabling online selection of rare events at LHC with Deep Neural Networks

Daniela Mascione

TIFPA

Trento Institute for Fundamental Physics and Applications

deeppp

Overview

- The Higgs boson at the LHC
 - Production/Decay Modes and $H \rightarrow b\overline{b}$ observation
- Deep Neural Networks
 - Functioning and role in observation and selection of interesting events
- Online event selection with Deep Neural Networks
 - Implementation of Deep Neural Networks at trigger level

The Higgs boson at the LHC tharge spin

~124.97 GeV/c² 0 0 **H** higgs

PRODUCTION MODES

- 1% ASSOCIATION WITH tt (ttH)
- 4% ASSOCIATION WITH WITH A WEAK VECTOR BOSON (VH)
- 7% VECTOR-BOSON FUSION (VBF)

88% GLUON FUSION (ggF)

D. Mascione - Univ. of Trento & FBK

H→bb at the LHC

	YY	bb
Branching ratio	0.2%	57%
Mass resolution	0.1%	10%

...

- Favored channel to study the Higgs properties
- Poor mass resolution

Overwhelming background from QCD production of *b* quarks (10^7 larger) p = b

Boosted H→bb

- Some events produced with a very large p_{τ}
- Production cross-section could be enhanced at high p_T with new physics, as hypothesized by Standard Model Effective Field Theories Massimiliano Grazzini et al., Modeling BSM effects on the Higgs pT spectrum in an EFT approach, 10.1007/JHEP03(2017)115

b tagging

Key ingredient to $H \rightarrow b\overline{b}$ searches: \rightarrow very good *b*-jet identification

Hadrons containing bottom quarks have sufficient lifetime that they travel some distance before decaying.

Particles that originate from a place different to where the bottom quark was formed indicate the likely presence of a *b*-jet.

Results of ATLAS and CMS

Constraints on Higgs boson production with large transverse momentum using $H \rightarrow b^- b$ decays in the ATLAS detector

D. Mascione - Univ. of Trento & FBK

Inclusive search for highly boosted Higgs bosons decaying to bottom quark-antiquark pairs in proton-proton collisions at √s = 13 TeV

Results of ATLAS and CMS

The relative precision of the μ_H measurement in CMS is improved by using a *b* tagging technique based on a Deep Neural Network

Deep Neural Networks

An Artificial Neural Network is a **computational model** that has layers of interconnected nodes. A Deep Neural Network has more than one hidden layer.

Through training, the neural network **learns** to recognize a **pattern** in the input data.

Nodes convert weighted inputs to outputs. The **weights keep getting updated** in the process of learning.

Deep Neural Networks at the LHC

Deep Neural Networks are widely used at the LHC for a variety of applications that include:

- Event selection
- Tracking
- Jet classification
- Fast simulation

Can Deep Neural Networks be used to identify interesting events online at trigger level?

Events that are discarded by the trigger are **lost**!

Events that are discarded by the trigger are **lost**!

Events that are discarded by the trigger are **lost**!

Let's run Deep Neural Networks in real-time on FPGAs to improve event selection!

Running Deep Neural Networks on FPGAs

FPGAs (Field-Programmable Gate Arrays) are programmable integrated circuits.

Depending on the FPGA resources available, we should know how to **reduce the size** of a network

Pruning

One way of **reducing** the size of a neural network is **pruning**.

Pruning = **removing** superfluous structure

Pruning

One way of **reducing** the size of a neural network is **pruning**.

Pruning = **removing** superfluous structure

Why pruning?

Bigger networks are usually more **accurate**

Why pruning?

Bigger networks are usually more **accurate**

→ Best to start out with very large models and prune with minimal performance penalty

1. Train

Davis Blalock et al., What is the state of neural network pruning?, Proceedings of machine learning and systems 2 (2020), pp. 129–146

Davis Blalock et al., What is the state of neural network pruning?, Proceedings of machine learning and systems 2 (2020), pp. 129–146

Davis Blalock et al., What is the state of neural network pruning?, Proceedings of machine learning and systems 2 (2020), pp. 129–146

Iterate (fine tuning)

Davis Blalock et al., What is the state of neural network pruning?, Proceedings of machine learning and systems 2 (2020), pp. 129–146

- it can prune **nodes**
- it prunes during training
- the number of nodes to be pruned can be determined by the **user**
- it can determine the most suitable **network architecture**

AutoPruner

D. Mascione - Univ. of Trento & FBK

- it can prune **nodes**
- it prunes during training
- the number of nodes to be pruned can be determined by the **user**
- it can determine the most suitable **network architecture**

AutoPruner

- it can prune **nodes**
- it prunes during training
- the number of nodes to be pruned can be determined by the **user**
- it can determine the most suitable **network architecture**

AutoPruner

- it can prune **nodes**
- it prunes during training
- the number of nodes to be pruned can be determined by the **user**
- it can determine the most suitable **network architecture**

- it can prune **nodes**
- it prunes during training
- the number of nodes to be pruned can be determined by the **user**
- it can determine the most suitable **network architecture**

Identify jets that contain both the *b* quarks from boosted Higgs decay in *pp* collision experiments using Deep Neural Networks

The performance increases with the percentage of nodes used, as expected: AutoPruner is really **switching off** nodes

The total number of nodes used is **always** equal to the required number

D. Mascione - Univ. of Trento & FBK

D. Mascione - Univ. of Trento & FBK

Future perspectives

Apply AutoPruner to Deep Neural Networks currently used in the <u>ATLAS Flavour Tagging</u> <u>Working Group</u> to **improve** tagging algorithms

Investigate how our pruning strategy can improve the significance level of predictions by **reducing** the propagation of **uncertainties**

Summary

Deep Neural Networks

- can help improving the searches of rare events
- can be used to select interesting events at trigger level
- will play an increasingly important role

Acknowledgements

This work is a joint effort of the deepPP group of the University of Trento and FBK

You can find more about about Deep Learning applications in Particle Physics and our work here:

https://www.deeppp.eu/

∀ in

Flavour Tagging Strategies in ATLAS

3 types of algorithms were designed employing topologies of b-hadrons

- Impact parameter (IP) based
- Secondary/tertiary vertex (SV) based
- Soft Muon based

High-level taggers (MV2 e DL1) combine all this information

Deep-Learning Flavour Tagger (DL1) - Architecture

- Neural Network with fully connected layers with 8 hidden layers with Relu activation function.
- Multi-class output (also allows c-tagging without dedicated training):

$$\mathsf{DL1}_{b-score} = \ln\left(\frac{p_b}{f_c \cdot p_c + (1 - f_c) \cdot p_{light-flavour}}\right)$$

- Depending on which baseline tagger is used, we can distinguish different algorithms
 - **DL1** (28 input features as MV2)
 - DL1r (44 input features, RNNIP added)

D. Mascione - Univ. of Trento & FBK

TH3

How to evaluate classifier performance

Receiver Operating Characteristic (ROC) curves can be used to compare performance of different models.

TH₂

All-had H(bb) analysis (Full Run2)

Event Selection

- Trigger, GRL, event and jet cleaning
- >= 1 large-R jet with pT>450 GeV, mJ> 60 GeV
- At least 2 large-R jets with pT> 200 GeV
- At least one signal candidate:
 - pT>450 GeV, mJ> 60 GeV
 - 2mJ/pT<1(boosted regime)
 - $\Delta R(VR1,VR2)/VR1>1$
 - categorized in SR/VR based on VRjets

Event categorization

Signal Regions

- Inclusive SRL = [450,∞], SRS = [250,∞]
- pT bins: [250, 450], [450,650], [650, 1000]

Validation Regions

- Same pT range as the inclusive
- used for QCD bkg modelling

Courtesy of Andrea Di Luca

Based on Francesco Maria Follega's work

Leading Large-R Jet

Inclusive measurement

Analysis Goals ($V \rightarrow qq, H \rightarrow bb$)

pT differential measurement (STXS)

fiducial measurement (pT,truth>450GeV)

Signal and backgrounds

- The dominant background process is **multijet production**, which exhibits a monotonically decreasing jet mass distribution.
- Hadronically decaying vector bosons, produced in association with jets (V + jets) and events with one or two top quarks (jointly referred to as Top) populate the jet mass regions below and above m_{μ} respectively.

Recently (11th May 2022) published a paper (PRD link)

Result	μ_H	μ_Z	$\mu_{t\bar{t}}$
Expected	1.0 ± 3.2	1.00 ± 0.17	1.00 ± 0.07
Observed	0.8 ± 3.2	1.29 ± 0.22	0.80 ± 0.06
Result	μ_H	μ_Z	$\mu_{t\bar{t}}$
Expected	1.0 ± 3.4	1.00 ± 0.18	1.00 ± 0.08
-			

