

Raghuveer Garani garani@fi.infn.it

#### Condensed Dark Matter with a Yukawa interaction

R. Garani, M. H. G. Tytgat and J. Vandecasteele (2207.06928) R. Garani, M. Redi and A. Tesi (JHEP 12 (2021) 139, 2105.03429)

#### Raghuveer Garani



Istituto Nazionale di Fisica Nucleare SEZIONE DI FIRENZE

Condensed dark matter with a Yukawa interaction

#### Matter

Dark Matter and visible matter in the Universe





#### Matter

Dark Matter and visible matter in the Universe



#### Matter

Dark Matter and visible matter in the Universe



Condensed dark matter with a Yukawa interaction

22

## What is new here?

 Fermion asymmetric DM with yukawa interaction for dark sector. Going beyond non-interacting scenario Domcke & Urbano '14,

Randall et al. '16, Gresham &Zurek '18

- Consistent description of in-medium effect
- Delimiting possible phases of the Yukawa theory
- Generalized 'gap equations' and equation of state for arbitrary mediator masses. Note this regime not encountered in the lab.

### Phases in the Yukawa theory

The model

$$\mathcal{L} = i\bar{\psi}\partial\!\!\!/\psi - m\bar{\psi}\psi + \mu\bar{\psi}\gamma^0\psi + \frac{1}{2}\partial_\mu\phi\partial^\mu\phi - \frac{1}{2}m_\phi^2\phi^2 - g\,\bar{\psi}\psi\phi \;.$$

- 4 free parameters:  $m, m_{\phi}, g$  and the density  $\mu$
- Dark particles singlets under SM. The fermion  $\psi$  charged under  $U(1)_{\rm dark}$  global
- Fermi energy  $E_F = \mu \equiv \sqrt{m^2 + k_F^2}$ , number density  $n = N/V \equiv \langle \bar{\psi} \gamma_0 \psi \rangle$

#### Phases in the Yukawa theory

Scattering in the Yukawa theory



• The scattering length effectively captures the short distance properties of a potential

$$\lim_{k \to 0} k \cot \delta_0(k) = -\frac{1}{a} \; .$$

Computable for dilute gases in the non-relativistic limit.

 Anologous to contact interactions in low temperature physics, phases delimitted by dimenionless k<sub>F</sub>a.

#### Phases in the Yukawa theory

Phases in the Yukawa theory RG, M.H.G Tytgat and J. Vandecasteele '22



22

#### The BCS phase



Raghuveer Garani garani@fi.infn.it

Condensed dark matter with a Yukawa interaction

/22

#### Full forward scattering

Scalar density condensate

- Tadpole  $\neq 0$  when  $\mu \neq 0$
- The scalar operator  $\bar{\psi}\psi$  has a non-zero mean,  $n_s = \langle \bar{\psi}\psi \rangle > 0$  Waleck '74, Gresham et al. '18.  $\Longrightarrow n_s$ sources the scalar field due to its Yukawa interactions with the fermions



• 
$$\frac{\delta \mathcal{L}}{\delta \phi} = 0 \rightarrow m_{\phi}^2 \langle \phi \rangle + g \langle \bar{\psi} \psi \rangle = 0$$

• 
$$m_* = m + g\langle \phi \rangle \rightarrow m_* = m - \frac{g^2}{m_\phi^2} n_s(m_*)$$

 $\implies$  the fermion mass is reduced in the medium! (similar to NJL model of chiral symmetry breaking)

#### Full forward scattering

Results for scalar density condensate RG, M.H.G Tytgat and J. Vandecasteele '22



#### Full backward scattering

Cooper pairing and superfluidity: BCS argument

- Free enrgy for N particles  $\Omega_N = E \mu N$
- Add a particle  $\implies \Omega_{N+1} = E_{+1} \mu \left( N + 1 \right)$
- If attractive interactions  $\Omega_{N+1} < \Omega_N$
- Formation of many bosonic Cooper pairs which condensate  $\sim \langle \psi \psi \rangle$  (Leon Cooper '57). Pairing in  $^1S$  channel.
  - Object that gets a vev  $\sim \langle \psi_C(y)\bar{\psi}(x) \rangle$ , a  $4 \times 4$  quantity



 $\langle \psi_c(y)\bar{\psi}(x)$ 

#### Full backward scattering

#### Qualitative physics

Yukawa theory when  $m_{\phi} \gg m$ : 4-fermion interaction schmitt '14

$$\mathcal{L} = \bar{\psi}(i\partial \!\!\!/ + \gamma^{0}\mu - m)\psi + G_{\phi}\bar{\psi}\bar{\psi}\psi\psi$$

$$\approx \left(\bar{\psi} \quad \bar{\psi}_{C}\right) \begin{pmatrix} k + \mu\gamma^{0} - m & \langle\psi\bar{\psi}_{C}\rangle \times G_{\phi} \\ \langle\psi_{C}\bar{\psi}\rangle \times G_{\phi} \quad k - \mu\gamma^{0} - m \end{pmatrix} \begin{pmatrix}\psi \\ \psi_{C}\end{pmatrix}$$

$$\langle \psi_{C}(x) \ \overline{\psi}(y)\rangle$$

$$\left(\begin{array}{c}gap\\ D(x-y)\\ x^{-----y}y \\ g\end{array}\right) g$$

$$\left(\begin{array}{c}gap\\ Cooper\\ pairs\end{array}\right) \psi$$

$$(1)/2$$

Raghuveer Garani garani@fi.infn.it

Condensed dark matter with a Yukawa interaction

Gap structure and dsipersion  $_{\rm RG,\ M.H.G}$  Tytgat and J. Vandecasteele '22  $\Delta$  has fermionic indices, respects Fermi statistics

$$\Delta_{\alpha\beta} \equiv \left\langle \psi_{C,\alpha}\left(x\right) \bar{\psi}_{\beta}\left(y\right) \right\rangle$$

Ansatz for the Yukawa theory Pisarski and Rischke '99

$$\Delta = \Delta_1 \gamma_5 + \Delta_2 \boldsymbol{\gamma} \cdot \hat{\boldsymbol{k}} \gamma_0 \gamma_5 + \Delta_3 \gamma_0 \gamma_5$$

$$\mathcal{L} = \begin{pmatrix} \bar{\psi} & \bar{\psi}_C \end{pmatrix} \underbrace{\begin{pmatrix} \not{k} + \mu \gamma^0 - m & \Delta(k) \\ \Delta(k) & \not{k} - \mu \gamma^0 - m \end{pmatrix}}_{\text{inverse propagator}} \begin{pmatrix} \psi \\ \psi_C \end{pmatrix}$$

Gap structure and dsipersion  $_{\rm RG,\ M.H.G}$  Tytgat and J. Vandecasteele '22  $\Delta$  has fermionic indices, respects Fermi statistics

$$\Delta_{\alpha\beta} \equiv \left\langle \psi_{C,\alpha}\left(x\right) \bar{\psi}_{\beta}\left(y\right) \right\rangle$$

Ansatz for the Yukawa theory Pisarski and Rischke '99

$$\Delta = \Delta_1 \gamma_5 + \Delta_2 \boldsymbol{\gamma} \cdot \hat{\boldsymbol{k}} \gamma_0 \gamma_5 + \Delta_3 \gamma_0 \gamma_5$$

$$\mathcal{L} = \begin{pmatrix} \bar{\psi} & \bar{\psi}_C \end{pmatrix} \underbrace{\begin{pmatrix} \not{k} + \mu \gamma^0 - m & \Delta(k) \\ \Delta(k) & \not{k} - \mu \gamma^0 - m \end{pmatrix}}_{\text{inverse propagator}} \begin{pmatrix} \psi \\ \psi_C \end{pmatrix}$$

In BCS,  $\Delta \ll \mu$ 

$$\epsilon_{\pm}^2 \approx \left(\omega \pm \mu\right)^2 + \left(\Delta_1 \pm \left(\frac{k}{\omega}\Delta_2 + \frac{m}{\omega}\Delta_3\right)\right)$$

Like standard BCS theory but non-trivial momentum dependence

$$\begin{split} \Sigma\left(0\right) &= -\frac{g^2}{m_{\phi}^2} \sum_{\eta} \int \frac{d^3k}{(2\pi)^3} \left\{ \frac{m_*}{\omega_k} \left( \frac{\omega_k + \eta\mu}{\epsilon_\eta (k)} - 1 \right) - \eta \frac{k}{\omega_k} \frac{\tilde{\kappa}(k)}{\omega_k} \frac{\tilde{\Delta}_\eta(k)}{\epsilon_\eta (k)} \right\}, \\ \tilde{\Delta}_{\pm}(p) &= -\frac{g^2}{32\pi^2} \sum_{\eta} \int_0^{\infty} dk \frac{k}{p} \left\{ \log \frac{m_{\phi}^2 + (p+k)^2}{m_{\phi}^2 + (p-k)^2} \mp \eta \right. \\ &\left. -\frac{kp}{\omega_p \omega_k} \left( -2 + \frac{m_{\phi}^2 + k^2 + p^2}{2kp} \log \frac{m_{\phi}^2 + (p+k)^2}{m_{\phi}^2 + (p-k)^2} \right) \right. \\ &\left. \pm \eta \frac{m_*^2}{\omega_p \omega_k} \log \frac{m_{\phi}^2 + (p+k)^2}{m_{\phi}^2 + (p-k)^2} \right\} \frac{\tilde{\Delta}_\eta(k)}{\epsilon_\eta(k)}, \\ \tilde{\kappa}(p) &= -\frac{g^2}{32\pi^2} \sum_{\eta} \int_0^{\infty} dk \frac{k}{p} \left\{ -\eta \frac{m_*k}{\omega_p \omega_k} \left( -2 + \frac{m_{\phi}^2 + k^2 + p^2}{2kp} \log \frac{m_{\phi}^2 + (p+k)^2}{m_{\phi}^2 + (p-k)^2} \right) \right. \\ &\left. -\eta \frac{m_*p}{\omega_p \omega_k} \log \frac{m_{\phi}^2 + (p+k)^2}{m_{\phi}^2 + (p-k)^2} \right\} \frac{\tilde{\Delta}_\eta(k)}{\epsilon_\eta(k)}. \end{split}$$

Raghuveer Garani garani@fi.infn.it

Condensed dark matter with a Yukawa interaction

22

Solution to gap equations



Condensed dark matter with a Yukawa interaction

22

#### Equation of state

Application to Halos



Condensed dark matter with a Yukawa interaction

15/22

## Bullet cluster constraints $\sigma/m \approx barn/GeV$



Raghuveer Garani garani@fi.infn.it

Condensed dark matter with a Yukawa interaction

<sup>16</sup>/22

 Can dark matter (DM) be a baryon/pion of new confining dark sectors? ⇒ composite DM Bai, Hill '10 + Boddy et.al. '14 + Gresham, Lou, Zurek

'17 + Bai, Long, Lu '18 + many more

# A cosmological dark-QCD model The model

 Can dark matter (DM) be a baryon/pion of new confining dark sectors? — composite DM Bai, Hill '10 + Boddy et.al. '14 + Gresham, Lou, Zurek

'17 + Bai, Long, Lu '18 + many more

• Cosmologically accidentally stable, like protons  $\implies$  dark baryon number Antipin et.al. '15 + Niel et.al. '16 + Mitradate et.al '17 + Contino et.al. '18 + Redi

et.al '18

 Can dark matter (DM) be a baryon/pion of new confining dark sectors? — composite DM Bai, Hill '10 + Boddy et.al. '14 +Gresham, Lou, Zurek

'17 + Bai, Long, Lu '18 + many more

- Cosmologically accidentally stable, like protons  $\implies$  dark baryon number Antipin et.al. '15 + Niel et.al. '16 + Mitradate et.al '17 + Contino et.al. '18 + Redi et.al '18
- Here we focus on SU(3)

$$\int d^4x \sqrt{-g} \left[ \mathcal{L}_{\rm SM} - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu a} + \bar{\psi}_i \left( \not\!\!\!D - m_i \right) \psi_i + \sum \frac{\mathcal{O}_{\rm SM} \mathcal{O}_{\rm dark}}{M_{\rm pl}^{\#}} \right]$$

with possibility of both dark-pion and -baryon DM!

The model

• Global chiral symmetry  $SU(N_F) \times SU(N_F) \rightarrow SU(N_F)$ 

$$\mathcal{L}_{\pi} = \frac{f^2}{4} \operatorname{Tr}(\partial_{\mu} U)^2 + b \operatorname{Tr}[MU + h.c.] + WZW, \qquad U = \exp[i\pi/f]$$

and  $~~M_{ij}=m_i\delta_{ij}$  . Resulting in  $N_F^2-1$  goldstone bosons in the adjoint

The model

• Global chiral symmetry  $SU(N_F) \times SU(N_F) \rightarrow SU(N_F)$ 

$$\mathcal{L}_{\pi} = \frac{f^2}{4} \operatorname{Tr}(\partial_{\mu}U)^2 + b \operatorname{Tr}[MU + h.c.] + WZW, \qquad U = \exp[i\pi/f]$$

and  $~~M_{ij}=m_i\delta_{ij}$  . Resulting in  $N_F^2-1$  goldstone bosons in the adjoint

- Dark pions  $_{\rm RG,\ Michele\ Redi,\ Andrea\ Tesi}$ : Similar to SM we choose  $M_\pi < 5f$ 

The model

• Global chiral symmetry  $SU(N_F) \times SU(N_F) \rightarrow SU(N_F)$ 

$$\mathcal{L}_{\pi} = \frac{f^2}{4} \operatorname{Tr}(\partial_{\mu} U)^2 + b \operatorname{Tr}[MU + h.c.] + WZW, \qquad U = \exp[i\pi/f]$$

and  $~~M_{ij}=m_i\delta_{ij}$  . Resulting in  $N_F^2-1$  goldstone bosons in the adjoint

- Dark pions  $_{\rm RG,\ Michele\ Redi,\ Andrea\ Tesi}$ : Similar to SM we choose  $M_\pi < 5f$
- Stability: not absolute. Violated by

$$\frac{1}{\Lambda_5}\bar{\Psi}^i\gamma^5\Psi^j|H|^2 + \frac{1}{\Lambda_6^2}\bar{\Psi}^i\gamma^\mu\gamma^5\Psi^j\bar{f}\sigma^\mu f$$

 $\langle 0|\bar{\Psi}\gamma^5\Psi|\pi
angle=c\,4\pi f^2\implies {
m mixing with higgs}\;{4\pi f^2\over\Lambda_5}|H^2|\pi|^2$ 

• Much richer structure than the Yukawa theory

 $g\bar{\psi}\psi\phi\to g\bar{\psi}_{\alpha}\gamma^{\mu}T^{\alpha\beta}_{a}\psi_{\beta}A^{a}_{\mu}$ 

• Much richer structure than the Yukawa theory

$$g\bar{\psi}\psi\phi \to g\bar{\psi}_{\alpha}\gamma^{\mu}T^{\alpha\beta}_{a}\psi_{\beta}A^{a}_{\mu}$$

• Analogous to color superconductivity in the SM QCD with 2 light flavours D. T. Son '98, Alford et al. '03,'04,'08,'17 + many more. How does 'super' behaviors arise??

$$g\bar{\psi}\psi\phi\to g\bar{\psi}_{\alpha}\gamma^{\mu}T^{\alpha\beta}_{a}\psi_{\beta}A^{a}_{\mu}$$

- Analogous to color superconductivity in the SM QCD with 2 light flavours D. T. Son '98, Alford et al. '03,'04,'08,'17 + many more. How does 'super' behaviors arise??
- $\mathbf{3} \times \mathbf{3} = \bar{\mathbf{3}} + \mathbf{6}$ : antisymmetric channel is attractive  $\checkmark$

$$g\bar{\psi}\psi\phi\to g\bar{\psi}_{\alpha}\gamma^{\mu}T^{\alpha\beta}_{a}\psi_{\beta}A^{a}_{\mu}$$

- Analogous to color superconductivity in the SM QCD with 2 light flavours D. T. Son '98, Alford et al. '03,'04,'08,'17 + many more. How does 'super' behaviors arise??
- $\mathbf{3} \times \mathbf{3} = \bar{\mathbf{3}} + \mathbf{6}$ : antisymmetric channel is attractive  $\checkmark$
- Pairing is most attractive in  ${}^1S$  :  $|\uparrow\downarrow\rangle |\downarrow\uparrow\rangle$

$$g\bar{\psi}\psi\phi\to g\bar{\psi}_{\alpha}\gamma^{\mu}T^{\alpha\beta}_{a}\psi_{\beta}A^{a}_{\mu}$$

- Analogous to color superconductivity in the SM QCD with 2 light flavours D. T. Son '98, Alford et al. '03,'04,'08,'17 + many more. How does 'super' behaviors arise??
- $\mathbf{3} \times \mathbf{3} = \bar{\mathbf{3}} + \mathbf{6}$ : antisymmetric channel is attractive  $\checkmark$
- Pairing is most attractive in  ${}^1S$  :  $|\uparrow\downarrow\rangle |\downarrow\uparrow\rangle$
- Wavefunction has to be overall antisymmetric

$$g\bar{\psi}\psi\phi\to g\bar{\psi}_{\alpha}\gamma^{\mu}T^{\alpha\beta}_{a}\psi_{\beta}A^{a}_{\mu}$$

- Analogous to color superconductivity in the SM QCD with 2 light flavours D. T. Son '98, Alford et al. '03,'04,'08,'17 + many more. How does 'super' behaviors arise??
- $\mathbf{3} \times \mathbf{3} = \bar{\mathbf{3}} + \mathbf{6}$ : antisymmetric channel is attractive  $\checkmark$
- Pairing is most attractive in  ${}^1S$  :  $|\uparrow\downarrow\rangle |\downarrow\uparrow\rangle$
- Wavefunction has to be overall antisymmetric
- Need to be also antisymmetric in flavour  $\checkmark$

#### Dark-QCD model

Cosmology



Condensed dark matter with a Yukawa interaction

22

#### Dark-QCD model

Results RG, M. Redi, A. Tesi '21



Raghuveer Garani garani@fi.infn.it

Condensed dark matter with a Yukawa interaction

#### Conclusions and Outlook

- Emergent phenomena can be realized in dark sectors due to DM-DM interactions.
- Many interesting phenomena arise with very little ingredients.
- Using scattering length we have delimitted phases of Yukawa theory.
- Very general framework to describe superfluidity, motivated by DM phenomenology. For arbitrary mediator masses all the way from non-relativistic limit to relativistic limit.
- We are at the crossroad of many areas in physics.
- Construct EoS that corectly interpolates between condensate dominated high density regions and low density Maxwellian regimes → realistic description of DM halos at dwarf galaxy scales.