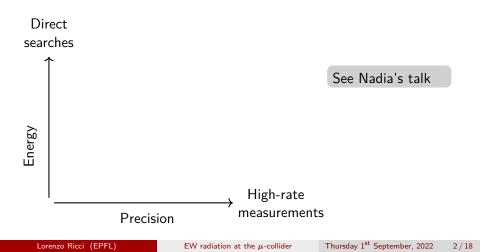
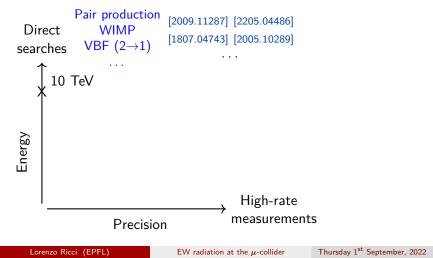
EW radiation at a very high energy μ collider

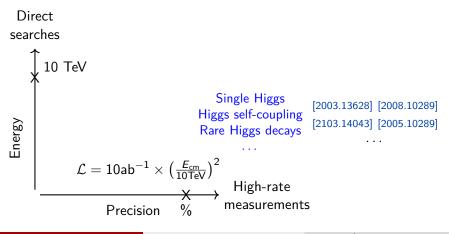
Trento, LFC 2022


Lorenzo Ricci

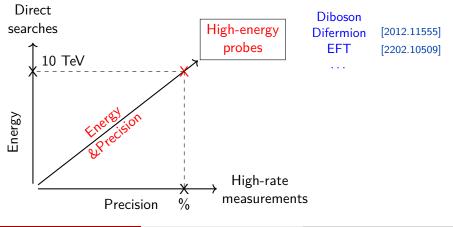

Thursday 1st September, 2022

Based on: [Chen, Glioti, Rattazzi, LR, Wulzer (2022)]

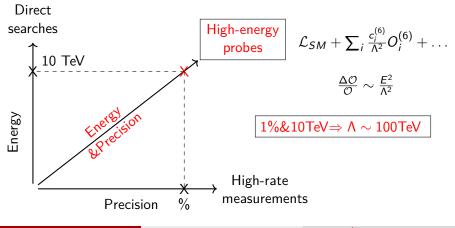
A very high energy (\sim 10 TeV) μ collider is a dream machine for new physics searches. It provides three investigation strategies at once.



A very high energy (\sim 10 TeV) μ collider is a dream machine for new physics searches. It provides three investigation strategies at once.

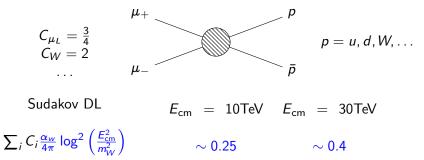


2/18


A very high energy (\sim 10 TeV) μ collider is a dream machine for new physics searches. It provides three investigation strategies at once.

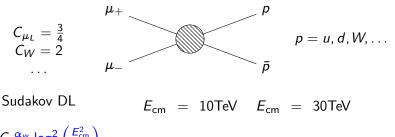
A very high energy (\sim 10 TeV) μ collider is a dream machine for new physics searches. It provides three investigation strategies at once.

A very high energy (\sim 10 TeV) μ collider is a dream machine for new physics searches. It provides three investigation strategies at once.



Lorenzo Ricci (EPFL)

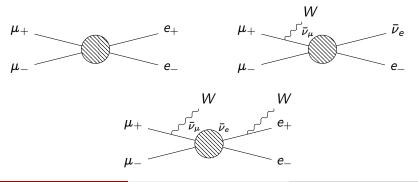
 $E_{
m cm} \sim 10 \, {
m TeV} \gg m_W \sim 100 \, {
m GeV} \Longrightarrow$ lots of EW radiation!


$$E_{
m cm} \sim 10 \, {
m TeV} \gg m_W \sim 100 \, {
m GeV} \Longrightarrow$$
 lots of EW radiation!

• The 1% accuracy goal requires proper control of the radiative corrections \rightarrow resummations

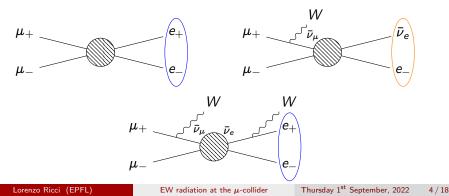
$$E_{
m cm} \sim$$
 10 TeV \gg $m_W \sim$ 100 GeV \Longrightarrow lots of EW radiation!

• The 1% accuracy goal requires proper control of the radiative corrections \rightarrow resummations

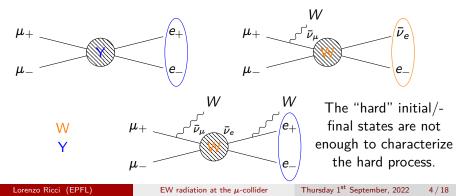


 $\sum_{i} C_{i} \frac{\alpha_{w}}{4\pi} \log^{2} \left(\frac{E_{cm}^{2}}{m_{W}^{2}} \right) \qquad \sim 0.25 \qquad \sim 0.4$

Sudakov DL persist also in inclusive observables (i.e. BN violation) [Ciafaloni,Ciafaloni,Comelli (2000)]


 $E_{
m cm} \sim$ 10 TeV \gg $m_W \sim$ 100 GeV \Longrightarrow lots of EW radiation!

- The 1% accuracy goal requires proper control of the radiative corrections \rightarrow resummations
- The pattern of EW radiation depends on short distance new physics


 $E_{
m cm} \sim$ 10 TeV \gg $m_W \sim$ 100 GeV \Longrightarrow lots of EW radiation!

- The 1% accuracy goal requires proper control of the radiative corrections \rightarrow resummations
- The pattern of EW radiation depends on short distance new physics

 $E_{
m cm} \sim$ 10 TeV \gg $m_W \sim$ 100 GeV \Longrightarrow lots of EW radiation!

- The 1% accuracy goal requires proper control of the radiative corrections \rightarrow resummations
- The pattern of EW radiation depends on short distance new physics

 $E_{
m cm} \sim$ 10 TeV \gg $m_W \sim$ 100 GeV \Longrightarrow lots of EW radiation!

- The 1% accuracy goal requires proper control of the radiative corrections \rightarrow resummations
- The pattern of EW radiation depends on short distance new physics

We need accurate predictions for the right (BSM motivated) observables

e.g. "fully-inclusive" XS are not enough to characterize new physics

$$(\mu\mu
ightarrow ee+X)+(\mu\mu
ightarrow
u_ee+X)+(\mu\mu
ightarrow
u_e
u_e+X)$$

Exclusive and (Semi-)Inclusive XS


$$\mu_+ \mu_- \longrightarrow p \bar{p} + X$$

 $p \bar{p} =$ difermion or diboson

Exclusive: $X = \gamma$

- DL (All order double log) [Fadin, Lipatov, Martin, Melles (99)]
- SL₁ (1-Loop single log) [Denner, Pozzorini (00)]

Semi-inclusive: $X = \gamma$, W_{\pm} , Z

DL (All order double log)

Exclusive XS

	3 TeV			10 TeV			30 TeV		
	DL	$e^{DL}-1$	$SL(\frac{\pi}{2})$	DL	$e^{DL}-1$	$SL(\frac{\pi}{2})$	DL	$e^{DL}-1$	$SL(\frac{\pi}{2})$
$\ell_L ightarrow \ell'_L$	-0.46	-0.37	0.25	-0.82	-0.56	0.33	-1.23	-0.71	0.41
$\ell_L ightarrow q_L$	-0.44	-0.36	0.25	-0.78	-0.54	0.34	-1.18	-0.69	0.42
$\ell_L ightarrow e_R$	-0.32	-0.27	0.13	-0.56	-0.43	0.17	-0.85	-0.57	0.21
$\ell_L \rightarrow u_R$	-0.27	-0.24	0.11	-0.48	-0.38	0.15	-0.72	-0.51	0.18
$\ell_L ightarrow d_R$	-0.24	-0.21	0.10	-0.43	-0.35	0.13	-0.64	-0.47	0.16
$\ell_R ightarrow \ell'_L$	-0.32	-0.27	0.13	-0.56	-0.43	0.17	-0.85	-0.57	0.21
$\ell_R o q_L$	-0.30	-0.26	0.12	-0.53	-0.41	0.16	-0.79	-0.55	0.21
$\ell_R o \ell_R'$	-0.17	-0.16	0.07	-0.30	-0.26	0.09	-0.46	-0.37	0.12
$\ell_R \rightarrow u_R$	-0.12	-0.12	0.05	-0.22	-0.20	0.07	-0.33	-0.28	0.08
$\ell_R ightarrow d_R$	-0.09	-0.09	0.04	-0.17	-0.16	0.05	-0.25	-0.22	0.06

Single Log are within the perturbative control but resummation is needed to reach the % accuracy.

Exclusive XS at DL

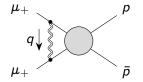
$$\mu_{+} \mu_{-} \longrightarrow p \bar{p} + X(\gamma)_{p_{T} < m_{W}}$$
 μ_{+}
 p
 $(\gtrsim 1)^{n}$
 $\mathcal{M}_{n\text{-loop}} \simeq \mathcal{M}_{B} \times \left(\# \frac{\alpha}{4\pi} \log^{2} \left(\frac{E^{2}}{m_{W}^{2}}\right)\right)^{n}$
 $\mathcal{M}_{n\text{-loop}} \sim \mathcal{M}_{B}$

We cannot compute the amplitude in a perturbative expansion

$$\mathcal{M}_{\mathsf{full}} = \mathcal{M}_B + \mathcal{M}_{1\text{-loop}} + \ldots = ?$$

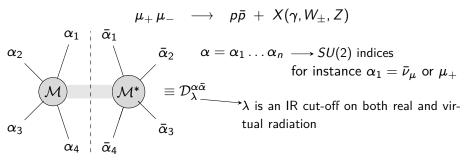
Lorenzo Ricci (EPFL)

EW radiation at the μ -collider


Exclusive XS at DL

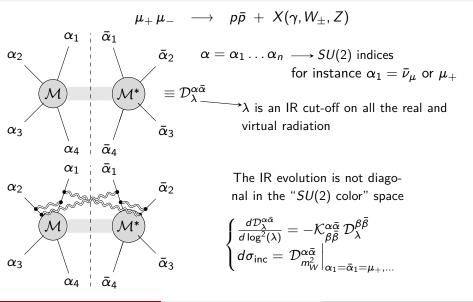
$$\mu_+\,\mu_- \quad \longrightarrow \quad par{p} \ + \ X(\gamma)_{
ho_T < m_W}$$

InfraRed Evolution Equation: we can introduce an unphysical IR cut-off [Fadin, Lipatov, Martin, Melles (99)] λ and compute the derivative of $\mathcal{M}_{full}(\lambda)$

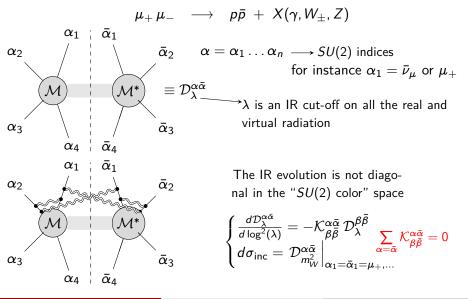

$$\mathcal{M}_{\mathsf{full}} \longrightarrow \mathcal{M}_{\mathsf{full}}(\lambda) \qquad \quad \lambda < rac{(k_i \cdot q)(k_j \cdot q)}{k_i \cdot k_j}$$

 $\mathcal{K}\sim lpha$

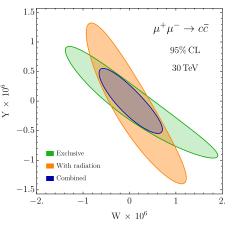
$$\left\{egin{aligned} &rac{d\mathcal{M}_{\mathsf{full}}(\lambda)}{d\log^2(\lambda)} = -\mathcal{K}\mathcal{M}_{\mathsf{full}}(\lambda) \ &\mathcal{M}_{\mathsf{full}}(\lambda = m_W^2) = \mathcal{M}_{\mathsf{full}} \end{aligned}
ight.$$


Semi-inclusive XS at DL

$$\mathcal{D}_{\lambda}^{\alpha\bar{lpha}} \equiv \mathcal{M}_{\mathsf{full}}^{\alpha}(\lambda)(\mathcal{M}_{\mathsf{full}}^{\bar{lpha}}(\lambda))^{*} + \sum_{N=1}^{\infty}\int \mathsf{dPh}_{N,\lambda}^{\mathcal{H}}\sum_{\rho_{1}\dots\rho_{N}}\mathcal{M}_{\mathsf{full}}^{\alpha;
ho}(\lambda)(\mathcal{M}_{\mathsf{full}}^{\bar{lpha};
ho}(\lambda))^{*}$$


~~

Semi-inclusive XS at DL


Lorenzo Ricci (EPFL)

Semi-inclusive XS at DL

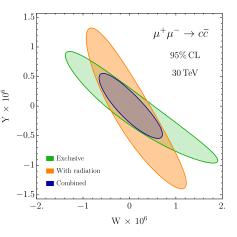
$$O_{2W} = J_W J_W, O_{2W} = J_Y J_Y$$
$$J_W^{\mu a} = \sum_f \bar{f} \tau^a \gamma^\mu f \quad J_Y^\mu = \sum_f Y_f \bar{f} \gamma^\mu f$$

Semi-inclusive and exclusive XS (with the same hard states) probe different directions on the W&Y plane

, ,

$$\mathcal{J}_{2W}^{\mu a} = \sum_{f} \bar{f} \tau^{a} \gamma^{\mu} f \quad \mathcal{J}_{Y}^{\mu} = \sum_{f} Y_{f} \bar{f} \gamma^{\mu} f$$

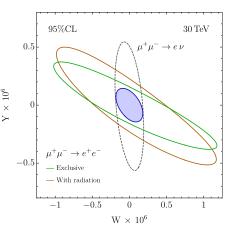
1


 \sim

Semi-inclusive and exclusive XS (with the same hard states) probe different directions on the W&Y plane

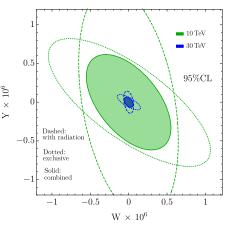
$$\sigma_{
m exc}^{\mu_L^+\mu_L^-
ightarrow c_L ar c_L} \propto \sigma_B^{\mu_L^+\mu_L^-
ightarrow c_L ar c_L}$$

Different dependence on W and Y


10 / 18

$$O_{2W} = J_W J_W, \ O_{2W} = J_Y J_Y$$
$$J_W^{\mu a} = \sum_f \bar{f} \tau^a \gamma^\mu f \quad J_Y^\mu = \sum_f Y_f \bar{f} \gamma^\mu f$$

 \sim


Semi-inclusive and exclusive XS (with the same hard states) probe different directions on the W&Y plane

"Charged" processess are as important as the "neutral" ones

There is still advantage to combine semi-inclusive and exclusive XS when we put together all the many channels

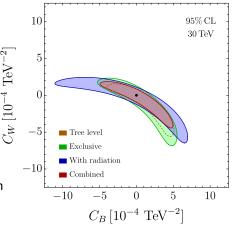
Process	N (Ex)	N (S-I)	Eff.
e ⁺ e ⁻	6794	9088	100%
eν _e	_	2305	100%
$\mu^+\mu^-$	206402	254388	100%
$\mu \nu_{\mu}$	_	93010	100%
$ au^+ au^-$	6794	9088	25%
$\tau \nu_{\tau}$	_	2305	50%
jj (Nt)	19205	25725	100%
<i>jj</i> (Ch)	_	5653	100%
сē	9656	12775	25%
сј	_	5653	50%
b b	4573	6273	64%
tī	9771	11891	5%
b t		5713	57%

There is still advantage to combine semi-inclusive and exclusive XS when we put together all the many channels

	Exclusiv	e-only [95% CL]]	Combined [95% CL]			
	W×10 ⁷	Y×10 ⁷	$\rho_{W,Y}$	W×10 ⁷	Y×10 ⁷	ρ _{W,Y}	
3 TeV	[-53, 53]	[-48, 48]	-0.72	[-41, 41]	[-46, 46]	-0.60	
10 TeV	[-5.71, 5.71]	[-4.47, 4.47]	-0.74	[-3.71, 3.71]	[-4.16, 4.16]	-0.54	
14 TeV	[-3.11, 3.11]	[-2.31, 2.31]	-0.74	[-1.90, 1.90]	[-2.13, 2.13]	-0.52	
30 TeV	[-0.80, 0.80]	[-0.52, 0.52]	-0.75	[-0.42, 0.42]	[-0.47, 0.47]	-0.48	

The effect of radiation grows with the energy and mostly affects the reach on W

Sensitivity projections: $\mathcal{O}_W \& \mathcal{O}_B$ operators


Are semi-inclusive and exclusive observables enough?

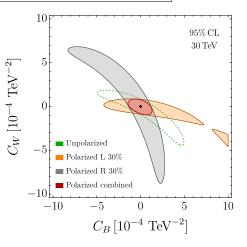
$$O_W = ig(H^{\dagger}\tau^a \overleftarrow{D}^{\mu}H)D^{\nu}W^a_{\mu\nu}$$

$$O_B = i \frac{g'}{2} (H^{\dagger} \overleftrightarrow{D}^{\mu} H) \partial^{\nu} B_{\mu\nu}$$

In the $C_W \& C_B$ plane there is an accidental flat direction for $C_W \simeq -C_B$

The combination of semi-inclusive and exclusive final states is not enought to constrain the flat direction

Sensitivity projections: $\mathcal{O}_W \& \mathcal{O}_B$ operators


Are semi-inclusive and exclusive observables enough?

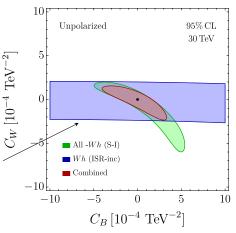
$$O_W = ig(H^{\dagger}\tau^a \overleftrightarrow{D}^{\mu} H) D^{\nu} W^a_{\mu\nu}$$

 $O_B = i \frac{g}{2} (H^{\dagger} D^{\mu} H) \partial^{\nu} B_{\mu\nu}$

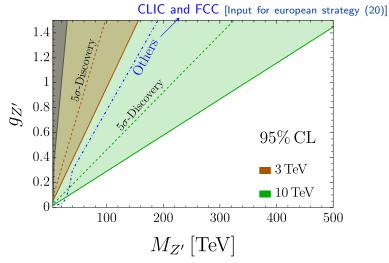
In the $C_W \& C_B$ plane there is an accidental flat direction for $C_W \simeq -C_B$

The flat direction disappears when we polarize the beams

Sensitivity projections: $\mathcal{O}_W \& \mathcal{O}_B$ operators

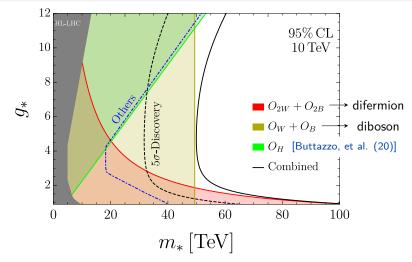

Are semi-inclusive and exclusive observables enough?

$$egin{aligned} \mathcal{O}_W &= ig(H^\dagger au^a \overleftrightarrow{D}^\mu H) D^
u W^a_{\mu
u} \ \mathcal{O}_B &= i rac{g'}{2} (H^\dagger \overleftrightarrow{D}^\mu H) \partial^
u B_{\mu
u} \end{aligned}$$


In the $C_W \& C_B$ plane there is an accidental flat direction for $C_W \simeq -C_B$ Less inclusive final states mimic the effects of polarization and seem to resolve the flat direc-

tion but we have no consistent (resummed) prediction for them.

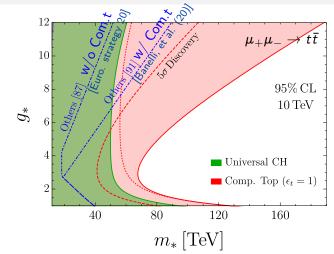
We need more control on more observables!


Sensitivity projections: a simple universal Z'

10 TeV μ collider can generically test 100+ TeV new physics

Lorenzo Ricci (EPFL)

Sensitivity projections: Composite Higgs


Indirect effects of a finite Higgs size are enhanced by the energy A 10TeV μ collider can rule out an extremely high compositeness scale m_*

Lorenzo Ricci (EPFL)

EW radiation at the μ -collider

15 / 18

Sensitivity projections: Composite Higgs

High-energy ditop production is particularly sensitive to composite top. The same processes can be used to discover or characterize new physics!

Lorenzo Ricci (EPFL)

EW radiation at the μ -collider

$\bullet~$ 10 TeV μ collider with 1% accuracy can test 100+ TeV new physics

- Consistent predictions require proper control of the radiative corrections ⇒ Resummations
- SCET is most likely the right "tool" to go beyond DL toward the 1% accuracy [Manohar, Waalewijn (18)]. EW PDF/Showering is a related subject [Bauer, Webber (17); Han, Xie, Tweedie (16);...]
- IR effects in QFT are interesting per se. The μ collider offers extra motivation to study this problem in a novel (and completely perturbative) framework.
- Heavy new physics modify the pattern of EW radiation: we can learn BSM by looking at the SM radiation
- More observables beyond the semi-inclusive and the exclusive ones offer additional information on new physics. Can we control them?
- This non trivial BSM/SM interplay offers a new playground for phenomenologists

Lorenzo Ricci (EPFL)

- 10 TeV μ collider with 1% accuracy can test 100+ TeV new physics
- Consistent predictions require proper control of the radiative corrections ⇒ Resummations
- SCET is most likely the right "tool" to go beyond DL toward the 1% accuracy [Manohar, Waalewijn (18)]. EW PDF/Showering is a related subject [Bauer, Webber (17); Han, Xie, Tweedie (16);...]
- IR effects in QFT are interesting per se. The μ collider offers extra motivation to study this problem in a novel (and completely perturbative) framework.
- Heavy new physics modify the pattern of EW radiation: we can learn BSM by looking at the SM radiation
- More observables beyond the semi-inclusive and the exclusive ones offer additional information on new physics. Can we control them?
- This non trivial BSM/SM interplay offers a new playground for phenomenologists

Lorenzo Ricci (EPFL)

- 10 TeV μ collider with 1% accuracy can test 100+ TeV new physics
- Consistent predictions require proper control of the radiative corrections \Rightarrow Resummations
- SCET is most likely the right "tool" to go beyond DL toward the 1% accuracy [Manohar, Waalewijn (18)]. EW PDF/Showering is a related subject [Bauer, Webber (17); Han, Xie, Tweedie (16);...]
- IR effects in QFT are interesting per se. The μ collider offers extra motivation to study this problem in a novel (and completely perturbative) framework.
- Heavy new physics modify the pattern of EW radiation: we can learn BSM by looking at the SM radiation
- More observables beyond the semi-inclusive and the exclusive ones offer additional information on new physics. Can we control them?
- This non trivial BSM/SM interplay offers a new playground for phenomenologists

Lorenzo Ricci (EPFL)

EW radiation at the μ -collider

- 10 TeV μ collider with 1% accuracy can test 100+ TeV new physics
- Consistent predictions require proper control of the radiative corrections \Rightarrow Resummations
- SCET is most likely the right "tool" to go beyond DL toward the 1% accuracy [Manohar, Waalewijn (18)]. EW PDF/Showering is a related subject [Bauer, Webber (17); Han, Xie, Tweedie (16);...]
- IR effects in QFT are interesting per se. The μ collider offers extra motivation to study this problem in a novel (and completely perturbative) framework.
- Heavy new physics modify the pattern of EW radiation: we can learn BSM by looking at the SM radiation
- More observables beyond the semi-inclusive and the exclusive ones offer additional information on new physics. Can we control them?
- This non trivial BSM/SM interplay offers a new playground for phenomenologists

Lorenzo Ricci (EPFL)

Thank you!