Resummation of large electroweak terms for indirect Dark Matter detection LFC22: Strong interactions from QCD to new strong dynamics at LHC and Future Colliders. Trento

Martin Vollmann – Uni Tuebingen

The Problem

Gamma rays signals from dark matter in the center of the Milky Way

The problem

- "Bumpy" endpoint (spectral line) Smoking gun
- Non-trivial theoretical prediction

(Resummable) higher-order effects

The solution

Continuum

Fixed-order + Parton showers + NREFT

• Endpoint

Non-relativistic (NREFT) and soft-collinear (SCET) effective theories

NRDMEF

Semi-inclusive processs

M. Vollmann – LFC22 Trento

SCET-II

Short advertisement

- Public python package to compute gamma ray spectra from pure wino and higgsino annihilation
 - O(1%) theoretical uncertainty in the endpoint region
- Available on HEPForge:

https://dmyspec.hepforge.org/

💭 jupyter example	e Last Checkpoint: Yesterday at 15:33 (autosaved)	ę
File Edit View Ins	sert Cell Kernel Help Trusted	Python 3 (ip
₽ + % 4 ⊾ ↑	▶ Run ■ C ▶ Markdown ✓	
Exam Photor	ple notebook DM γ Spec n spectra $\chi \chi \rightarrow \gamma + X$ for wino and Higgsino dark matter	
Load the to	op-level functions	
In [1]: from resu	ummation import diffxsection, cumulxsection, binnedxsection, zerobin	
Examp	ole use of functions	
Differential	cross-section:	
	$\frac{d(\sigma v)}{dx} \left[10^{-26} \text{cm}^3/\text{s} \right] \text{in} x = \frac{E_{\gamma}}{m_{\chi}} \in [0, 1]$	
Function ar in paper/dc	rguments in order are x [], mass [TeV], model (either 'wino' or 'higgsino'), and Sommerfeld factor where the latter table can b ocumentation.	e chosen from a t
In []: diffxsect	tion(1-0.08,2,'wino','LO -4')	
In []: diffxsect	tion(1-0.08,2,'higgsino','LO -3 dm 355 dmN 20')	
In []: diffxsect	tion(1-0.08,2, 'higgsino', 'LO -3 dm 355 dmN 20')	
In []: diffxsect	tion(1-0.08,2,'wino','LO -4')	
in paper/do	ocumentation.	

Based on

Mainly:

- Matching resummed endpoint and continuum y-ray spectra from dark-matter annihilation. Beneke, Vollmann, Urban – 2022 arXiv:2203.01692
- resolution. Beneke, Broggio, Hasner, Vollmann, Urban – 2019 (~100 pages) arXiv:1903.08702

But also:

• Precise yield of high-energy photons from Higgsino dark matter annihilation. Beneke, Hasner, Vollmann, Urban – 2019 arXiv:1912.02034

• Resummed photon spectrum from dark matter annihilation for intermediate and narrow energy

Outline

Resummations

Dark Matter exists

Electroweak interactions exist

Why Dark Matter? and why winos/higgsinos?

- Successful Standard Model of Cosmology (ΛCDM)
 - Observational evidence all the way down to galactic scales
- Freeze-out mechanism (FOM): electroweak sector ⇔ dark matter
 - Supersymmetry worthy of 50yrs of research even if we don't find it...
 - Naturalness aside, pure winos and higgsinos → still very good dark-matter
 - eluded detection: have to be heavy for the FOM to work out.
 - minimal BSM field content!

Why indirect detection? and why winos/higgsinos?

Winos and higgsinos (as dark matter candidates)

- too heavy for the LHC
- don't couple at Born level with the SM fermions \Rightarrow direct detection
- Imaging Atmospheric Cherenkov Telescopes (such as HESS, MAGIC, TeV-scale spectral lines
- Sommerfeld effect: enhancements by factors of 10^3 to 10^6 !!!

VERITAS, HAWC, etc. or the next generation CTA, LHAASO) can search for

Why indirect detection?

M. Vollmann – LFC22 Trento

Projected (500hrs) CTA (arXiv:1709.07997)

Phenomenology

Modern (ACDM) picture of the Milky Way

Milky Way DM halo

- Most of the dark matter is in the innermost regions of the Galaxy
 - Very uncertain, though. E.g. Cusp Core $\rho(r) \underset{r \to 0}{\propto} \frac{1}{r}$ const.

• "Count" the number of rays subtended in $\Delta \Omega$

$$\Phi_{\gamma} = \int_{\Delta\Omega} d\Omega I_{\gamma}, \quad I_{\gamma} = \int_{1.0.5.} ds \, \frac{1}{4\pi} S_{\gamma}$$

- Rate sensitive to the (unknown) number density of DM particles
 - DM mass density ρ (if uncertain) is the available quantity

$$S_{\gamma} = \frac{1}{2} n_{\chi}^2 \frac{\mathrm{d}\langle \sigma v \rangle}{\mathrm{d}E_{\gamma}} = \frac{1}{2 m_{\chi}^2} \rho_{\mathrm{DM}}^2 \frac{\mathrm{d}\langle \sigma v \rangle}{\mathrm{d}E_{\gamma}}$$

Dark Matter annihilation Astrophysics factored out

• Putting things together:

$$J = \int d\Omega \int_{l.o.s.} ds \,\rho_{\rm DM}^2$$

Dark Matter annihilation Astrophysics factored out

Dark-matter annihilation map of a Milky-Way-like galaxy from the Aquarius (Aq-A-1) simulation:

$$S = \int_{1.o.s.} \mathrm{d}s \,\rho_{\rm DM}^2$$

- Same map for all γ -ray energies!
- $\rho_{\rm DM}$: highly unconstrained especially in innermost regions

Simplified analytical benchmarks (NFW, Einasto, etc.)

https://wwwmpa.mpa-garching.mpg.de/aquarius/

Dark Matter annihilation Astrophysics factored out

- "J" factor in this region of interest (ROI) ($J = d\Omega S$) J_{ROI} varies from 1.1 all the way up to 8.0 times $10^{21} \text{GeV}^2/\text{cm}^5$ for NFW and Einasto halo parametrizations respectively
 - γ -ray fluxes uncertain by a factor of ca. 10 !!

https://wwwmpa.mpa-garching.mpg.de/aquarius/

 γ-ray flux via dark-matter annihilation

Focus on a particle physics problem!

DM

- Simple kinematics (The dark matter is cold \rightarrow non relativistic)
 - Lab frame \simeq CoM frame

 $\sqrt{s} = 2m_{\chi} + \mathcal{O}(m_{\chi}v^2)$

Dark Matter annihilation Endpoint spectrum

Consider the fully-exclusive lacksquareprocess $\chi_0 \chi_0 \rightarrow \gamma \gamma$

$$E_{\gamma} = m_{\chi}$$

Back-to-back monochromatic TeV-scale photons

Quasi-monochromatic spectral line

Gamma-ray telescopes

Resummations

Sommerfeld enhancement

Sommerfeld effect The wave function of a two-wimp system

$$\begin{pmatrix} -\frac{1}{m_{\chi}} \frac{\mathrm{d}^2}{\mathrm{d}x^2} + V(x) & \end{pmatrix} \psi(x) = E\psi(x) \\ j(x) = \frac{i}{m_{\chi}} [\psi(x)\psi'^*(x) - \psi^*(x)\psi'(x)] = \text{const.}$$

$$\psi_{-}(x) = e^{ikx} + re^{-ikx}$$
$$j_{-} = (1 - |r|^{2})v = (1 - \sigma_{r})v$$

Unitarity:

Sommerfeld effect The wave function of a two-wimp system

$$\left(-\frac{1}{m_{\chi}}\frac{\mathrm{d}^2}{\mathrm{d}x^2} + V(x) + \frac{i}{2}\sigma_a^{(0)}v\delta(x)\right)\psi(x) = E\psi(x)$$

Unitarity-violating term \rightarrow

$$\sigma_r + \sigma_t$$

$$\sigma_a = |\psi(\mathbf{0})|^2 \sigma_a^{(0)}$$

Sommerfeld factor ("long" range NR physics)

Resummed cross section

M. Vollmann – LFC22 Trento

$$j_{+} = j_{-} + |\psi(0)|^2 \sigma_a v$$

$$+ \sigma_a = 1$$

Х

QFT cross section (short range physics)

Sommerfeld enhancement **Concrete example: pure wino**

SM + Majorana SU(2) triplet

$$\delta \mathcal{L}_{\text{Wino}} = \frac{1}{2} \bar{\chi} (i \gamma^{\mu} D_{\mu} - m_{\chi}) \chi$$

Q=0 Majorana DM Q=1 *Dirac* chargino

- $m_{\chi^+} m_{\chi^0} \simeq 164 \mathrm{MeV}$
- DM stable through a \mathbb{Z}_2 symmetry
- Suitable WIMP for $m_{\gamma^0} \simeq 3 {
 m TeV}$
- Super-partner of the SU(2) gauge bosons in SUSY

Sommerfeld enhancement **Concrete example: pure wino**

 $V(r) = \begin{pmatrix} 0\\ -\sqrt{2}\alpha_2 \frac{\mathrm{e}^{-m_W r}}{r} \end{pmatrix}$

$$\int \int \frac{d(\sigma v)_{IJ}}{dE_{\gamma}} dE_{\gamma}$$
Sommerfeld matrix
 $I, J = (\chi 0 \chi 0) \text{ or } (\chi + \chi - \chi)$

$$-\sqrt{2\alpha_2} \frac{\mathrm{e}^{-m_W r}}{r} \\ -\frac{\alpha}{r} - \alpha_2 c_W^2 \frac{\mathrm{e}^{-m_Z r}}{r}$$

Sommerfeld enhancement "Explosive" Dark Matter annihilation

$$\frac{\mathrm{d}(\sigma v)}{\mathrm{d}E_{\gamma}} = 2 \sum_{I,J} S_{IJ} \frac{\mathrm{d}(\sigma v)_{IJ}^{\text{tree}}}{\mathrm{d}E_{\gamma}}$$

$$\frac{d(\sigma v)_{(00)(00)}^{\text{tree}}}{dE_{\gamma}} = \frac{d(\sigma v)_{(+-)(00)}^{\text{tree}}}{dE_{\gamma}} = 0$$

$$\frac{d(\sigma v)_{(+-)(+-)}^{\text{tree}}}{dE_{\gamma}} = \frac{2\pi\alpha_{2}^{2}s_{W}^{4}}{m_{\chi}^{2}}\delta(E_{\gamma} - m_{\chi}) + \frac{2\pi\alpha_{2}^{2}s_{W}^{2}c_{W}^{2}}{m_{\chi}^{2}}\delta(E_{\gamma} - m_{\chi})$$

Sommerfeld enhancement Bound states? ... Not quite

Sommerfeld enhancement Bound states? ... Not quite

Sommerfeld enhancement Bound states? ... Not quite

Sommerfeld enhancement

Sudakov double logs

Sudakov double logs

Soft Collinear Effective Field Theory (SCET) Method of regions

$$k_3 = m_{\chi}(1, \hat{n}) \equiv m_{\chi} n$$

$$= \int \frac{\mathrm{d}^{D}q}{(2\pi)^{D}} \frac{1}{(q+k_{3}-p_{1})^{2}-m_{\chi}^{2}} \frac{1}{(q+k_{3})^{2}-m_{W}^{2}} \frac{1}{q^{2}-m_{W}^{2}} \frac{1}{(q-k_{4})^{2}-m_{W}^{2}}$$

$$k_4 = m_{\chi}(1, -\hat{n}) \equiv m_{\chi}\bar{n}$$

SCET for indirect DM detection Method of regions

Light-cone
$$q = q_c n + q_{\bar{c}} \bar{n} + q_{\perp} \rightarrow (q_c, q_{\bar{c}}, q_{\perp})$$

$$q_h \sim m_{\chi}(1, 1, 1)$$
 $q_s \sim m_W(1, 1, 1)$

$$q_c \sim \left(\frac{m_W^2}{m_\chi}, m_\chi, m_W\right) \qquad q_{\bar{c}} \sim \left(m_\chi, \frac{m_W^2}{m_\chi}, m_W\right)$$

For example:

$$I_h = \int \frac{\mathrm{d}^D q}{(2\pi)^D} \frac{1}{(q+k_3-p_1)^2 - m_\chi^2} \frac{1}{(q+k_3)^2} \frac{1}{q^2} \frac{1}{(q-k_4)^2}$$

M. Vollmann — LFC22 Trento

$$I_{\text{ex.}} = \int \frac{\mathrm{d}^{D}q}{(2\pi)^{D}} \frac{1}{(q+k_{3}-p_{1})^{2}-m_{\chi}^{2}} \frac{1}{(q+k_{3})^{2}-m_{W}^{2}} \frac{1}{q^{2}-m_{W}^{2}} \frac{1}{(q-k_{4})^{2}-m_{W}^{2}}$$

Expand propagators in according to 4 different momentum scalings

SCET for indirect DM detection Method of regions

Let the magic happen:

SCET for indirect DM detection Method of regions

1. Organize/formalize this procedure: SCET 2. Factorize

M. Vollmann — LFC22 Trento

Factorization (after including all diagrams)

Wilson coefficients only depend on the hard scale m_{γ}

Soft functions

Jet functions only depend on the soft scale m_W

only depends on the typical jet scale

Fully resummed result **NREFT × SCET-II** for indirect dark-matter detection

 $\frac{\mathrm{d}}{\mathrm{d}E_{\gamma}}[\sigma v] = |\psi(0)|^2 \times |C|^2(\mu) \times Z_{\gamma}(\mu,\nu) \times J(\mu,\nu) \otimes W(\mu,\nu)$

DNySpec

Sudakov double logs

Endpoint Regimes

- Narrow 'nrw': $4m_{\gamma}^2 \gg m_X^2 \sim m_W^2$ (or $1 \gg 1 x \sim$
 - Beneke, Broggio, Hasner, MV 1805.07367 —
 - Beneke, Hasner, MV, Urban 1912.02034 NL
- Intermediate 'int': $4m_{\gamma}^2 \gg m_X^2 \sim 2m_{\gamma}m_W$ (or 1 1
 - Beneke, Broggio, Hasner, MV, Urban 1903.087
 - Beneke, Hasner, MV, Urban 1912.02034 NL
- Wide: $4m_{\chi}^2 \gg m_X^2 \gg m_{\chi} m_W$ (or $1 \gg 1 x \gg m_W$
- Continuum: E_{γ} and $m_{\gamma} E_{\gamma}$ of $\mathcal{O}(m_{\gamma})$ (or 1 x of $\mathcal{O}(1)$)

$$m_W^2/m_\chi^2)$$
NLL' for wino
L' for higgsino
 $x \sim m_W/m_\chi)$
702 — NLL' for wino
L' for higgsino
 $m_\chi/m_\chi)$

Baumgart, Cohen, Moulin, Moult, Rinchiuso, Rodd, Slatyer, Stewart, Vaidya — 1808.08956 — NLL for wino

Factorization formulas (Sudakov-log resumm.) **Regime 'int'**

 $\Gamma_{IJ}^{\text{higgsino}}(E_{\gamma}) = \frac{1}{(\sqrt{2})^{n_{id}}} \frac{1}{4} \frac{2}{\pi m_{\chi}} \sum_{i,j} C_{i}(\mu) C_{j}^{*}(\mu) \times Z_{\gamma}^{WY}(\mu)$

 $\Gamma_{IJ}^{\text{wino}}(E_{\gamma}) = \frac{1}{(\sqrt{2})^{n_{id}}} \frac{1}{4} \frac{2}{\pi m_{\chi}} \sum_{i,i} C_{i}(\mu) C_{j}^{*}(\mu) \times Z_{\gamma}^{33}(\mu,\nu) \times \int d\omega J^{\text{SU}(2)}(4m_{\chi}(m_{\chi} - E_{\gamma} - \omega/2),\mu) \tilde{W}_{IJ}^{ij}(\omega,\mu,\nu)$

$$(\mu, \nu) \times \int d\omega \left(J^{SU(2)}(4m_{\chi}(m_{\chi} - E_{\gamma} - \omega/2), \mu) W^{SU(2), ij}_{IJ, WY}(\omega, \mu, \mu) + J^{U(1)}(4m_{\chi}(m_{\chi} - E_{\gamma} - \omega/2), \mu) W^{U(1), ij}_{IJ, WY}(\omega, \mu, \nu) \right)$$

Fixed-order cross sections Breakdown of the perturbative expansion (after Sommerfeld resummation)

Sudakov suppression **Scale variations**

Matching with the continuum (parton showers)

Pure wino and higgsino annihilate into gauge bosons: ulletPrescription to include Sommerfeld effect into the showering:

$$\frac{\mathrm{d}\sigma v}{\mathrm{d}E_{\gamma}} = 2\sum_{I,J} S_{IJ} \Gamma_{IJ}^{\mathrm{cont.}}(E_{\gamma})$$

$$\Gamma_{IJ}^{\mathrm{cont.}}(E_{\gamma}) = [\sigma v]_{IJ}^{W^+W^-} \frac{\mathrm{d}N_{W_T^+W_T^-}^{\mathrm{PPPC}}}{\mathrm{d}E_{\gamma}} + [\sigma v]_{IJ}^{ZZ} \frac{\mathrm{d}N_{Z_TZ_T}^{\mathrm{PPPC}}}{\mathrm{d}E_{\gamma}} + [\sigma v]_{IJ}^{\gamma Z} \frac{\mathrm{d}N_{\gamma Z}^{\mathrm{PPPC}}}{\mathrm{d}E_{\gamma}} + [\sigma v]_{IJ}^{\gamma \gamma} \frac{\mathrm{d}N_{\gamma \gamma}^{\mathrm{PPPC}}}{\mathrm{d}E_{\gamma}}$$

PPPC: Poor particle physicist cookbook for indirect dark matter detection.

DMySpec Full gamma-ray spectra for indirect wino/higgsino detection

M. Vollmann – LFC22 Trento

Dyson-resummed Z pole

$DM\gamma Spec$ Gamma-ray spectra convoluted with an instrument response function

Conclusions

Conclusions

- ightarrowobservations in the near future
- Electroweak effects are extremely important \bullet
 - very important role
- 0 the benchmark wino and higgsino models

calculations apparent in these spectra

Unexplored heavy WIMP parameter-space chunk to be probed by indirect detection

Besides Sommerfeld enhancements, Sudakov-log resummation at the endpoint plays a

Provided a complete description of prompt gamma-ray spectra from wimp annihilation for

DMSpec

Demonstrated a perfect matching and consistency between different regimes/

