Entanglement in SMEFT : Top pair

Rafael Aoude UCLouvain

LFC22 Strong interactions from QCD to new strong dynamics at LHC and future colliders

UCLouvain

Based on

Quantum SMEFT tomography: top quark pair production at the LHC

RA, Eric Madge, Fabio Maltoni and Luca Mantani hep-ph/2203.05619 accepted in PRD

Motivation

- In general, top pair produced entangled
- In the SM, there are two point of maximal entanglement and regions of vanishing of entanglement
- How does SMEFT change these effects?

[Afik and de Nova, 21'] [Fabbrichesi, Floreanini, Panizzo, 21'] [Barr, 21'] [Severi, Degli, Maltoni, Sioli, 21'] [Aoude, Madge, Maltoni, Mantani, 22'] [Afik and de Nova, 22'] [Aguilar-Saavedra, Casas, 22'] [Barr, Caban, Rembielisnki 22'] [Fabbrichesi, Floreanini, Gabrielli, 22']

Entanglement in spin-space

We want the entanglement in the top pair spin (here illustrated by the tro $t\bar{t}$ ola)

 $|t(\uparrow)\bar{t}(\uparrow)\rangle + |t(\downarrow)\bar{t}(\downarrow)\rangle$ for instance:

would be a maximal entangled state

The state-density matrix is obtained from the R-matrix

$$\begin{split} R^{I}_{\alpha_{1}\alpha_{2},\beta_{1}\beta_{2}} &\equiv \frac{1}{N_{a}N_{b}} \sum_{\substack{\text{colors} \\ a,b \text{ spins}}} \mathcal{M}^{*}_{\alpha_{2}\beta_{2}} \mathcal{N} \\ I &= gg, q\bar{q} \end{split}$$

[Afik and de Nova, 21']

 $\mathcal{I}_{lpha_1eta_1}$

here $\mathcal{M}_{\alpha\beta} \equiv \langle t(k_1, \alpha) \overline{t}(k_2, \beta) | \mathcal{T} | a(p_1) b(p_2) \rangle$

The state-density matrix is obtained from the R-matrix

$$R^{I}_{\alpha_{1}\alpha_{2},\beta_{1}\beta_{2}} \equiv \frac{1}{N_{a}N_{b}} \sum_{\substack{\text{colors} \\ a,b \text{ spins}}} \mathcal{M}^{*}_{\alpha_{2}\beta_{2}} \mathcal{N}$$

$$I = gg, q\bar{q}$$

SM:

[Afik and de Nova, 21']

 ${\cal A}_{lpha_1eta_1}$

where $\mathcal{M}_{\alpha\beta} \equiv \langle t(k_1, \alpha) \overline{t}(k_2, \beta) | \mathcal{T} | a(p_1) b(p_2) \rangle$

The state-density matrix is obtained from the R-matrix

$$R^{I}_{\alpha_{1}\alpha_{2},\beta_{1}\beta_{2}} \equiv \frac{1}{N_{a}N_{b}} \sum_{\substack{\text{colors} \\ a,b \text{ spins}}} \mathcal{M}^{*}_{\alpha_{2}\beta_{2}} \mathcal{N}$$

$$I = gg, q\bar{q}$$

SM:

Mixed state of qq and gg initiated channels, $R(\hat{s}, \boldsymbol{k}) = \sum L^{I}(\hat{s}) R^{I}(\hat{s}, \boldsymbol{k})$ weighted by the luminosity functions

[Afik and de Nova, 21']

 $\mathcal{I}_{\alpha_1\beta_1}$

here $\mathcal{M}_{\alpha\beta} \equiv \langle t(k_1, \alpha) \overline{t}(k_2, \beta) | \mathcal{T} | a(p_1) b(p_2) \rangle$

4x4 matrix in spin-space of the top pair.

Fano decomposition: (spanned by tensor prod. of Pauli and Identity)

16-coefficients where the norm $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega\mathrm{d}\hat{s}} = \frac{\alpha_s^2\beta}{\hat{s}^2}\tilde{A}\left(\hat{s},\boldsymbol{k}\right)$

[Afik and de Nova, 21']

 $R = \tilde{A} \mathbb{1}_2 \otimes \mathbb{1}_2 + \tilde{B}_i^+ \sigma^i \otimes \mathbb{1}_2 + \tilde{B}_i^- \mathbb{1}_2 \otimes \sigma^i + \tilde{C}_{ii} \sigma^i \otimes \sigma^j.$

4x4 matrix in spin-space of the top pair.

Fano decomposition: (spanned by tensor prod. of Pauli and Identity)

Normalize the state as $\rho = R/tr(R)$

[Afik and de Nova, 21']

 $R = \tilde{A} \mathbb{1}_2 \otimes \mathbb{1}_2 + \tilde{B}_i^+ \sigma^i \otimes \mathbb{1}_2 + \tilde{B}_i^- \mathbb{1}_2 \otimes \sigma^i + \tilde{C}_{ij} \sigma^i \otimes \sigma^j.$

16-coefficients where the norm $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega\mathrm{d}\hat{s}} = \frac{\alpha_s^2\beta}{\hat{s}^2}\tilde{A}\left(\hat{s},\boldsymbol{k}\right)$

 $\rho = \frac{\mathbb{1}_2 \otimes \mathbb{1}_2 + B_i^+ \sigma^i \otimes \mathbb{1}_2 + B_i^- \mathbb{1}_2 \otimes \sigma^i + C_{ij} \sigma^i \otimes \sigma^j}{4}.$

Density matrix and helicity-basis

Helicity basis:

$$\{ m{k}, m{n}, m{r} \} : \ m{r} = rac{(m{p} - z m{k})}{\sqrt{1 - z^2}}, \quad m{n} = m{k} imes m{r},$$

To expand in this basis, e.g.

$$C_{nn} = \operatorname{tr}[C_{ij} \, \boldsymbol{n} \otimes \boldsymbol{n}]$$

Phase-space parametrized by:

$$\beta^2 = (1 - 4m_t^2/\hat{s}) \quad \text{and} \quad \cos\theta$$

Entanglement in bipartite systems

Given a bipartite system $\mathcal{H}_{ab} = \mathcal{H}_a \otimes \mathcal{H}_b$

Can you write $|\Psi_{ab}\rangle = |\Psi_{a}\rangle \otimes |\Psi_{b}\rangle$?

Or more generally as product (mixed

Maximally entangled states (e.g Bell states):

$$|\Phi^{\pm}\rangle = \frac{|\uparrow\uparrow\rangle \pm |\downarrow\downarrow\rangle}{\sqrt{2}} \quad \text{or} \quad |\Psi^{\pm}\rangle = -\frac{|\Psi^{\pm}\rangle}{\sqrt{2}}$$

No? Then it is entangled.

d states):
$$ho_{
m ab} = \sum_k p_k \,
ho_{
m a}^k \otimes
ho_{
m b}^k$$

11

Entanglement in bipartite systems

An entanglement measure is more useful than the previous definition:

(in the helicity-basis)

• Concurrence: $C[\rho] = \max(\Delta/2, 0)$ $C|\rho| = 1$ (maximally entangled)

• Peres-Horodecki Criterion: $\Delta \equiv -C_{nn} + |C_{kk} + C_{rr}| - 1 > 0$ (entangled)

What's the story for the SM?

[Afik and de Nova, 21']

White regions: zero-entanglement

Maximal entanglement points/regions

- At threshold: $\beta^2 = 0, \forall \theta$
- high-E: $\beta^2 \to 1, \cos \theta = 0$

13

What's the story for the SM?

Maximal entanglement points/regions

• At threshold: $\beta^2 = 0, \forall \theta$ (singlet) $ho_{gg}^{
m SM}(0,z) = |\Psi^-\rangle_{m n} \langle \Psi^-|_{m n}$

• high-E: $\beta^2 \to 1, \cos \theta = 0$

(triplet) $\rho_{qq}^{\rm SM}(1,0) = |\Psi^+\rangle_{\boldsymbol{n}} \langle \Psi^+|_{\boldsymbol{n}}$

14

What's the story for the SM?

Maximal entanglement points/regions

• At threshold: $\beta^2 = 0, \forall \theta$

mixed but separable

• high-E: $\beta^2 \to 1, \cos \theta = 0$

(triplet: same as gg)

 $\rho_{q\bar{q}}^{\rm SM}(1,0) = |\Psi^+\rangle_{\boldsymbol{n}} \langle \Psi^+|_{\boldsymbol{n}}.$

SMEFT

[Degrande et. al, 08']

+4F operators $\mathcal{O}_{Qq}^{(8,1)}, \mathcal{O}_{Qq}^{(8,3)}, \mathcal{O}_{tu}^{(8)}, \mathcal{O}_{td}^{(8)}, \mathcal{O}_{Qu}^{(8)}, \mathcal{O}_{Qd}^{(8)}, \mathcal{O}_{tq}^{(8)}$

SMEFT

[Degrande et. al, 08'] +4F operators $\mathcal{O}_{Qq}^{(8,1)}, \mathcal{O}_{Qq}^{(8,3)}, \mathcal{O}_{tu}^{(8)}, \mathcal{O}_{td}^{(8)}, \mathcal{O}_{td}^{(8)}, \mathcal{O}_{Qu}^{(8)}, \mathcal{O}_{Qd}^{(8)}, \mathcal{O}_{ta}^{(8)}$

Maximal points are affected by SMEFT? Can SMEFT induce new regions?

With dim-six contributions:

$$\mathcal{M}_{\alpha\beta} = \mathcal{M}_{\alpha\beta}^{\mathrm{SM}} + \frac{1}{\Lambda^2} \mathcal{M}_{\alpha\beta}^{(\mathrm{d6})}$$

The Fano coefficients $X = X^{(0)} + \frac{1}{\Lambda^2}X^{(1)} + \frac{1}{\Lambda^4}X^{(2)}$ where $X = \tilde{A}, \, \tilde{C}_{ij} \text{ and } \tilde{B}_i^{\pm}$

$$\rho = \frac{R^{\rm SM} + R^{\rm EFT}}{\operatorname{tr}(R^{\rm SM}) + \operatorname{tr}(R^{\rm EFT})}$$

 $\mathcal{O}(\Lambda^{-4})$ from dim-6 sq.

With dim-six contributions:

$$\mathcal{M}_{\alpha\beta} = \mathcal{M}_{\alpha\beta}^{\mathrm{SM}} + \frac{1}{\Lambda^2} \mathcal{M}_{\alpha\beta}^{(\mathrm{d6})}$$

At
$$\mathcal{O}(\Lambda^{-2})$$

$$\tilde{C}_{nn}^{gg,(1)} = \frac{g_s^2}{\Lambda^2} \frac{1}{1 - \beta^2 z^2} \left[\frac{-7g_s^2 v m_t}{12\sqrt{2}} c_{tG} - \frac{\beta^2 m_t^4}{4m_t^2 - (1 - \beta^2)m_h^2} c_{\varphi G} + \frac{9g_s^2 \beta^2 m_t^2 z^2}{8} c_G \right]$$

$$\rho = \frac{R^{\rm SM} + R^{\rm EFT}}{\operatorname{tr}(R^{\rm SM}) + \operatorname{tr}(R^{\rm EFT})}$$

SMEFT entanglement: gg-initiated

only $\mathcal{O}_{tG}, \mathcal{O}_{G}, \mathcal{O}_{\varphi G}$ contributes

gg-initiated at threshold $\beta^2 = 0$

- quadratics vanish for $\mathcal{O}_{arphi G}$ and decreases for $\mathcal{O}_{tG}, \mathcal{O}_{G}$

gg-initiated at high-E: $eta^2
ightarrow 1$: EFT not valid but $\ m_t^2 \ll \hat{s} \ll \Lambda^2$

- linear interference: sign dependent
- quadratics always decreases

[Aoude, Madge, Maltoni, Mantani, 22']

$$\rho = \frac{R^{\rm SM} + R^{\rm EFT}}{\operatorname{tr}(R^{\rm SM}) + \operatorname{tr}(R^{\rm EFT})}$$

• linear interference exactly cancel, maximally entangled state unchanged

SMEFT entanglement: qq-initiated

only \mathcal{O}_{tG} and 4F contributes

qq-initiated at threshold $\beta^2 = 0$

no contributions for linear and quad

qq-initiated at high-E: $m_t^2 \ll \hat{s} \ll \Lambda^2$

sign dependent for linear and quadratics always decreases \bullet

[Aoude, Madge, Maltoni, Mantani, 22']

$$\rho = \frac{R^{\rm SM} + R^{\rm EFT}}{\operatorname{tr}(R^{\rm SM}) + \operatorname{tr}(R^{\rm EFT})}$$

everything gets more involved for pp

21

SMEFT entanglement

 $\mathcal{O}_{tG} = g_s (\bar{Q}\sigma^{\mu\nu}T^A t)\tilde{\varphi}G^A_{\mu\nu} + \text{h.c.}$

SMEFT entanglement marker

$$\rho = \frac{R^{\rm SM} + R^{\rm EFT}}{\operatorname{tr}(R^{\rm SM}) + \operatorname{tr}(R^{\rm EFT})}$$

 Δ_0 calculated with SM R's

SMEFT entanglement marker

SMEFT averaged concurrence

Average over the solid angle $\bar{R} = (4\pi)^{-1} \int \mathrm{d}\Omega \, R(\hat{s}, \boldsymbol{k}), \qquad \longrightarrow \qquad \delta \equiv -C_z + |2C_{\perp}| - 1 > 0$

PHC implies

 $C[\rho] = \max(\delta/2, 0)$

SMEFT averaged concurrence

Average over the solid angle

$$\bar{R} = (4\pi)^{-1} \int \mathrm{d}\Omega \, R(\hat{s}, \boldsymbol{k}) \,,$$

PHC implies $\rightarrow \quad \delta \equiv -C_z + |2C_{\perp}| - 1 > 0$ $C[\rho] = \max(\delta/2, 0)$

- SM
- --- linear
- ····· quadratic

$$- c_i / \Lambda^2 = 0.7 / \text{TeV}^2$$

 $-c_i/\Lambda^2 = -0.7/\mathrm{TeV}^2$

SMEFT quantum state

At threshold

 $\rho_{gg}^{\rm EFT}(0,z) = p_{gg} |\Psi^+\rangle_{\boldsymbol{p}} \langle \Psi^+|_{\boldsymbol{p}} + (1-p_{gg}) |\Psi^-\rangle_{\boldsymbol{p}} \langle \Psi^-|_{\boldsymbol{p}}$

(Induces a triplet) $\rho_{q\bar{q}}^{\rm EFT}(0,z) = p_{q\bar{q}} |\uparrow\uparrow\rangle_{p} \langle\uparrow\uparrow|_{p} + (1-p_{q\bar{q}}) |\downarrow\downarrow\rangle_{p} \langle\downarrow\downarrow|_{p} ,$ (changes the mixed state)

where

$$p_{gg} = \frac{72}{7\Lambda^4} m_t^2 (3\sqrt{2}m_t c_G + v c_{tG})^2,$$

$$p_{q\bar{q}} = \frac{1}{2} - 4\frac{c_{VA}^{(8),u}}{\Lambda^2} + \frac{8m_t^4}{\Lambda^4} \left(\frac{v\sqrt{2}}{m_t} c_{VA}^{(8),u} c_{tG} - 9c_{VA}^{(1),u} c_{VV}^{(1),u} + 2c_{VA}^{(8),u} c_{VV}^{(8),u}\right),$$

Conclusions

SM induces maximal entanglement points/regions in ttbar

Purely linear interference SMEFT effects vanish in these regions!

Quadratic interference decrease the entanglement at these points

Missing dim-8 linear interference and double-insertions at $O(\Lambda^{-4})$

Questions?

QI observables can help constrain SMEFT ops?Other processes? Future colliders..All this effects due to approxs? Tree-level, only dim-six, no double insertions

UCLouvain

LO coefficients - gg channel

$$\begin{split} \tilde{A}^{gg,(1)} &= \frac{g_s^2}{\Lambda^2} \frac{1}{1 - \beta^2 z^2} \left[\frac{g_s^2 v m_t (9\beta^2 z^2 + 7)}{12\sqrt{2}} c_{tG} - \frac{\beta^2 m_t^4}{4m_t^2 - (1 - \beta^2)m_h^2} c_{\varphi G} + \frac{9g_s^2 \beta^2 m_t^2 z^2}{8} c_G \right], \\ \tilde{C}^{gg,(1)}_{nn} &= \frac{g_s^2}{\Lambda^2} \frac{1}{1 - \beta^2 z^2} \left[\frac{-7g_s^2 v m_t}{12\sqrt{2}} c_{tG} - \frac{\beta^2 m_t^4}{4m_t^2 - (1 - \beta^2)m_h^2} c_{\varphi G} + \frac{9g_s^2 \beta^2 m_t^2 z^2}{8} c_G \right], \\ \tilde{C}^{gg,(1)}_{kk} &= \frac{g_s^2}{\Lambda^2} \frac{1}{1 - \beta^2 z^2} \left[\frac{g_s^2 v m_t \left(9\beta^2 z^2 + 7\right) \left(\beta^2 \left(z^4 - z^2 - 1\right) + 1\right)}{12\sqrt{2} \left(\beta^2 z^2 - 1\right)} c_{tG} + \frac{\beta^2 m_t^4}{4m_t^2 - (1 - \beta^2) m_h^2} c_{\varphi G} - \frac{9g_s^2 \beta^2 m_t^2 z^2}{8} c_G \right], \\ \tilde{C}^{gg,(1)}_{rr} &= \frac{g_s^2}{\Lambda^2} \frac{1}{1 - \beta^2 z^2} \left[\frac{g_s^2 v m_t \left(-9\beta^4 \left(z - z^3\right)^2 - 7\beta^2 \left(z^4 - z^2 + 1\right) + 7\right)}{12\sqrt{2} \left(\beta^2 z^2 - 1\right)} c_{tG} - \frac{\beta^2 m_t^4}{4m_t^2 - (1 - \beta^2) m_h^2} c_{\varphi G} + \frac{9g_s^2 \beta^2 m_t^2 z^2}{8} c_G \right], \\ \tilde{C}^{gg,(1)}_{rk} &= \frac{g_s^2}{\Lambda^2} \frac{1}{1 - \beta^2 z^2} \left[\frac{g_s^2 v m_t \left(-9\beta^4 \left(z - z^3\right)^2 - 7\beta^2 \left(z^4 - z^2 + 1\right) + 7\right)}{22\sqrt{2} \left(\beta^2 z^2 - 1\right)} c_{tG} - \frac{\beta^2 m_t^4}{4m_t^2 - (1 - \beta^2) m_h^2} c_{\varphi G} + \frac{9g_s^2 \beta^2 m_t^2 z^2}{8} c_G \right], \\ \tilde{C}^{gg,(1)}_{rk} &= \frac{g_s^2}{\Lambda^2} \frac{1}{1 - \beta^2 z^2} \left[\frac{g_s^2 v m_t \beta^2 z \left(1 - z^2\right) \left(9\beta^2 + \left(\beta^2 - 2\right) z^2 \left(9\beta^2 \left(z^2 - 1\right) + 7\right) - 2\right)}{24\sqrt{2} \sqrt{(\beta^2 - 1)} \left(z^2 - 1\right) \left(\beta^2 z^2 - 1\right)} c_{tG} + \frac{9g_s^2 \beta^2 m_t^2 z}{8\sqrt{1 - \beta^2} z^2} c_G \right]. \end{split}$$

LO coefficients - qq channel

$$\begin{split} \tilde{A}^{q\bar{q},(1)} &= \frac{4g_s^2 m_t^2}{9\Lambda^2(1-\beta^2)} \bigg[\sqrt{2}g_s^2 \frac{v}{m_t} (1-\beta^2) c_{tG} + \big(2-(1-z^2)\beta^2\big) c_{VV}^{(8),u} + 2z\beta c_{AA}^{(8),u} \bigg], \\ \tilde{C}_{nn}^{q\bar{q},(1)} &= -\frac{g_s^2 m_t^2}{\Lambda^2} \frac{4\beta^2(1-z^2)}{9(1-\beta^2)} c_{VV}^{(8),u}, \\ \tilde{C}_{kk}^{q\bar{q},(1)} &= \frac{2g_s^2 m_t^2}{9\Lambda^2(1-\beta^2)} \bigg[2\sqrt{2}g_s^2 \frac{v}{m_t} (1-\beta^2) z^2 c_{tG} + \big(2+\beta^2-(2-\beta^2)(1-2z^2)\big) c_{VV}^{(8),u} + 4\beta z c_{AA}^{(8),u} \bigg] \\ \tilde{C}_{rr}^{q\bar{q},(1)} &= \frac{4g_s^2 m_t^2(1-z^2)}{9\Lambda^2(1-\beta^2)} \bigg[\sqrt{2}g_s^2 \frac{v}{m_t} (1-\beta^2) c_{tG} + (2-\beta^2) c_{VV}^{(8),u} \bigg], \\ \tilde{C}_{rk}^{q\bar{q},(1)} &= -\frac{2g_s^2 m_t^2}{9\Lambda^2} \sqrt{\frac{1-z^2}{1-\beta^2}} \bigg[\sqrt{2}g_s^2 \frac{v}{m_t} (2-\beta^2) z c_{tG} + 4z c_{VV}^{(8),u} + 2\beta c_{AA}^{(8),u} \bigg], \\ \tilde{B}_k^{\pm,q\bar{q},(1)} &= 4g_s^2 \frac{m_t^2}{9\Lambda^2} \frac{1}{1-\beta^2} \bigg(\beta (z^2+1) c_{AV}^{(8),u} + 2z c_{VA}^{(8),u} \bigg), \\ B_r^{\pm,q\bar{q},(1)} &= -4g_s^2 \frac{m_t^2}{9\Lambda^2} \sqrt{\frac{1-z^2}{1-\beta^2}} \bigg(\beta z c_{AV}^{(8),u} + 2c_{VA}^{(8),u} \bigg). \end{split}$$
 where

 $c_{VV}^{(8),u} = (c_{Qq}^{(8,1)} + c_{Qq}^{(8,3)} + c_{tu}^{(8)} + c_{tq}^{(8)} + c_{Qu}^{(8)})/4$ $c_{AV}^{(8),u} = \left(-c_{Qq}^{(8,1)} - c_{Qq}^{(8,3)} + c_{tu}^{(8)} + c_{tq}^{(8)} - c_{Qu}^{(8)}\right)$

4,
$$c_{AA}^{(8),u} = (c_{Qq}^{(8,1)} + c_{Qq}^{(8,3)} + c_{tu}^{(8)} - c_{tq}^{(8)} - c_{Qu}^{(8)})/4,$$

(9)/4, $c_{VA}^{(8),u} = (-c_{Qq}^{(8,1)} - c_{Qq}^{(8,3)} + c_{tu}^{(8)} - c_{tq}^{(8)} + c_{Qu}^{(8)})/4,$

Concurrence

Given the density matrix, build $\omega = \sqrt{\sqrt{\tilde{\rho}}\rho\sqrt{\tilde{\rho}}}$ where $\tilde{\rho} = (\sigma_2 \otimes \sigma_2) \rho^*(\sigma_2 \otimes \sigma_2)$

The concurrence (in bipartite systems) is given by $C[\rho] = \max\left[0, \lambda_1 - \lambda_2 - \lambda_3 - \lambda_4\right]$ where λ_i are the increasingly ordered eigenvalues of ω

