Soft Logarithms in Processes with Heavy Quarks

Andrea Ghira
in collaboration with D.Gaggero, S.Marzani, G.Ridolfi
Università degli Studi di Genova,
INFN, Genova

ECT* Trento, 30 Agosto 2022

(1)

Table of Contents

(1) Introduction
(2) Interplay between soft and massless limit in $H \rightarrow b \bar{b}$
(3) Predictions for $b \bar{b} \rightarrow H$ and $b H \rightarrow b$
(4) Soft Resummation in the Massive Scheme
(5) Conclusions and Outlook

Introduction

From the point of view of the strong interactions, flavours are distinguished only by their mass: Heavy flavour $\Longrightarrow m \gg \Lambda_{\mathrm{QCD}}$

Introduction

From the point of view of the strong interactions, flavours are distinguished only by their mass: Heavy flavour $\Longrightarrow m \gg \Lambda_{\mathrm{QCD}}$

Heavy quark processes can be computed perturbatively and two approaches can be employed:

Introduction

From the point of view of the strong interactions, flavours are distinguished only by their mass: Heavy flavour $\Longrightarrow m \gg \Lambda_{\mathrm{QCD}}$

Heavy quark processes can be computed perturbatively and two approaches can be employed:

Fragmentation Function Approach

The quarks mass is used as a regulator of the collinear divergences.

Introduction

From the point of view of the strong interactions, flavours are distinguished only by their mass: Heavy flavour $\Longrightarrow m \gg \Lambda_{\mathrm{QCD}}$

Heavy quark processes can be computed perturbatively and two approaches can be employed:

Fragmentation Function Approach

The quarks mass is used as a regulator of the collinear divergences.

Massive Scheme Approach

Full mass dependence taken into account.

Introduction

In the fragmentation function approach

$$
\left.\begin{array}{rl}
\frac{1}{\Gamma_{0}} \frac{\mathrm{~d} \Gamma}{\mathrm{~d} x} & =\sum_{i} \int_{x}^{1} \frac{\mathrm{~d} z}{z} C_{i}\left(\frac{x}{z}, \alpha_{\mathrm{s}}, \frac{\mu^{2}}{q^{2}}\right) D_{i}\left(z, \mu^{2}, m^{2}\right)+\mathcal{O}\left(\frac{m^{2}}{q^{2}}\right) \\
\underset{N-\text { space }}{\longrightarrow} & \widetilde{\Gamma}(N, \xi)
\end{array}\right)=\sum_{i} \widetilde{C}_{i}\left(N, \alpha_{\mathrm{s}}, \frac{\mu^{2}}{q^{2}}\right) \widetilde{D}_{i}\left(N, \alpha_{\mathrm{s}}, m^{2}\right)+\mathcal{O}\left(\frac{m^{2}}{q^{2}}\right) . ~ \$
$$

Introduction

In the fragmentation function approach

$$
\begin{aligned}
\frac{1}{\Gamma_{0}} \frac{\mathrm{~d} \Gamma}{\mathrm{~d} x} & =\sum_{i} \int_{x}^{1} \frac{\mathrm{~d} z}{z} C_{i}\left(\frac{x}{z}, \alpha_{\mathrm{s}}, \frac{\mu^{2}}{q^{2}}\right) D_{i}\left(z, \mu^{2}, m^{2}\right)+\mathcal{O}\left(\frac{m^{2}}{q^{2}}\right) \\
\underset{N-\text { space }}{\longrightarrow} & \widetilde{\Gamma}(N, \xi)
\end{aligned}=\sum_{i} \widetilde{C}_{i}\left(N, \alpha_{\mathrm{s}}, \frac{\mu^{2}}{q^{2}}\right) \widetilde{D}_{i}\left(N, \alpha_{\mathrm{s}}, m^{2}\right)+\mathcal{O}\left(\frac{m^{2}}{q^{2}}\right) . ~ \$
$$

The fragmentation functions D_{i} (process independent) fulfil the DGLAP evolution equations in N-space:

$$
\mu^{2} \frac{\mathrm{~d}}{\mathrm{~d} \mu^{2}} \widetilde{D}_{i}\left(N, \mu^{2}, m^{2}\right)=\sum_{j} \gamma_{i j}\left(N, \alpha_{\mathrm{s}}\left(\mu^{2}\right)\right) \widetilde{D}_{j}\left(N, \mu^{2}, m^{2}\right)
$$

Introduction

Fragmentation Function Approach

- Fragmentation function at the initial scale $\mu \sim m$ computable in perturbation theory up to corrections of order $\mathcal{O}\left(\mathrm{m}^{2} / q^{2}\right)$ in ${ }^{a}$.

Introduction

Fragmentation Function Approach

- Fragmentation function at the initial scale $\mu \sim m$ computable in perturbation theory up to corrections of order $\mathcal{O}\left(\mathrm{m}^{2} / q^{2}\right)$ in ${ }^{a}$.
- Resummation of the soft logarithms that are present in the initial condition ${ }^{b}$

Introduction

Fragmentation Function Approach

- Fragmentation function at the initial scale $\mu \sim m$ computable in perturbation theory up to corrections of order $\mathcal{O}\left(\mathrm{m}^{2} / q^{2}\right)$ in ${ }^{a}$.
- Resummation of the soft logarithms that are present in the initial condition ${ }^{b}$
- Powers of $\log \frac{m^{2}}{q^{2}}$ resummed to all orders by solving the evolution equation

[^0]
Introduction

Fragmentation Function Approach

- Fragmentation function at the initial scale $\mu \sim m$ computable in perturbation theory up to corrections of order $\mathcal{O}\left(\mathrm{m}^{2} / q^{2}\right)$ in ${ }^{a}$.
- Resummation of the soft logarithms that are present in the initial condition ${ }^{b}$
- Powers of $\log \frac{m^{2}}{q^{2}}$ resummed to all orders by solving the evolution equation

[^1]
Massive Scheme Approach

- Kinematics treated correctly but $\log m^{2} / q^{2}$ are not resummed

Introduction

Fragmentation Function Approach

- Fragmentation function at the initial scale $\mu \sim m$ computable in perturbation theory up to corrections of order $\mathcal{O}\left(\mathrm{m}^{2} / q^{2}\right)$ in ${ }^{a}$.
- Resummation of the soft logarithms that are present in the initial condition ${ }^{b}$
- Powers of $\log \frac{m^{2}}{q^{2}}$ resummed to all orders by solving the evolution equation

[^2]
Massive Scheme Approach

- Kinematics treated correctly but $\log m^{2} / q^{2}$ are not resummed
- Difficult calculations at higher order

Introduction

The initial condition grows to order α_{s} as $\alpha_{\mathrm{s}} \log ^{2} N \leftrightarrow \alpha_{\mathrm{s}}\left(\frac{\log (1-x)}{1-x}\right)_{+}$, as shown in ${ }^{1}$.

Introduction

The initial condition grows to order α_{s} as $\alpha_{\mathrm{s}} \log ^{2} N \leftrightarrow \alpha_{\mathrm{s}}\left(\frac{\log (1-x)}{1-x}\right)_{+}$, as shown in ${ }^{1}$.

It may appear counter intuitive because one would expect $\alpha_{\mathrm{s}} \log N \log \left(m^{2} / q^{2}\right)$.

Introduction

The initial condition grows to order α_{s} as $\alpha_{\mathrm{s}} \log ^{2} N \leftrightarrow \alpha_{\mathrm{s}}\left(\frac{\log (1-x)}{1-x}\right)_{+}$, as shown in ${ }^{1}$.

It may appear counter intuitive because one would expect $\alpha_{\mathrm{s}} \log N \log \left(m^{2} / q^{2}\right)$.

The coefficient functions (process-dependent) $C_{i} \sim \alpha_{s}^{k} \log ^{2 k} N$ may cancel this double logarithmic behaviour, but this is not always the case.

[^3]
Introduction

The initial condition grows to order α_{s} as $\alpha_{\mathrm{s}} \log ^{2} N \leftrightarrow \alpha_{\mathrm{s}}\left(\frac{\log (1-x)}{1-x}\right)_{+}$, as shown in ${ }^{1}$.

It may appear counter intuitive because one would expect $\alpha_{\mathrm{s}} \log N \log \left(m^{2} / q^{2}\right)$.

The coefficient functions (process-dependent) $C_{i} \sim \alpha_{s}^{k} \log ^{2 k} N$ may cancel this double logarithmic behaviour, but this is not always the case.
$\widetilde{\Gamma}(N, \xi)$ may have double logs \rightarrow soft (soft gluon radiation) and massless limit $\left(m^{2} \ll q^{2}\right)$ do not commute

[^4]Interplay between soft and massless limit in $H \rightarrow b \bar{b}$
We focus on a specific process in the massive scheme at NLO:

$$
h(q) \rightarrow b\left(p_{1}\right)+\bar{b}\left(p_{2}\right)+g(k), \quad \xi \equiv \frac{m^{2}}{q^{2}}
$$

then we compute the small mass (necessary for the FF approach) and the $x \equiv \frac{2 p_{1} \cdot q}{q^{2}} \rightarrow 1$ limit (soft emission).

Interplay between soft and massless limit in $H \rightarrow b \bar{b}$

$$
\begin{aligned}
& \lim _{\xi \rightarrow 0} \lim _{x \rightarrow 1} \frac{1}{\Gamma_{0}} \frac{\mathrm{~d} \Gamma}{\mathrm{~d} x}=-\frac{2 \alpha_{\mathrm{s}} C_{\mathrm{F}}}{\pi}\left[\frac{1+\log \xi}{1-x}+\ldots\right], \\
& \lim _{x \rightarrow 1} \lim _{\xi \rightarrow 0} \frac{1}{\Gamma_{0}} \frac{\mathrm{~d} \Gamma}{\mathrm{dx}}=-\frac{\alpha_{s} C_{F}}{\pi}\left[\frac{\log \xi}{1-x}+\frac{\log (1-x)}{1-x}+\frac{7}{4} \frac{1}{1-x}+\ldots\right],
\end{aligned}
$$

Interplay between soft and massless limit in $H \rightarrow b \bar{b}$

$$
\begin{aligned}
& \lim _{\xi \rightarrow 0} \lim _{x \rightarrow 1} \frac{1}{\Gamma_{0}} \frac{\mathrm{~d} \Gamma}{\mathrm{~d} x}=-\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi}\left[\frac{1+\log \xi}{1-x}+\ldots\right], \\
& \lim _{x \rightarrow 1} \lim _{\xi \rightarrow 0} \frac{1}{\Gamma_{0}} \frac{\mathrm{~d}}{\mathrm{\Gamma}} \mathrm{~d} x
\end{aligned}=-\frac{\alpha_{\mathrm{s}} C_{F}}{\pi}\left[\frac{\log \xi}{1-x}+\frac{\log (1-x)}{1-x}+\frac{7}{4} \frac{1}{1-x}+\ldots\right], ~ \$
$$

- In the first case we have a mass logarithm multiplied by a soft one $\left(\frac{1}{1-x} \leftrightarrow \log N\right)$
- In the second one we have an additional term which corresponds to a $\log ^{2} N$ in Mellin space
- The overall coefficient is halved

Interplay between soft and massless limit in $H \rightarrow b \bar{b}$

A measurment of x fixes the invariant mass $\left(p_{2}+k\right)^{2}=m_{g \bar{b}}^{2}$ thus screening one of the collinear (mass) logs.

Interplay between soft and massless limit in $H \rightarrow b \bar{b}$

A measurment of x fixes the invariant mass $\left(p_{2}+k\right)^{2}=m_{g \bar{b}}^{2}$ thus screening one of the collinear (mass) logs.
Furthermore:

$$
\int_{-1}^{1} \frac{1}{1-\beta_{1} \cos \theta} \operatorname{dcos} \theta \simeq \log \frac{x^{2}}{\xi(1-x)}, \quad \beta_{1}=\frac{x \sqrt{1-4 \xi / x^{2}}}{x-2 \xi}
$$

where β_{1} is the quark velocity in the $\overrightarrow{p_{2}}+\vec{k}=0$ frame

Interplay between soft and massless limit in $H \rightarrow b \bar{b}$

A measurment of x fixes the invariant mass $\left(p_{2}+k\right)^{2}=m_{g \bar{b}}^{2}$ thus screening one of the collinear (mass) logs.
Furthermore:

$$
\int_{-1}^{1} \frac{1}{1-\beta_{1} \cos \theta} d \cos \theta \simeq \log \frac{x^{2}}{\xi(1-x)}, \quad \beta_{1}=\frac{x \sqrt{1-4 \xi / x^{2}}}{x-2 \xi}
$$

where β_{1} is the quark velocity in the $\overrightarrow{p_{2}}+\vec{k}=0$ frame

We expect this behaviour to arise if look at a differential distribution which is directly related to the virtuality of one of the propagators, here $m_{g \bar{b}}^{2}$

Interplay between soft and massless limit in $H \rightarrow b \bar{b}$

Let us consider the differential distribution in $\bar{x}=\frac{\left(p_{1}+p_{2}\right)^{2}}{q^{2}} \rightarrow 1$ as $k \rightarrow 0$. Performing an explicit calculation:

$$
\begin{gathered}
\lim _{\xi \rightarrow 0} \lim _{\bar{x} \rightarrow 1} \frac{1}{\Gamma_{0}} \frac{\mathrm{~d} \Gamma}{\mathrm{~d} \bar{x}}=\lim _{\bar{x} \rightarrow 1} \lim _{\xi \rightarrow 0} \frac{1}{\Gamma_{0}} \frac{\mathrm{~d} \Gamma}{\mathrm{~d} \bar{x}}= \\
-\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \frac{1+\log \xi}{1-\bar{x}}+. .
\end{gathered}
$$

Interplay between soft and massless limit in $H \rightarrow b \bar{b}$

Let us consider the differential distribution in $\bar{x}=\frac{\left(p_{1}+p_{2}\right)^{2}}{q^{2}} \rightarrow 1$ as $k \rightarrow 0$. Performing an explicit calculation:

$$
\begin{gathered}
\lim _{\xi \rightarrow 0} \lim _{\bar{x} \rightarrow 1} \frac{1}{\Gamma_{0}} \frac{\mathrm{~d} \Gamma}{\mathrm{~d} \bar{x}}=\lim _{\bar{x} \rightarrow 1} \lim _{\xi \rightarrow 0} \frac{1}{\Gamma_{0}} \frac{\mathrm{~d} \Gamma}{\mathrm{~d} \bar{x}}= \\
-\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \frac{1+\log \xi}{1-\bar{x}}+. .,
\end{gathered}
$$

In this case we have only a single logarithmic enhancement \Longrightarrow
The limits commute!

Higgs Boson Production

We interested in checking the Higgs production $b\left(p_{1}\right)+\bar{b}\left(p_{2}\right) \rightarrow h(q)$, differential in $\tau=\frac{\left(p_{1}+p_{2}\right)^{2}}{q^{2}}$, which is not related to the virtuality of the propagators:

In this case we find that the limits commute:

$$
\begin{aligned}
& \lim _{\tau \rightarrow 1} \lim _{\xi \rightarrow 0} \frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \tau}=-\frac{2 \alpha_{\mathrm{s}} C_{\mathrm{F}}}{\pi} \frac{1+\log \xi}{1-\tau}+\ldots \\
& \lim _{\xi \rightarrow 0} \lim _{\tau \rightarrow 1} \frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \tau}=-\frac{2 \alpha_{\mathrm{s}} C_{\mathrm{F}}}{\pi} \frac{1+\log \xi}{1-\tau}+\ldots
\end{aligned}
$$

Higgs Boson DIS

Finally study the real emission correction to the scattering $b\left(p_{1}\right)+h(q) \rightarrow b\left(p_{2}\right)$, differential in $x_{\mathrm{B}}=\frac{-q^{2}}{2 p_{1} \cdot q}$ which is related to the virtuality $(p 2+k)^{2}$:

$\lim _{x_{\mathrm{B}} \rightarrow 1} \lim _{\xi \rightarrow 0} \frac{1}{\bar{\sigma}_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} x_{\mathrm{B}}}=-\frac{\alpha_{\mathrm{S}} C_{\mathrm{F}}}{\pi}\left[\frac{\log \xi}{1-x_{\mathrm{B}}}+\frac{\log \left(1-x_{\mathrm{B}}\right)}{1-x_{\mathrm{B}}}+\frac{7}{4} \frac{1}{1-x_{\mathrm{B}}}+\ldots\right]$,
$\lim _{\xi \rightarrow 0} \lim _{X_{B} \rightarrow 1} \frac{1}{\bar{\sigma}_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} x_{\mathrm{B}}}=-\frac{2 \alpha_{\mathrm{S}} C_{\mathrm{F}}}{\pi} \frac{1+\log \xi}{1-x_{\mathrm{B}}}+\ldots$
Same behaviour as in the decay.

Soft Resummation in the Massive Scheme

In the large N limit ${ }^{2}$:

$$
\widetilde{\Gamma}(N, \xi)=\underbrace{C\left(\xi, \alpha_{s}\right)}_{\text {Hard Function }} \underbrace{e^{-2 \int_{0}^{1} d x \frac{x^{N-1}-1}{1-x} \gamma_{\text {soft }}\left(\beta, \alpha_{s}\left((1-x)^{2} q^{2}\right)\right)},}_{\text {Soft Function }}
$$

$\gamma_{\text {soft }}$ is the massive anomalous soft dimension and we have at most single logs of N. We want to evaluate this expression at NLL.

[^5]
Soft Resummation in the Massive Scheme

In the large N limit ${ }^{2}$:

$$
\widetilde{\Gamma}(N, \xi)=\underbrace{C\left(\xi, \alpha_{\mathrm{s}}\right)}_{\text {Hard Function }} \underbrace{e^{-2 \int_{0}^{1} d x \frac{x^{N-1}-1}{1-x} \gamma_{\text {soft }}\left(\beta, \alpha_{\mathrm{s}}\left((1-x)^{2} q^{2}\right)\right)},, ~}_{\text {Soft Function }}
$$

$\gamma_{\text {soft }}$ is the massive anomalous soft dimension and we have at most single logs of N. We want to evaluate this expression at NLL.

We need:

- the two loops expression $\gamma_{\text {soft }}$:

[^6]
Soft Resummation in the Massive Scheme

In the large N limit ${ }^{2}$:

$$
\widetilde{\Gamma}(N, \xi)=\underbrace{C\left(\xi, \alpha_{\mathrm{s}}\right)}_{\text {Hard Function }} \underbrace{e^{-2 \int_{0}^{1} d x \frac{x^{N-1}-1}{1-x} \gamma_{\text {soft }}\left(\beta, \alpha_{\mathrm{s}}\left((1-x)^{2} q^{2}\right)\right)},, ~}_{\text {Soft Function }}
$$

$\gamma_{\text {soft }}$ is the massive anomalous soft dimension and we have at most single logs of N. We want to evaluate this expression at NLL.

We need:

- the two loops expression $\gamma_{\text {soft }}$:

$$
\gamma_{\mathrm{soft}}^{(0)}=C_{\mathrm{F}}\left(\frac{1+\beta^{2}}{2 \beta} \log \frac{1+\beta}{1-\beta}-1\right)
$$

while the second order was presented in ${ }^{3}$.

[^7]
Soft Resummation in the Massive Scheme

- The two loops expression of α_{s}

Soft Resummation in the Massive Scheme

- The two loops expression of α_{s}
- One loop expression of the hard function

$$
C\left(\xi, \alpha_{\mathrm{s}}\right)=1+\frac{\alpha_{\mathrm{s}}}{\pi} C^{(1)}(\xi)+\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)
$$

Soft Resummation in the Massive Scheme

- The two loops expression of α_{s}
- One loop expression of the hard function

$$
C\left(\xi, \alpha_{\mathrm{s}}\right)=1+\frac{\alpha_{\mathrm{s}}}{\pi} C^{(1)}(\xi)+\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)
$$

By definition:

$$
\frac{\alpha_{\mathrm{s}}}{\pi} C^{(1)}(\xi)=\lim _{N \rightarrow \infty}\left[\widetilde{\Gamma}(N, \xi)-\left(1+\frac{2 \alpha_{\mathrm{s}}}{\pi} \gamma_{\mathrm{soft}}^{(0)}(\beta) \log \frac{1}{\bar{N}}\right)\right]
$$

Soft Resummation in the Massive Scheme

- The two loops expression of α_{s}
- One loop expression of the hard function

$$
C\left(\xi, \alpha_{\mathrm{s}}\right)=1+\frac{\alpha_{\mathrm{s}}}{\pi} C^{(1)}(\xi)+\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)
$$

By definition:

$$
\frac{\alpha_{\mathrm{s}}}{\pi} C^{(1)}(\xi)=\lim _{N \rightarrow \infty}\left[\widetilde{\Gamma}(N, \xi)-\left(1+\frac{2 \alpha_{\mathrm{s}}}{\pi} \gamma_{\mathrm{soft}}^{(0)}(\beta) \log \frac{1}{\bar{N}}\right)\right]
$$

It receives contributions from the virtual corrections and from the end point of the one real emission diagrams.

Soft Resummation in the Massive Scheme

Writing the real emission differential decay rate as:

$$
\frac{\mathrm{d} \Gamma^{(R)}}{\mathrm{d} x}=\frac{\alpha_{\mathrm{s}} C_{\mathrm{F}}}{\pi} \Gamma_{0}^{(d)} \frac{f_{\varepsilon}\left(x, \xi, \frac{q^{2}}{\mu^{2}}\right)}{(1-x)^{1+2 \epsilon}}
$$

Soft Resummation in the Massive Scheme

Writing the real emission differential decay rate as:

$$
\frac{\mathrm{d} \Gamma^{(R)}}{\mathrm{d} x}=\frac{\alpha_{\mathrm{s}} C_{\mathrm{F}}}{\pi} \Gamma_{0}^{(d)} \frac{f_{\varepsilon}\left(x, \xi, \frac{q^{2}}{\mu^{2}}\right)}{(1-x)^{1+2 \epsilon}}
$$

The coefficient $C^{(1)}$ can be determined using the identity between distributions:

$$
\begin{aligned}
\frac{f_{\varepsilon}\left(x, \xi, \frac{q^{2}}{\mu^{2}}\right)}{(1-x)^{1+2 \varepsilon}}= & \frac{f_{\varepsilon}\left(x, \xi, \frac{q^{2}}{\mu^{2}}\right)+f_{\varepsilon}\left(1, \xi, \frac{q^{2}}{\mu^{2}}\right)-f_{\varepsilon}\left(1, \xi, \frac{q^{2}}{\mu^{2}}\right)}{(1-x)^{1+2 \varepsilon}}= \\
& \delta(1-x)\left[-\frac{f_{0}(1, \xi)}{2 \varepsilon}+f_{0}(1, \xi) \log (1-2 \sqrt{\xi})\right. \\
& \left.-\left.\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} \varepsilon} f_{\varepsilon}\left(1, \xi, \frac{q^{2}}{\mu^{2}}\right)\right|_{\varepsilon=0}\right]+\frac{f_{0}(x, \xi)}{(1-x)_{+}}+\mathcal{O}(\varepsilon) .
\end{aligned}
$$

Soft Resummation in the Massive Scheme

$$
\begin{aligned}
C^{(1)}(\xi) & =\frac{C_{\mathrm{F}}}{2}\left\{-2 \frac{\gamma_{\mathrm{soft}}^{(0)}(\beta)}{C_{\mathrm{F}}}\left[-2 \log \left(1-\sqrt{1-\beta^{2}}\right)+\log \frac{m^{2}}{q^{2}}\right.\right. \\
& \left.+\log \left(\frac{1-\beta^{2}}{4}\right)+1\right]-2+2 L(\beta)\left(\frac{1-\beta^{2}}{\beta}\right) \\
& +\frac{1+\beta^{2}}{\beta}\left[\frac{1}{2} L(\beta) \log \left(\frac{1-\beta^{2}}{4}\right)+2 L(\beta)(1-\log \beta)\right. \\
& +2 \operatorname{Li}_{2}\left(\frac{1-\beta}{1+\beta}\right)+L(\beta)^{2}+L(\beta) \log \frac{1-\beta}{2}+\frac{2}{3} \pi^{2} \\
& \left.\left.-\frac{1}{2}\left(\operatorname{Li}_{2}\left(\frac{4 \beta}{(1+\beta)^{2}}\right)-\operatorname{Li}_{2}\left(\frac{-4 \beta}{(1-\beta)^{2}}\right)\right)\right]\right\}
\end{aligned}
$$

Soft Resummation in the Massive Scheme

We note that the non commutativity of the soft and massless limits has consequences for the resummed expression in the massive scheme:

Soft Resummation in the Massive Scheme

We note that the non commutativity of the soft and massless limits has consequences for the resummed expression in the massive scheme:

In the small ξ limit we find:

$$
\alpha_{\mathbf{s}} C^{(1)}(\xi)=\alpha_{\mathbf{s}} C_{\mathbf{F}}\left(\frac{1}{2} \log ^{2} \xi+\log \xi+\mathcal{O}\left(\xi^{0}\right)\right)
$$

Double log of the mass in disagreement with DGLAP.

Soft Resummation in the Massive Scheme

We note that the non commutativity of the soft and massless limits has consequences for the resummed expression in the massive scheme:

In the small ξ limit we find:

$$
\alpha_{\mathbf{s}} C^{(1)}(\xi)=\alpha_{\mathbf{s}} C_{\mathbf{F}}\left(\frac{1}{2} \log ^{2} \xi+\log \xi+\mathcal{O}\left(\xi^{0}\right)\right)
$$

Double log of the mass in disagreement with DGLAP. What is the problem?

Soft Resummation in the Massive Scheme

$$
f_{\varepsilon}\left(x, \xi, \frac{q^{2}}{\mu^{2}}\right)=f_{\varepsilon}\left(x, \xi, \frac{q^{2}}{\mu^{2}}\right)+\quad f_{\varepsilon}\left(1, \xi, \frac{q^{2}}{\mu^{2}}\right)-f_{\varepsilon}\left(1, \xi, \frac{q^{2}}{\mu^{2}}\right)
$$

This relation can be expanded only if ξ is finite

$$
f_{0}(x, \xi) \underset{\xi \rightarrow 0}{\longrightarrow} \log (1-x)
$$

Soft Resummation in the Massive Scheme

$$
f_{\varepsilon}\left(x, \xi, \frac{q^{2}}{\mu^{2}}\right)=f_{\varepsilon}\left(x, \xi, \frac{q^{2}}{\mu^{2}}\right)+\quad f_{\varepsilon}\left(1, \xi, \frac{q^{2}}{\mu^{2}}\right)-f_{\varepsilon}\left(1, \xi, \frac{q^{2}}{\mu^{2}}\right)
$$

This relation can be expanded only if ξ is finite

$$
f_{0}(x, \xi) \underset{\xi \rightarrow 0}{\longrightarrow} \log (1-x)
$$

Non commutativity of the limits

The distribution identity does not hold when $\xi \rightarrow 0$ because in this limit $f_{0}(1, \xi)$ is not defined.

Soft Resummation in the Massive Scheme

Double mass logs in the soft limit of the massive scheme \Longleftrightarrow Double soft logs in the fragmentation function approach

Soft Resummation in the Massive Scheme

Double mass logs in the soft limit of the massive scheme \Longleftrightarrow Double soft logs in the fragmentation function approach

A well defined expression in the massless limit be be obtained rewriting the differential decay rate as:

$$
\frac{1}{\Gamma_{0}} \frac{\mathrm{~d} \Gamma}{\mathrm{~d} x}=\delta(1-x)+\frac{\alpha_{\mathrm{s}}}{\pi}\left[C_{\mathrm{F}}\left(\frac{f_{0}(x, \xi)}{1-x}\right)_{+}+A(\xi) \delta(1-x)\right],
$$

The delta coefficient has an expected behaviour for $\xi \rightarrow 0$

$$
A(\xi)=C_{\mathrm{F}} \frac{3}{2} \log \xi+\mathcal{O}\left(\xi^{0}\right)
$$

in agreement with DGLAP evolution.

Conclusions and Outlook

We have considered observables with different kinematics focusing on the differential distributions in the massive scheme.

Conclusions and Outlook

We have considered observables with different kinematics focusing on the differential distributions in the massive scheme.

- Soft and massless do not always commute, in particular in the massless limit the structure of the distributions can radically change:
\Longrightarrow presence of double logs of N

Conclusions and Outlook

We have considered observables with different kinematics focusing on the differential distributions in the massive scheme.

- Soft and massless do not always commute, in particular in the massless limit the structure of the distributions can radically change: \Longrightarrow presence of double logs of N
- The origin of this particular behaviour can be traced back to the interplay between the observable we are computing and the fermionic propagators in the scattering amplitudes.

Conclusions and Outlook

Finally, we have focused on the massive scheme resummation of the process $H \rightarrow b \bar{b}$ in the large N limit.

Conclusions and Outlook

Finally, we have focused on the massive scheme resummation of the process $H \rightarrow b \bar{b}$ in the large N limit.

- We have found that within this approach double logarithms of the mass may appear.

Conclusions and Outlook

Finally, we have focused on the massive scheme resummation of the process $H \rightarrow b \bar{b}$ in the large N limit.

- We have found that within this approach double logarithms of the mass may appear.
- We have traced back the origin of the disagreement with the DGLAP picture in the non commutativity between the large N and small mass limit

Conclusions and Outlook

Possible Outlook

- We have shown that the logarithmic structure of the two approaches is different, it would be interesting to study numerical differences at collider energies.

Conclusions and Outlook

Possible Outlook

- We have shown that the logarithmic structure of the two approaches is different, it would be interesting to study numerical differences at collider energies.
- In the context of the heavy quark calculations one combines the two schemes in order to obtain better predictions(e.g. FONLL). However in the case of the soft gluon resummation the merging is far from trivial. An all-order matching procedure that would allow to combine soft resummation in the massive and massless scheme is left to a future work.

Thanks for your attention!

[^0]: ${ }^{a}$ B. Mele and P. Nason, Nucl. Phys. B 361 (1991) 626-644 and K. Melnikov and A. Mitov,Phys. Rev. D 70 (2004) 034027, [hep-ph/0404143].
 ${ }^{\text {b M. Cacciari and S. Catani,Phys. B } 617 \text { (2001) 253290, [hep-ph/0107138] and F. Maltoni, G. Ridolfi, M. Ubiali, and M. }}$ Zaro, arXiv:2207.10038.

[^1]: ${ }^{a}$ B. Mele and P. Nason, Nucl. Phys. B 361 (1991) 626-644 and K. Melnikov and A. Mitov,Phys. Rev. D 70 (2004) 034027, [hep-ph/0404143].
 ${ }^{\text {b }}$ M. Cacciari and S. Catani,Phys. B 617 (2001) 253290, [hep-ph/0107138] and F. Maltoni, G. Ridolfi, M. Ubiali, and M. Zaro, arXiv:2207.10038.

[^2]: ${ }^{a}$ B. Mele and P. Nason, Nucl. Phys. B 361 (1991) 626-644 and K. Melnikov and A. Mitov,Phys. Rev. D 70 (2004) 034027, [hep-ph/0404143].
 ${ }^{\text {b }}$ M. Cacciari and S. Catani,Phys. B 617 (2001) 253290, [hep-ph/0107138] and F. Maltoni, G. Ridolfi, M. Ubiali, and M. Zaro, arXiv:2207.10038.

[^3]: ${ }^{1}$ B. Mele and P. Nason, Nucl. Phys. B 361 (1991) 626-644

[^4]: ${ }^{1}$ B. Mele and P. Nason, Nucl. Phys. B 361 (1991) 626-644

[^5]: ${ }^{2}$ Eric Laenen, Gianluca Oderda, and George F. Sterman,Phys. Lett. B 438 (1998) 173-183, [hep-ph/9806467].
 ${ }^{3}$ Nikolaos Kidonakis,Phys. Rev. Lett. 102 (2009) 232003, [arXiv:0903.2561].

[^6]: ${ }^{2}$ Eric Laenen, Gianluca Oderda, and George F. Sterman,Phys. Lett. B 438 (1998) 173-183, [hep-ph/9806467].
 ${ }^{3}$ Nikolaos Kidonakis,Phys. Rev. Lett. 102 (2009) 232003, [arXiv:0903.2561].

[^7]: ${ }^{2}$ Eric Laenen, Gianluca Oderda, and George F. Sterman,Phys. Lett. B 438 (1998) 173-183, [hep-ph/9806467].
 ${ }^{3}$ Nikolaos Kidonakis,Phys. Rev. Lett. 102 (2009) 232003, [arXiv:0903.2561].

