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Introduction

From the point of view of the strong interactions, flavours are
distinguished only by their mass: Heavy flavour =⇒ m � ΛQCD

Heavy quark processes can be computed perturbatively and two
approaches can be employed:

Fragmentation Function
Approach
The quarks mass is used as a
regulator of the collinear
divergences.

Massive Scheme
Approach
Full mass dependence taken
into account.
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Introduction

In the fragmentation function approach

1
Γ0

dΓ

dx =
∑

i

∫ 1

x

dz
z Ci

(
x
z , αs,

µ2

q2

)
Di(z, µ2,m2) +O

(
m2

q2

)
−−−−−→
N−space

Γ̃(N, ξ) =
∑

i
C̃i

(
N, αs,

µ2

q2

)
D̃i

(
N, αs,m2)+O

(
m2

q2

)
.

The fragmentation functions Di (process independent) fulfil the DGLAP
evolution equations in N-space:

µ2 d

dµ2 D̃i(N, µ2,m2) =
∑

j
γij

(
N, αs(µ

2)
)

D̃j(N, µ2,m2),
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Introduction
Fragmentation Function Approach

Fragmentation function at the initial scale µ ∼ m computable in
perturbation theory up to corrections of order O(m2/q2) in a.

Resummation of the soft logarithms that are present in the initial
condition b

Powers of log m2

q2 resummed to all orders by solving the evolution
equation

aB. Mele and P. Nason,Nucl. Phys. B 361 (1991) 626-644 and K. Melnikov and A. Mitov,Phys. Rev. D 70 (2004) 034027,
[hep-ph/0404143].

bM. Cacciari and S. Catani,Phys. B 617 (2001) 253290, [hep-ph/0107138] and F. Maltoni, G. Ridolfi, M. Ubiali, and M.
Zaro, arXiv:2207.10038.

Massive Scheme Approach
Kinematics treated correctly but logm2/q2 are not resummed
Difficult calculations at higher order
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Introduction

The initial condition grows to order αs as αs log
2 N ↔ αs

(
log(1−x)

1−x

)
+
, as

shown in 1.

It may appear counter intuitive because one would expect
αs logN log

(
m2/q2).

The coefficient functions (process-dependent) Ci ∼ αk
s log

2k N may cancel
this double logarithmic behaviour, but this is not always the case.

Γ̃(N, ξ) may have double logs→ soft (soft gluon radiation) and massless
limit (m2 � q2) do not commute

1B. Mele and P. Nason,Nucl. Phys. B 361 (1991) 626-644
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Interplay between soft and massless limit in H → bb̄
We focus on a specific process in the massive scheme at NLO:

h(q) → b(p1) + b̄(p2) + g(k), ξ ≡ m2

q2

h(q)

b(p1)

b̄(p2)

g(k) h(q)

b(p1)

b̄(p2)

g(k)

then we compute the small mass (necessary for the FF approach) and the
x ≡ 2p1·q

q2 → 1 limit (soft emission).

A.Ghira (UNIGE,INFN) 7 / 23



Interplay between soft and massless limit in H → bb̄

lim
ξ→0

lim
x→1

1
Γ0

dΓ

dx = −2αsCF
π

[
1+ log ξ

1− x + ...

]
,

lim
x→1

lim
ξ→0

1
Γ0

dΓ

dx = −αsCF
π

[
log ξ

1− x +
log(1− x)

1− x +
7
4

1
1− x + ...

]
,

In the first case we have a mass logarithm multiplied by a soft one
( 1

1−x ↔ logN)
In the second one we have an additional term which corresponds to a
log2 N in Mellin space
The overall coefficient is halved
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Interplay between soft and massless limit in H → bb̄

A measurment of x fixes the invariant mass (p2 + k)2 = m2
gb̄ thus

screening one of the collinear (mass) logs.

Furthermore:∫ 1

−1

1
1− β1 cos θ

dcos θ ' log
x2

ξ(1− x) , β1 =
x
√
1− 4ξ/x2

x − 2ξ ,

where β1 is the quark velocity in the ~p2 + ~k = 0 frame

We expect this behaviour to arise if look at a differential distribution which
is directly related to the virtuality of one of the propagators, here m2

gb̄
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Interplay between soft and massless limit in H → bb̄

Let us consider the differential distribution in x̄ = (p1+p2)2

q2 → 1 as k → 0.
Performing an explicit calculation:

lim
ξ→0

lim
x̄→1

1
Γ0

dΓ

dx̄ = lim
x̄→1

lim
ξ→0

1
Γ0

dΓ

dx̄ =

−2αsCF
π

1+ log ξ

1− x̄ + ..,

In this case we have only a single logarithmic enhancement =⇒
The limits commute!
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Higgs Boson Production
We interested in checking the Higgs production b(p1) + b̄(p2) → h(q),
differential in τ = (p1+p2)2

q2 , which is not related to the virtuality of the
propagators:

h(q)

b(p1)

b̄(p2)

g(k)
h(q)

b(p1)

b̄(p2)

g(k)

In this case we find that the limits commute:

lim
τ→1

lim
ξ→0

1
σ0

dσ

dτ
= −2αsCF

π

1+ log ξ

1− τ
+ ...

lim
ξ→0

lim
τ→1

1
σ0

dσ

dτ
= −2αsCF

π

1+ log ξ

1− τ
+ ...
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Higgs Boson DIS
Finally study the real emission correction to the scattering
b(p1) + h(q) → b(p2), differential in xB = −q2

2p1·q which is related to the
virtuality (p2+ k)2 :

h(q)
b(p2)

b(p1)

g(k)
h(q)

b(p2)

b(p1)

g(k)

lim
xB→1

lim
ξ→0

1
σ̄0

dσ

dxB
= −αsCF

π

[
log ξ

1− xB
+

log(1− xB)

1− xB
+

7
4

1
1− xB

+ ...

]
,

lim
ξ→0

lim
xB→1

1
σ̄0

dσ

dxB
= −2αsCF

π

1+ log ξ

1− xB
+ ....

Same behaviour as in the decay.
A.Ghira (UNIGE,INFN) 12 / 23



Soft Resummation in the Massive Scheme
In the large N limit 2:

Γ̃(N, ξ) = C(ξ, αs)︸ ︷︷ ︸
Hard Function

e−2
∫ 1

0 dx xN−1−1
1−x γsoft

(
β,αs

(
(1−x)2q2))︸ ︷︷ ︸

Soft Function

,

γsoft is the massive anomalous soft dimension and we have at most single
logs of N. We want to evaluate this expression at NLL.

We need:
the two loops expression γsoft:

γ
(0)
soft = CF

(
1+ β2

2β log
1+ β

1− β
− 1

)
.

while the second order was presented in 3.

2Eric Laenen, Gianluca Oderda, and George F. Sterman,Phys. Lett. B 438 (1998) 173-183, [hep-ph/9806467].
3Nikolaos Kidonakis,Phys. Rev. Lett. 102 (2009) 232003, [arXiv:0903.2561].
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Soft Resummation in the Massive Scheme

The two loops expression of αs

One loop expression of the hard function

C(ξ, αs) = 1+ αs
π

C (1)(ξ) +O
(
α2

s
)

By definition:

αs
π

C (1)(ξ) = lim
N→∞

[
Γ̃(N, ξ)−

(
1+ 2αs

π
γ
(0)
soft(β) log

1
N̄

)]
,

It receives contributions from the virtual corrections and from the end
point of the one real emission diagrams.
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Soft Resummation in the Massive Scheme
Writing the real emission differential decay rate as:

dΓ(R)

dx =
αsCF
π

Γ
(d)
0

fε
(

x , ξ, q2

µ2

)
(1− x)1+2ε .

The coefficient C (1) can be determined using the identity between
distributions:

fε(x , ξ, q2

µ2 )

(1− x)1+2ε =
fε
(

x , ξ, q2

µ2

)
+ fε

(
1, ξ, q2

µ2

)
− fε

(
1, ξ, q2

µ2

)
(1− x)1+2ε =

δ(1− x)
[
− f0(1, ξ)

2ε + f0(1, ξ) log(1− 2
√

ξ)

− 1
2

d

dε
fε
(
1, ξ, q2

µ2

) ∣∣∣
ε=0

]
+

f0(x , ξ)
(1− x)+

+O(ε) .
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Soft Resummation in the Massive Scheme

C (1)(ξ) =
CF
2

{
− 2

γ
(0)
soft(β)

CF

[
− 2 log

(
1−

√
1− β2

)
+ log

m2

q2

+ log

(
1− β2

4

)
+ 1

]
− 2+ 2L(β)

(
1− β2

β

)

+
1+ β2

β

[
1
2L(β) log

(
1− β2

4

)
+ 2L(β)(1− log β)

+ 2Li2
(
1− β

1+ β

)
+ L(β)2 + L(β) log 1− β

2 +
2
3π

2

− 1
2

(
Li2

(
4β

(1+ β)2

)
− Li2

(
−4β

(1− β)2

))]}
,
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Soft Resummation in the Massive Scheme

We note that the non commutativity of the soft and massless limits has
consequences for the resummed expression in the massive scheme:

In the small ξ limit we find:

αsC (1)(ξ) = αsCF

(
1
2 log

2 ξ + log ξ +O(ξ0)

)
Double log of the mass in disagreement with DGLAP.
What is the problem?
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Soft Resummation in the Massive Scheme

fε(x , ξ,
q2

µ2 ) = fε
(

x , ξ, q2

µ2

)
+ fε

(
1, ξ, q2

µ2

)
− fε

(
1, ξ, q2

µ2

)

This relation can be expanded only if ξ is finite

f0(x , ξ) −−−→
ξ→0

log (1− x)

Non commutativity of the limits
The distribution identity does not hold when ξ → 0 because in this limit
f0(1, ξ) is not defined.
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Soft Resummation in the Massive Scheme

Double mass logs in the soft limit of the massive scheme ⇐⇒ Double
soft logs in the fragmentation function approach

A well defined expression in the massless limit be be obtained rewriting the
differential decay rate as:

1
Γ0

dΓ

dx = δ(1− x) + αs
π

[
CF

(
f0(x , ξ)
1− x

)
+

+ A(ξ) δ(1− x)
]
,

The delta coefficient has an expected behaviour for ξ → 0

A(ξ) = CF
3
2 log ξ +O(ξ0),

in agreement with DGLAP evolution.
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Conclusions and Outlook

We have considered observables with different kinematics focusing on the
differential distributions in the massive scheme.

Soft and massless do not always commute, in particular in the
massless limit the structure of the distributions can radically change:
=⇒ presence of double logs of N
The origin of this particular behaviour can be traced back to the
interplay between the observable we are computing and the fermionic
propagators in the scattering amplitudes.
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Conclusions and Outlook

Finally, we have focused on the massive scheme resummation of the
process H → bb̄ in the large N limit.

We have found that within this approach double logarithms of the
mass may appear.

We have traced back the origin of the disagreement with the DGLAP
picture in the non commutativity between the large N and small mass
limit
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Conclusions and Outlook

Possible Outlook
We have shown that the logarithmic structure of the two approaches
is different, it would be interesting to study numerical differences at
collider energies.

In the context of the heavy quark calculations one combines the two
schemes in order to obtain better predictions(e.g. FONLL). However
in the case of the soft gluon resummation the merging is far from
trivial. An all-order matching procedure that would allow to combine
soft resummation in the massive and massless scheme is left to a
future work.
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Thanks for your attention!
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