Phenomenology of small-x resummation

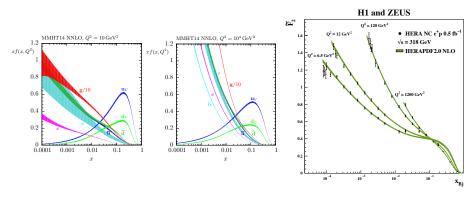
Marco Bonvini

INFN, Rome 1 unit

LFC22

Strong interactions from QCD to new strong dynamics at LHC and Future Colliders

30 Aug 2022, ECT* Trento


Sezione di ROMA

QCD collinear factorization: $y = Y - \frac{1}{2} \log \frac{x_1}{x_2}$ $\frac{d\sigma}{dQ^2 dY dp_t \dots} = \sum_{i,j=g,q} \int_{\tau}^{1} dx_1 \int_{\tau}^{1} dx_2 f_i(x_1, Q^2) f_j(x_2, Q^2) C_{ij}\left(\frac{\tau}{x_1 x_2}, y, p_t, \dots, \alpha_s\right)$ $p_i \int_{\text{proton}}^{f_i(x_1, Q^2)} x_i p_i \int_{\text{parton } i}^{C_{ij}(z, \alpha_s)} x_2 p_2 \int_{\text{parton } j}^{f_j(x_2, Q^2)} \frac{p_2}{p_{\text{proton}}}$

 $x_1, x_2, rac{ au}{x_1 x_2}$ can get as small as $au = rac{Q^2}{s}$ (note: typical values $x_1, x_2 \sim \sqrt{ au}$)

au	Higgs	Z, W	low mass DY	$car{c}$
LHC (13 TeV)	10^{-4}	$5 imes 10^{-5}$	$\sim 10^{-6}$	$\sim 10^{-7}$
FCC-hh (100 TeV)	$1.5 imes10^{-6}$	$8 imes 10^{-7}$	$\sim 10^{-8}$	$\sim 10^{-9}$

FCC-hh probes roughly two orders of magnitude smaller $m{x}$

Gluon and sea-quark PDFs grow at small $x \Rightarrow$ cross sections grow

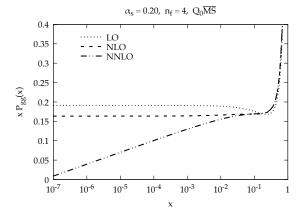
At sufficiently small x, the density of partons becomes too high for linear evolution to be still valid \Rightarrow saturation

Moreover, at small x the presence of $\log \frac{1}{x}$ contributions in perturbative coefficients make fixed-order results unreliable \Rightarrow small-x resummation

Small-x logarithms in the context of collinear factorization

$$\frac{d\sigma}{dQ^2 dY dp_t...} = \sum_{i,j=g,q} \int_{\tau}^{1} dx_1 \int_{\tau}^{1} dx_2 f_i(x_1,Q^2) f_j(x_2,Q^2) C_{ij}\left(\frac{\tau}{x_1 x_2}, y, p_t, ..., \alpha_s\right)$$

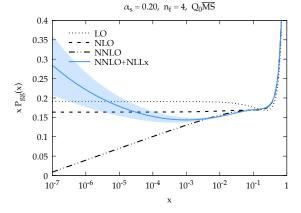
$$\begin{array}{ll} \mathsf{DGLAP \ evolution:} & \mu^2 \frac{d}{d\mu^2} f_i(x,\mu^2) = \int_x^1 \frac{dz}{z} \, P_{ij}(z,\alpha_s(\mu^2)) \, f_j\!\left(\frac{x}{z},\mu^2\right) \\ \mathsf{Heavy-quark \ matching:} & f_i^{[n_f+1]}(x,\mu_m^2) = \int_x^1 \frac{dz}{z} \, A_{ij}(z,\alpha_s(\mu_m^2)) \, f_j^{[n_f]}\!\left(\frac{x}{z},\mu_m^2\right) \end{array}$$


Any object with a perturbative expansion can exhibit a logarithmic enhancement:

- observable: coefficient functions $C(x,y,p_t,...,lpha_s)$
- ullet evolution: splitting functions $P(x,lpha_s)$ and matching conditions $A(x,lpha_s)$

Small-
$$x$$
 logarithms: single logs $\alpha_s^n \frac{1}{x} \log^k \frac{1}{x} \quad (0 \le k \le n-1)$
When $\alpha_s \log \frac{1}{x} \sim 1$ perturbativity is spoiled \rightarrow all-order resummation needed
In $\overline{\text{MS}}$ and related schemes, both coefficient $C(x, \alpha_s)$ and splitting $P(x, \alpha_s)$ functions, and also matching conditions $A(x, \alpha_s)$, are logarithmically enhanced at small x (in the singlet sector)

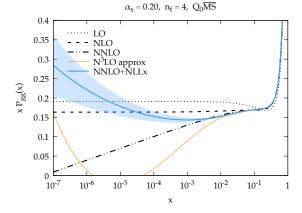
Small-x logarithms in gluon-gluon splitting function


 $P_{gg}(x, \alpha_s)$ splitting function at fixed order

Logarithms start to grow for $x \lesssim 10^{-2} ext{ }$ perturbative instability for $x \lesssim 10^{-3}$ (for $Q \sim 5 ext{GeV}$)

Small-x logarithms in gluon-gluon splitting function

 $P_{gg}(x, \alpha_s)$ splitting function at fixed order

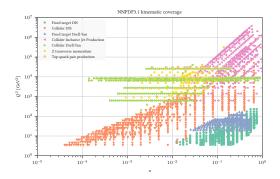

Logarithms start to grow for $x \lesssim 10^{-2} o$ perturbative instability for $x \lesssim 10^{-3}$ (for $Q \sim 5$ GeV)

Resummation obtained with the HELL public code

[MB,Marzani,Peraro 1607.02153] [MB,Marzani,Muselli 1708.07510] [MB,Marzani 1805.06460]

Small-x logarithms in gluon-gluon splitting function

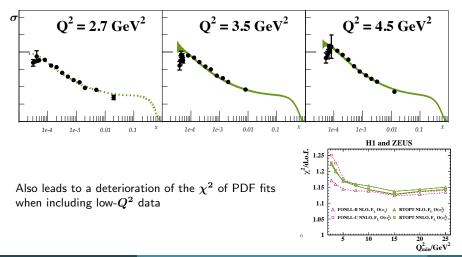
 $P_{gg}(x, \alpha_s)$ splitting function at fixed order

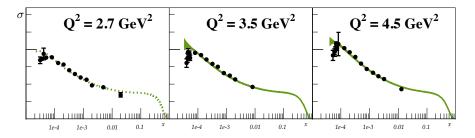


Logarithms start to grow for $x\lesssim 10^{-2}$ — perturbative instability for $x\lesssim 10^{-3}$ (for $Q\sim$ 5GeV)

N³LO splitting functions are much more unstable at small $x \rightarrow$ need resummation!

Do we experience the need for small-x resummation?


Hint: look at PDF fits...


Low x at HERA

Deep-inelastic scattering (DIS) data from HERA extend down to $x\sim3 imes10^{-5}$ in the "perturbative region" $Q^2>2{
m GeV}^2$

Tension between HERA data at low Q^2 and low x with fixed-order theory

Low x at HERA: what's the origin of the discrepancy?

These data are at low x but also at low Q^2

Possible explanations:

Higher twist contributions

[Abt,Cooper-Sarkar,Foster,Myronenko,Wichmann,Wing 1604.02299]

Small-x resummation

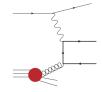
[Ball,Bertone,MB,Marzani,Rojo,Rottoli 1710.05935] [xFitter+MB 1802.00064]

Maybe saturation already?

The role of the longitudinal structure function

The HERA data are reduced cross sections, given by

$$\sigma_{r,\mathrm{NC}} = F_2(x,Q^2) - rac{y^2}{1+(1-y)^2} F_L(x,Q^2)$$
 $y = rac{Q^2}{xs}$


in terms of the structure functions F_2, F_L

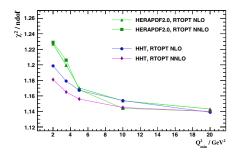
The turnover can be explained by a larger F_L , contributing mostly at small xThe other option, a turnover in F_2 , seems unlikely (requires peculiar PDF shape)

Note that $F_L = \mathcal{O}(\alpha_s)$, and it is gluon dominated

It plays a key role in DIS at small x

 \Rightarrow having good measurements of F_L is very important! Future ep colliders (LHeC, FCC-eh) could provide precise F_L measurements!!

Higher twist explanation of HERA low-x data

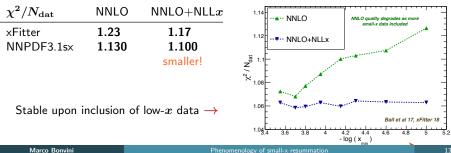

$$F_L
ightarrow F_L imes \left(1 + rac{A_L}{Q^2}
ight)$$

with A_L fitted from data

Improved description, but χ^2 still grows

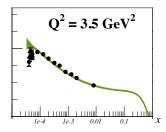
PDFs unaffected

 $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$



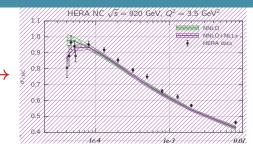
[Abt,Cooper-Sarkar,Foster,Myronenko,Wichmann,Wing 1604.02299]

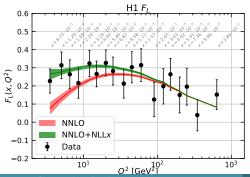
<code>HELL</code> \rightarrow makes possible a PDF fit with small-x resummation


NNPDF3.1sx [1710.05935]	×Fitter [1802.00064, see also 1902.11125]
NeuralNet parametrization of PDFs	polynomial paramterization
MonteCarlo uncertainty	Hessian uncertainty
charm PDF is fitted	charm PDF perturbatively generated
DIS+tevatron+LHC (~ 4000 datapoints)	only HERA data (~ 1200 datapoints)
NLO, NLO+NLLx, NNLO, NNLO+NLLx	NNLO, NNLO+NLLx

The quality of the fit improves substantially including small-x resummation

NNPDF3.1sx, HERA inclusive structure functions


Improved description of low-x HERA data



Improved description of the data, turnover well reproduced

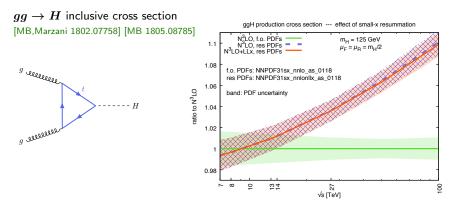
The better description mostly comes from a larger resummed F_L

Note: no extra parameters in the fit, just improved theory

Marco Bonvini

Phenomenology of small-x resummation

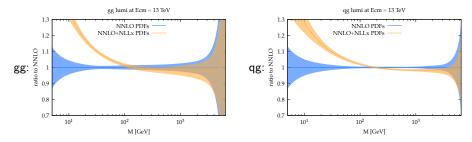
Impact of small-x resummation on PDFs: the gluon


Small-x resummation mostly affects the gluon PDF (and the total quark singlet)

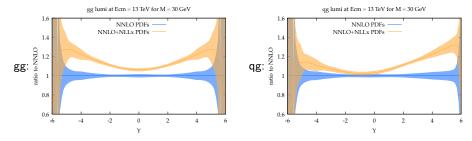
Dramatic effect of resummation on the gluon PDF at $x \lesssim 10^{-3}$

Persists at higher energy scales \Rightarrow impact for LHC and FCC-hh phenomenology

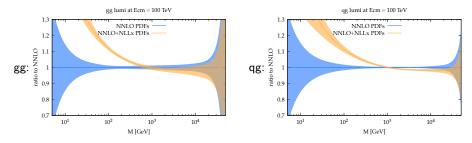
Note that the gluon PDF obtained with small-x resummation grows faster \rightarrow saturation at some point!

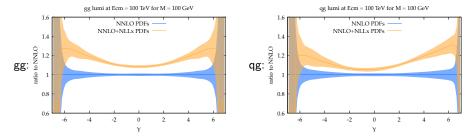


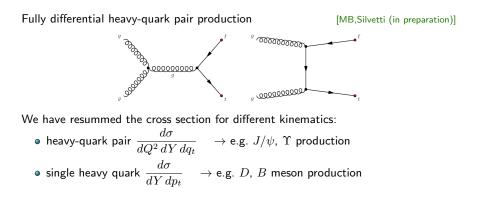
ggH cross section at FCC-hh $\sim 10\%$ larger than expected! At LHC +1% effect; larger effect expected at differential level


Other recent works on Higgs production

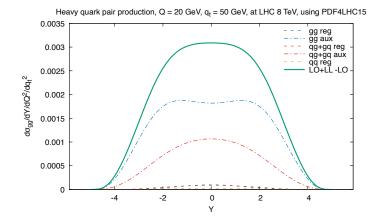
[Hentschinski,Kutak,vanHameren 2011.03193] [Celiberto,Ivanov,Mohammed,Papa 2008.00501]


Parton luminosities at LHC

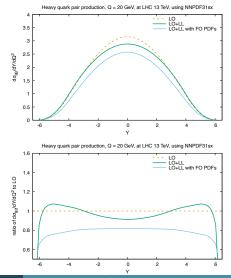

Difference more pronounced in differential distributions at large rapidity


Parton luminosities at FCC-hh

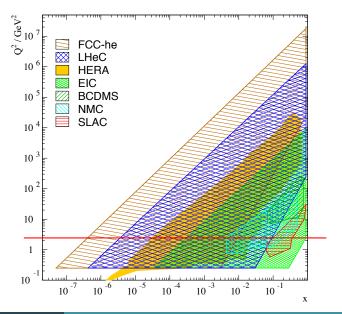
Large effects also at the EW scale, especially at large rapidities


Heavy-quark pair production at LHC

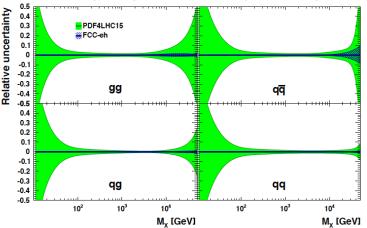
Small-x resummation crucial for charm and bottom production


- sensitive to very small $x \rightarrow \text{constrain the PDFs}$ [Gauld, Rojo 1610.09373]
- key process at a forward physics facility (FPF) [Feng et al 2203.05090]

Hadron-level purely-resummed results for $\frac{d\sigma}{dQ^2\,dY\,dq_t}$ (pair kinematics)



Heavy-quark pair production at LHC: results


Hadron-level resummed results for ${d\sigma\over dQ^2\,dY}$ (pair kinematics)

What can we gain from future ep colliders?

The role of FCC-eh (and LHeC): impact on parton luminosities for FCC-hh

parton-parton luminosities ($\sqrt{s} = 100 \text{ TeV}$)

Dramatic reduction of PDF uncertainties with FCC-eh, especially at low and high x

Note: all PDFs from a single experiment!

Conclusions

Interest in small x:

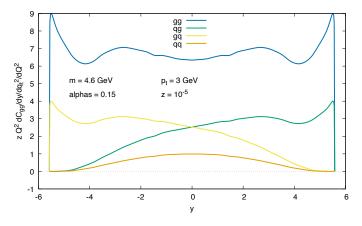
- opportunity: exploring and understanding new regimes of QCD
- tool: fundamental ingredient for FCC-hh (and low- Q^2 LHC) phenomenology

QCD at small x:

- small-x resummation (BFKL regime)
- non-linear behaviour (saturation regime)
- crucial to understand how QCD works at small x to provide reliable predictions for present and future pp colliders

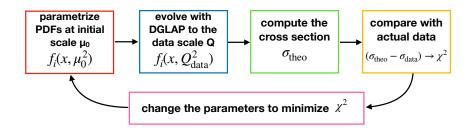
Where we are and where we go:

- resummation of evolution, inclusive cross sections (DIS, Higgs, ...) ✓
- resummation of differential distributions $(Q\bar{Q}\checkmark, Drell-Yan \text{ ongoing}, ...)$
- extension beyond LLx (attempts ongoing)


A word on future colliders:

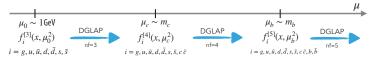
• ep colliders (LHeC, FCC-eh) are crucial for exploring QCD at small x and to provide precise PDFs for pp colliders \rightarrow let's consider them seriously!

Backup slides

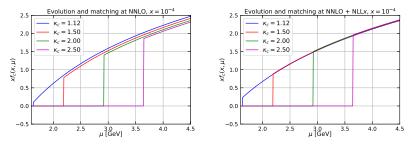

Heavy-quark pair production at LHC: results

Parton-level purely-resummed results for $\frac{d\sigma}{dY\,dp_t}$ (single-quark kinematics)

Preliminary!!


Strategy: fit $f_i(x, \mu_0^2)$ by comparison with (many) data

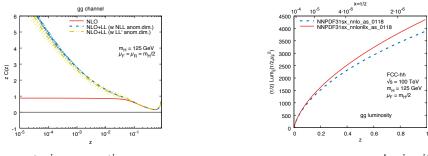
Quality of extracted PDFs depends on the accuracy of the experimental data and of the theoretical input


Variable flavour number scheme: charm matching conditions

The number n_f of "active" flavours changes during the evolution (factorization scheme choice to resum large collinear mass logarithms from heavy quark pair production)

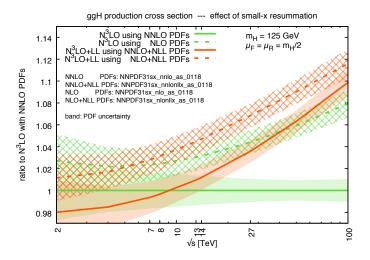
Matching relation between PDFs in schemes with different n_f

 $f_i^{[n_f+1]}(\mu^2) = \sum A_{ij}(m^2/\mu^2) \otimes f_i^{[n_f]}(\mu^2) \qquad A_{ij} = \text{perturbative matching coefficients}$ j=light


The perturbatively generated charm PDF is much less dependent on the (unphysical) matching scale when small-x resummation is included!

Why is the effect of resummation mostly driven by the PDFs?

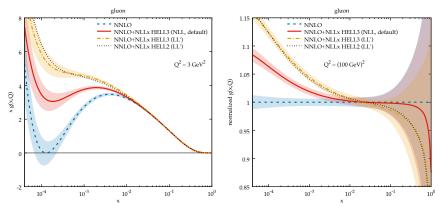
$$\frac{d\sigma}{dQ^2 dY...} = \int_{\tau}^{1} \frac{dz}{z} \int d\hat{y} f_i \left(\sqrt{\frac{\tau}{z}} e^{\hat{y}}, Q^2\right) f_j \left(\sqrt{\frac{\tau}{z}} e^{-\hat{y}}, Q^2\right) C_{ij}(z, Y - \hat{y}, ..., \alpha_s)$$


The small z integration region, where logs in C are large, is weighted by the PDFs at large momentum fractions $x = \sqrt{\frac{z}{z}}e^{\pm \hat{y}}$ Since PDFs die fast at large x, especially the gluon, the small-z region is suppressed!

Rather, the large z region is enhanced by the gluon-gluon luminosity In that region, the difference between fixed-order and resummed PDFs is large

 $gg\ {\rm partonic\ cross\ section}$

gg luminosity

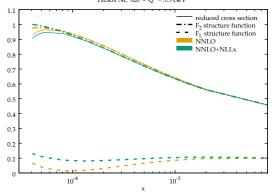


The large effect of the resummation is due to the NNLO being perturbatively unstable at small x, leading to a smaller NNLO gluon at small x

First fit with HELL 3.0

[MB,Giuli 1902.11125]

Red and yellow curves differ by subleading logs


Achieved with a new parametrization, more flexible at small x

$$xf(x,\mu_0^2) = A x^B (1-x)^C \left[1 + Dx + Ex^2 + F \log x + G \log^2 x + H \log^3 x \right]$$

Improved description of the low x data even at fixed order

Impact of subleading logs (with xFitter)

The good agreement obtained at fixed order with the low x HERA data is achieved in a different way with respect to the resummed case [MB,Giuli 1902.11125]

HERA NC 920 - $\Omega^2 = 3.5 \,\text{GeV}^2$

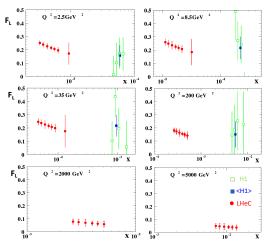
At resummed level, both F_L and F_2 grow

At fixed order, F_L grows below $x\sim 10^{-4}$ and F_2 decreases, due to the sudden growth of the gluon PDF

Future F_L measurements

Measured DIS cross section

$$egin{split} &\sigma_{r, ext{NC}} = \ &= F_2(x,Q^2) - rac{y^2}{1+(1-y)^2} F_L(x,Q^2) \end{split}$$

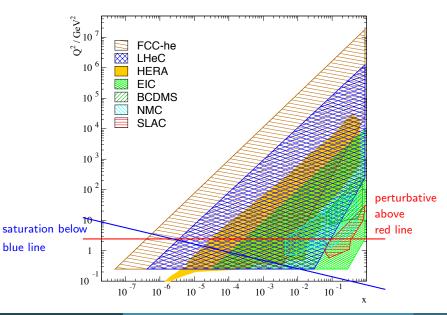

$$y=rac{Q^2}{x\,s}=1-rac{E'_e}{E_e}$$

Extraction of F_L requires changing s at same $x, Q^2,$ at sufficiently large y, namely small E_e^\prime

LHeC projections assuming three electron beam energies: $E_e=60, 30, 20~{\rm GeV}$

Much higher precision than HERA!

Similar results expected for FCC-eh as well, but one order of magnitude smaller \boldsymbol{x}


Saturation

In standard linear approach (DGLAP) we consider parton splittings only

At high density, non negligible probability that partons recombine \rightarrow non-linear behaviour (restoration of unitarity)

Saturation models [Bartels, Golec-Biernat, Kowalski hep-ph/0203258] [lancu,ltakura,Munier hep-ph/0310338] [Golec-Biernat,Sapeta 1711.11360] Saturation scale 0 Р1 Q² (GeV²) Saturation line Saturation K/JIMWLK $Q_s^2 \sim \left(rac{1}{x}
ight)^\lambda$ 0.9 0.8 0.7 0.6 0.5 $\lambda \sim 0.25$ 0.4 0.3 элітбатитэд-полі GRM n L 10 10 -3 10

(fits to HERA data, including also data at $Q^2 \lesssim 1 {
m GeV}^2)$

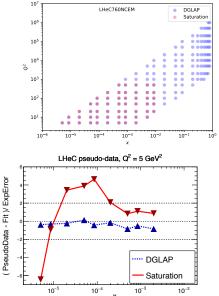
Disentangling non-linear QCD dynamics at FCC-eh/LHeC

Pseudo-data for LHeC with saturation \rightarrow

DGLAP fits cannot absorb all the effect of saturation \rightarrow it is possible to identify saturation effects by distortions in pulls

Possible thanks to the presence of data sensitive to saturation at different Q^2 : the fit cannot absorb a non-DGLAP Q^2 dependence

Post-fit results to LHeC (500 pseudo-experiments)


DGLAP pseudo-data

Saturation pseudo-data

1.2 / N_,

 χ^2

14

Marco Bonvini

0.5

0 45

04

0.35 0.3 0.25 0.2

0.15

0.1 0.05 A tension between fixed-order DGLAP fits and data at small-x can also be due to the lack of small-x resummation in the theory

Once small-x resummation is included, it will be much more difficult to distinguish between linear and non-linear dynamics, given that saturation is so much at the border of the perturbative region for the accessible values of x at FCC-eh

DIS experiment on nuclei will help!

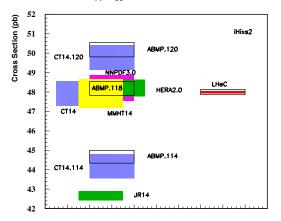
Indeed

- saturation is a density non-linear effect, and we excpect it to be very sensitive on the increased density in nuclei
- ${\scriptstyle \bullet}\,$ resummation is a linear effect \rightarrow much less sensitive to nuclear effects

 $\Rightarrow eA$ program at FCC-eh will be fundamental to disentangle small-x resummation linear dynamics to saturation non-linear dynamics

Note that EIC, due to the limited coverage in x (small energy), will not help for this

Strong coupling determination



Future ep colliders offer a unique opportunity to determine α_s with high precision (simultaneous determination of α_s and PDFs) Note: also a low luminosity run will already improve significantly the precision

Direct determination at low $Q^2
ightarrow$ important also for small x

Strong coupling determination and its impact

NNNLO pp-Higgs Cross Sections at 14 TeV

Red box: PDF uncertainty Black box: PDF+ α_s uncertainty, using α_s extracted from LHeC data