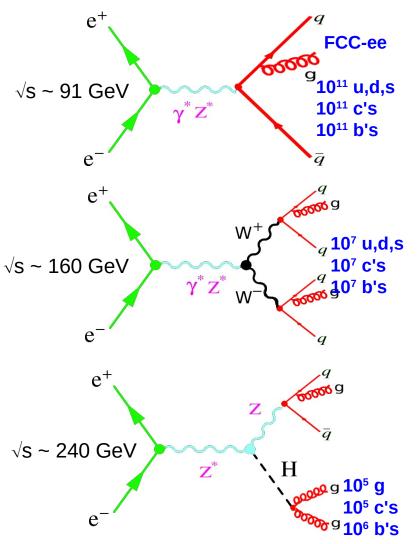
High-precision QCD physics at FCC-ee

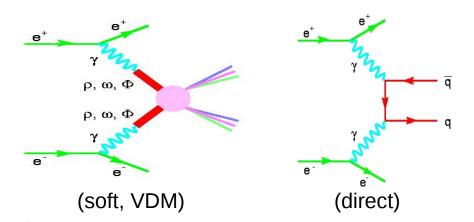
Francesco Giuli (on behalf of the FCC Collaboration)

LFC22 workshop ECT*, Trento, Italy 30/08/2022



QCD, a key ingredient at future colliders

- \succ QCD is crucial for many *ee*, *pp* measurements:
- > High-precision α_s : affects all x-sections & decays (Higgs, top, etc.)
- > NⁿLO corrections, NⁿLL resummations: affects all pQCD x-sections & decays
- High-precision PDFs: affects all precision W,Z,H measurements & all searches in pp collisions
- Heavy-Quark/Light-Quark/Gluon separation (jet substructure, boosted topologies, etc.): needed for all precision SM measurement & BSM searches with jets in the final jets
- Semihard QCD (low-x saturation, multiple parton interactions, etc.): significant pQCD x-sections at FCC-hh
- Non-perturbative QCD: affects final states with jets -> colour reconnection, parton shower, hadronization, etc.

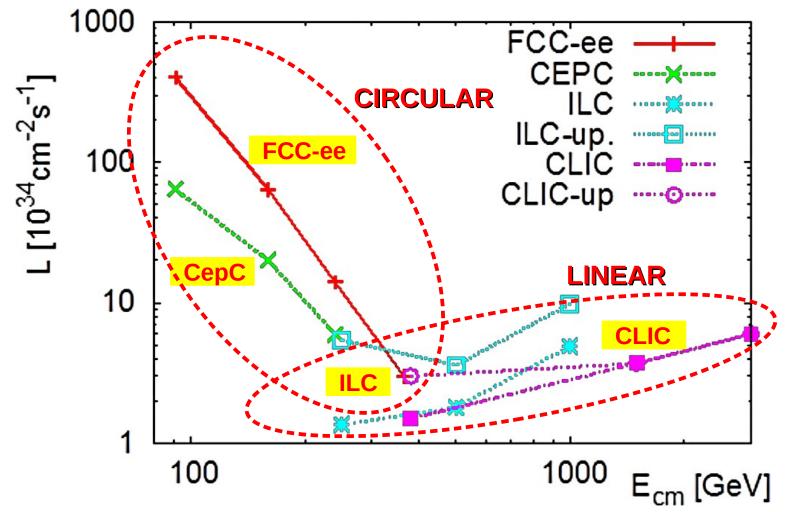

Precision QCD in e^+e^- collisions

 $\geq e^+e^-$ collisions provide an extremely clean environment with fully-controlled initial state to probe quark and gluons dynamics very precisely

Advantages compared to pp collisions:

- QED initial state with known kinematics
- Controlled QCD radiation (final state)
- Well-defined quarks and gluon jets
- Smaller non-pQCD uncertainties (no PDFs, no QCD underlying events, etc.)
- Direct clean parton fragmentation and hadronization
- > QCD physics in $\gamma\gamma$ collisions

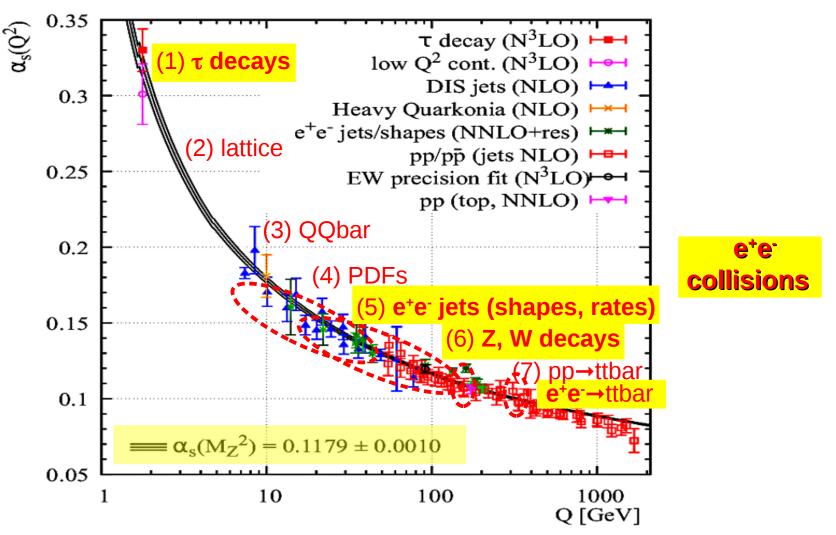
CERN FCC-ee project


$\succ e^+e^-$ operation before pp at \sqrt{s} = 90, (125), 160, 240 and 350 GeV

Working point	Z, years $1-2$	Z, later	WW	HZ	tt		(s-channel H)
$\sqrt{s} \; (\text{GeV})$	88, 91, 94		157, 163	240	340-350	365	m _H
Lumi/IP $(10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1})$	115	230	28	8.5	0.95	1.55	(30)
Lumi/year $(ab^{-1}, 2 \text{ IP})$	24	48	6	1.7	0.2	0.34	(7)
Physics Goal (ab^{-1})	150		10	5	0.2	1.5	(20)
Run time (year)	2	2	2	3	1	4	(3)
				10^6 HZ	$10^{6} t \overline{t}$		
Number of events	$5 imes 10^1$	2 Z	10^8 WW	+	+200k	ΗZ	(6000)
				$25k WW \rightarrow H$	$+50 \mathrm{kWW} \rightarrow \mathrm{H}$		

State-of-the-art detectors + exquisite control of the beam energy → tiny systematic uncertainties (10⁻⁵)

Future e^+e^- colliders under discussion

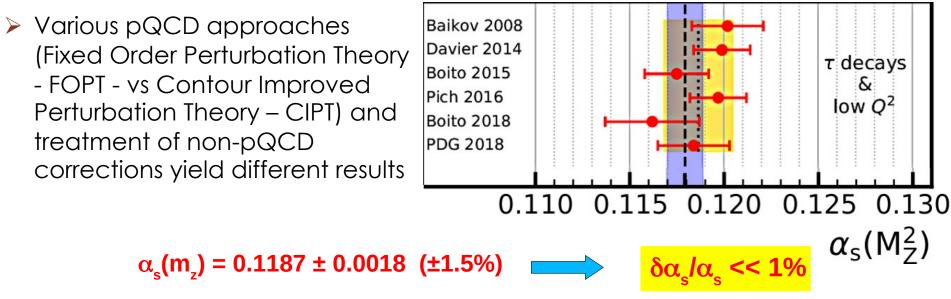

FCC-ee features luminosities a few time larger than other machines over 90 -300 GeV

> Negligible statistical uncertainty for Z, W, jets, ..., τ data sets

5

QCD coupling α_s

Currently determined by comparing 7 experimental observables to pQCD NNLO or N³LO predictions, plus global average at the Z pole scale



6

α_S from hadronic τ -lepton decays

> Computed at N³LO: $R_{\tau} \equiv \frac{\Gamma(\tau^- \to \nu_{\tau} + \text{hadrons})}{\Gamma(\tau^- \to \nu_{\tau} e^- \bar{\nu}_e)} = S_{\text{EW}} N_C (1 + \sum_{n=1}^4 c_n \left(\frac{\alpha_s}{\pi}\right)^n + \mathcal{O}(\alpha_s^5) + \delta_{\text{np}})$

> Experimentally we have $R_{\tau,exp} = 3.4697 \pm 0.0080 \ (\pm 0.23\%)$

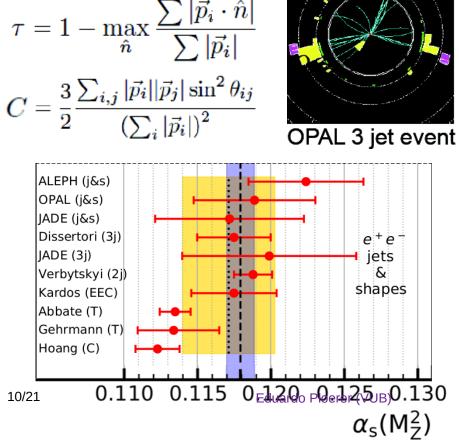
DIS202

- Theory: better understanding of FOPT vs CIPT differences & need of N⁴LO
- Better spectral functions needed (better precision)
- > Higher statistics: $\mathcal{O}(10^{11})$ from $Z \rightarrow \tau^+ \tau^-$ at FCC-ee(90)
- Extract the τ width from the ultraprecise measurement of its lifetime

30/08/22

α_S from e^+e^- event shapes and jet rates

- Computed at N^{2,3}LO+N(N)LL accuracy
- Experimental observables: Thrust, jet shapes, C-parameter, n-jet cross sections
- Results sensitive to non-pQCD e.g. hadronization accounted for via MCs or analytically


```
\alpha_{s}(m_{z}) = 0.1171 \pm 0.027 (\pm 2.6\%)
```

 $\delta \alpha_{s} | \alpha_{s} < 1\%$

DIS2022

> What next?

- > FCC- e^+e^- : Lower \sqrt{s} (ISR) for shapes, higher \sqrt{s} for jet rates
- Theory: Improved NN(N) LL resummed calculations for rates, hadronization for shapes

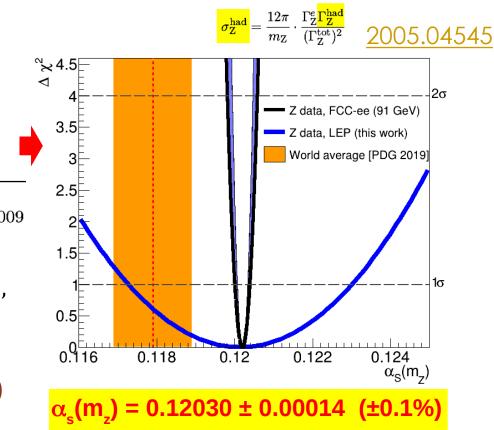
α_s from hadronic Z decays (FCC-ee)

- > α_s extracted at N³LO from:
 - Combined fit of 3 Z pseudo observables
 - > Full SM fit (with α_s free parameter)

> At FCC-ee:

- Huge Z pole statistics (x10⁵ LEP)
- Exquisite systematic precision (stat. uncertainties much smaller)

- > Theory uncertainties reduced by a factor of 4 computing missing $\alpha_S^5, \alpha^3, \alpha \alpha_S^2$ and $\alpha^2 \alpha_s$ terms
- > 20 times times better precision than today: $\frac{\delta \alpha_S}{\alpha_S} \sim \pm 0.2\%$ (tot), $\pm 0.1\%$ (exp)


• The W and Z hadronic widths :

$$\Gamma_{\mathrm{W,Z}}^{\mathrm{had}}(Q) = \Gamma_{\mathrm{W,Z}}^{\mathrm{Born}} \left(1 + \sum_{i=1}^{4} a_i(Q) \left(\frac{\alpha_S(Q)}{\pi} \right)^i + \mathcal{O}(\alpha_S^5) + \delta_{\mathrm{EW}} + \delta_{\mathrm{mix}} + \delta_{\mathrm{np}} \right)$$

• The ratio of W, Z hadronic-to-leptonic widths :

$$\mathbf{R}_{\mathbf{W},\mathbf{Z}}(Q) = \frac{\Gamma_{\mathbf{W},\mathbf{Z}}^{\mathrm{had}}(Q)}{\Gamma_{\mathbf{W},\mathbf{Z}}^{\mathrm{lep}}(Q)} = \mathbf{R}_{\mathbf{W},\mathbf{Z}}^{\mathrm{EW}} \left(1 + \sum_{i=1}^{4} a_i(Q) \left(\frac{\alpha_S(Q)}{\pi}\right)^i + \mathcal{O}(\alpha_S^5) + \delta_{\mathrm{mix}} + \delta_{\mathrm{np}}\right)$$

 \bullet In the Z boson case, the hadronic cross section at the resonance peak in e^+e^- :

α_s from hadronic W decays (FCC-ee)

- > α_s extracted from N³LO fit of combined Γ_W, R_W W pseudo observables:
- The W and Z hadronic widths :

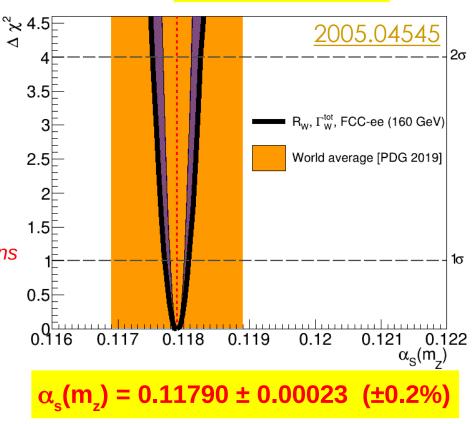
$$\Gamma^{ ext{had}}_{ ext{W}, ext{Z}}(Q) = \Gamma^{ ext{Born}}_{ ext{W}, ext{Z}} \left(1 + \sum_{i=1}^{4} a_i(Q) \left(rac{lpha_S(Q)}{\pi}
ight)^i + \mathcal{O}(lpha_S^5) + \delta_{ ext{EW}} + \delta_{ ext{mix}} + \delta_{ ext{np}}
ight)$$

• The ratio of W, Z hadronic-to-leptonic widths :

$$\mathrm{R}_{\mathrm{W,Z}}(Q) = rac{\Gamma^{\mathrm{had}}_{\mathrm{W,Z}}(Q)}{\Gamma^{\mathrm{lep}}_{\mathrm{W,Z}}(Q)} = \mathrm{R}^{\mathrm{EW}}_{\mathrm{W,Z}}\left(1 + \sum_{i=1}^{4} a_i(Q) \left(rac{lpha_S(Q)}{\pi}
ight)^i + \mathcal{O}(lpha_S^5) + \delta_{\mathrm{mix}} + \delta_{\mathrm{np}}
ight)$$

> At FCC-ee:

- > Huge W pole statistics (x10⁴ LEP-2)
- Exquisite systematic precision (stat. uncertainties much smaller)


 $\Gamma_{\rm W}^{\rm tot}=2088.0\pm1.2~{\rm MeV}$

 $R_{\rm W} = 2.08000 \pm 0.00008$

 $m_{\rm W} = 80.3800 \pm 0.0005 \, {\rm GeV}$

 $|V_{cs}| = 0.97359 \pm 0.00010 \leftarrow O(10^{12}) D$ mesons

- > Theory uncertainties reduced by a factor of 10 computing missing $\alpha_s^5, \alpha^2, \alpha^3, \alpha \alpha_s^2$ and $\alpha^2 \alpha_s$ terms
- 150 times times better precision than today!

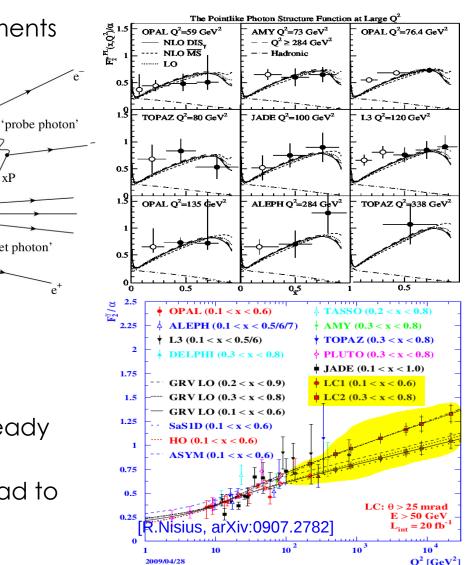
10

$\alpha_{\rm S}$ from photon QCD structure function

 $\succ \text{ Computed at NNLO: } \int_0^1 dx F_2^{\gamma}(x,Q^2,P^2) = \frac{\alpha}{4\pi} \frac{1}{2\beta_0} \Big\{ \frac{4\pi}{\alpha_s(Q^2)} c_{LO} + c_{NLO} + \frac{\alpha_s(Q^2)}{4\pi} c_{NNLO} + \mathcal{O}(\alpha_s^2) \Big\}$

 $q^2 = -Q^2$

 $p^2 = -P^2 \subset$

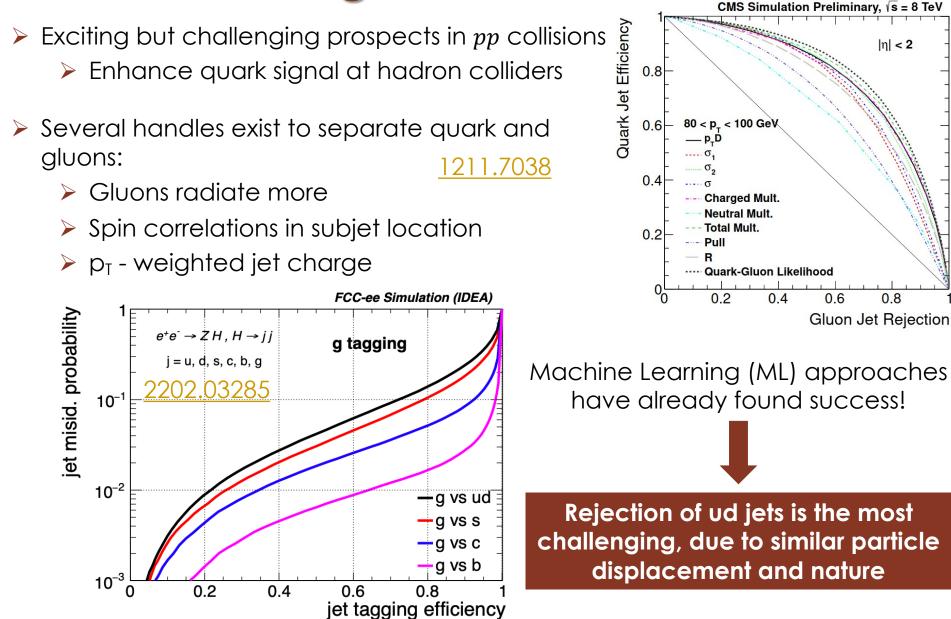

хP

'target photon'

- > Poor $F_{\nu}^2(x, Q^2)$ experimental measurements
- NLO extraction with large experimental uncertainties

 α_{s} (m) = 0.1198 ± 0.0054 (±4.5%) hep-ph/0205069

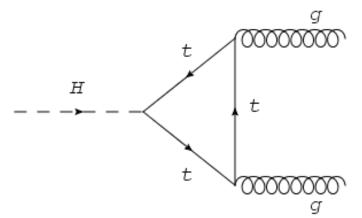
- \succ Future prospects:
 - > Fit with NNLO F_{γ}^2 evolution
 - Better data \succ
 - Dedicated simulation studies (already) exist at ILC)
 - \succ Huge $\gamma\gamma$ statistics at FCC-ee will lead to $\delta \alpha_{\rm s} / \alpha_{\rm s} < 1\%$

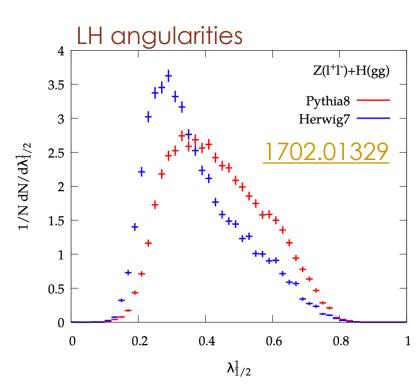


1409.3072

|η| < 2

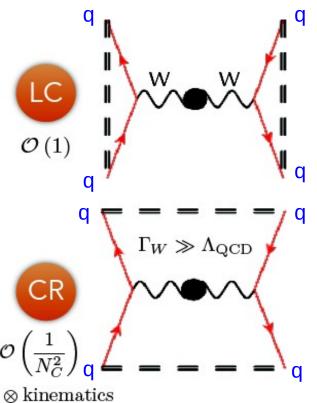
0.8


Quark-gluon discrimination

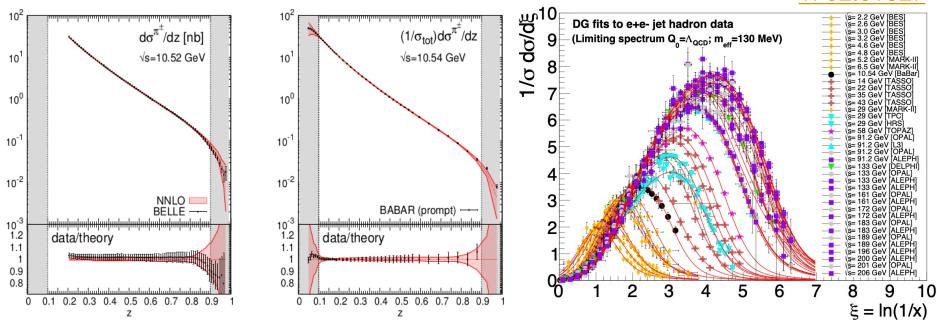


High-precision gluon and quark jet studies

- Exploit FCC-*ee* H(gg) as a pure gluon factory: $H \rightarrow gg$ (BR ~ 8% accurately known) provides 120000 extra clean digluon events
- Multiple handles to study gluon radiation and gluon-jet properties:
 - > Gluon vs. quark via $H \rightarrow gg$ vs $Z \rightarrow q\bar{q}$
 - ▶ Gluon vs. quark via $Z \to b\bar{b}g$ vs $Z \to q\bar{q}$
- > Multiple high-precision analyses possible:
 - Access to light-quark Higgs Yukawa couplings
 - BSM: Improve q/g/Q discrimination tools
 - pQCD: High-precision QCD coupling
 - non-pQCD: Gluon fragmentation, colour reconnection



Colour reconnection

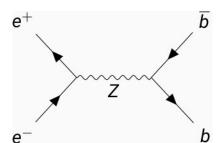

- Colour Reconnection (CR) of partons impacts final state kinematics e.g. shifted angular correlations, invariant mass shifts, etc.
- > Exact dynamic poorly understood
- Source of uncertainty in m_w, m_{top}, anomalous Gauge Couplings extractions in multijet final-states
- ➤ CR impacts all FCC-*ee* multi-jet final states: $e^+e^- \rightarrow WW(4j), H(2j, 4j), t\bar{t}, ...$
- ➤ Combined LEP e⁺e⁻ → WW(4j) data best described with 49% CR, 2.2σ away from no-CR
- String-drag effect on W mass (hinted at LEP)
- Exploit huge W stats (x10⁴ LEP) to measure m_w leptonically & hadronically and constrain CR

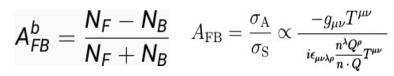
14

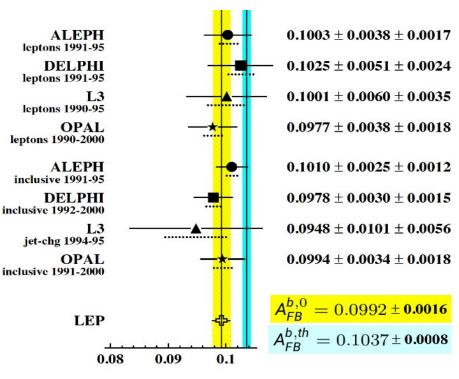
High-precision parton FFs

Parton-to-hadron fragmentation functions evolution known known at NNLO at high-z and at NNLO*+NNLL at low-z 1702.01329

FCC-*ee* (much broader z range) provides additional QCD coupling extractions, allowing for $\delta \alpha_s < 1\%$

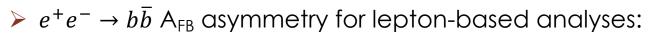

Method	Current $\delta \alpha_{\rm s}({\rm m}_{\rm z}^2)/\alpha_{\rm s}({\rm m}_{\rm z}^2)$ uncertainty	Future $\delta \alpha_{\rm s}({ m m}_{ m z}^2)/lpha_{ m s}({ m m}_{ m z}^2)$ uncertainty				
	(theory & experiment state-of-the-art)	(theory & experiment progress)				
soft FFs	$1.8\%_{ m th} \oplus 0.7\%_{ m exp} pprox 2\%$	$0.7\%_{\rm th} \oplus 0.7\%_{\rm exp} \approx 1\% \; (\sim 2 \; {\rm yrs}), <1\% \; ({\rm FCC-ee})$				
	(NNLO [*] only (+NNLL), npQCD small)	(NNLO+NNLL. More precise e^+e^- data: 90–350 GeV)				
hard FFs	$1\%_{ m th} \oplus 5\%_{ m exp} pprox 5\%$	$0.7\%_{\rm th} \oplus 2\%_{\rm exp} \approx 2\%$ (+B-factories), <1% (FCC-ee)				
	(NLO only. LEP data only)	(NNLO. More precise e^+e^- data)				

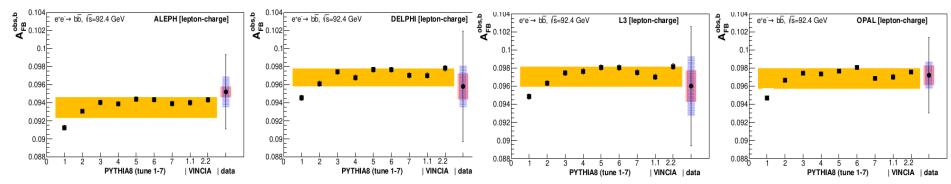

30/08/22

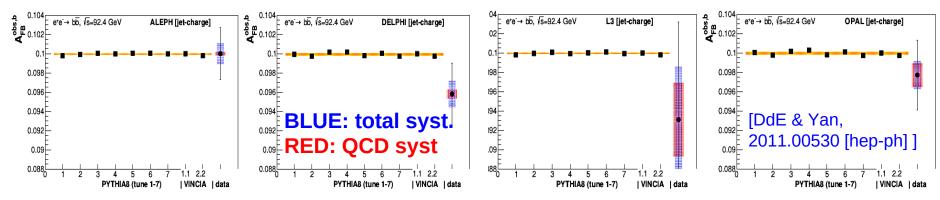

16

QCD uncertainties on EWK observables

- With x10⁵ more Z's than LEP, EWK observables at FCC-ee will be dominated by systematics (QCD)
- $\succ e^+e^- \rightarrow b\bar{b}$ forward-backward asymmetry at LEP
- > Experimental EWPOs with the largest discrepancy wrt the SM: 2.8σ
- ➤ Total uncertainty: ~1.6%
 - Statistical: 1.5% (~0.05% at FCC-ee)
 - Systematics: 0.6% (QCD: 0.4% at FCC-ee)
- > QCD effects on $A_{FB}^{0,b}$:
 - Gluon splitting
 - Smearing of b-jet/thrust axis
 - b- and c-quark radiation and fragmentation (B/D hadron decay models)

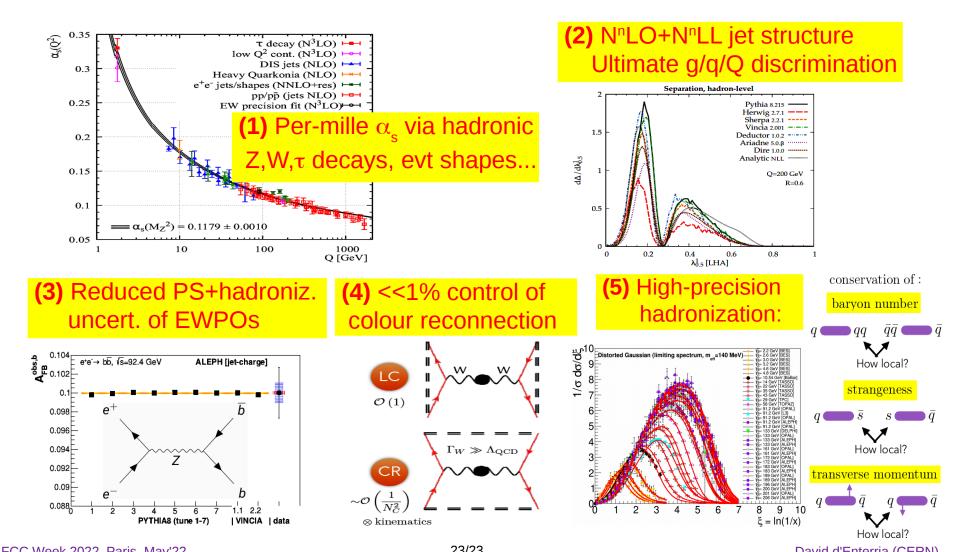





Reduced QCD uncertainties on A_{FB}

QCD uncertainties recomputed from Pythia8.226 and VINCIA2.2

 $\triangleright e^+e^- \rightarrow b\bar{b}$ A_{FB} asymmetry for jet-charged-based analyses:

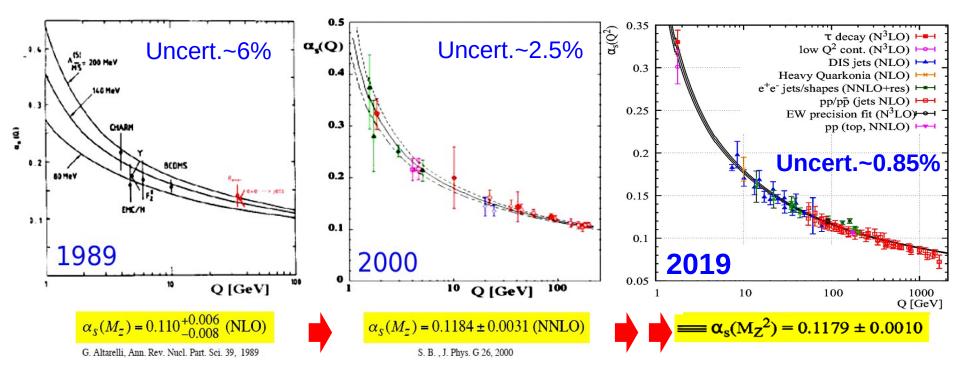

2020 vs 1998 PS + hadronization uncertainties halved: 0.7% (lepton-based) and ~0.3% (jet-charged-based analyses)

FCC data needed to reduce PS & non-pQCD systematic uncertainties

18

Summary & outlook

The precision needed to fully exploit all future ee, pp, ep, eA, AA SM and BSM programs requires precise control of pQCD and non-pQCD physics


Backup Slides

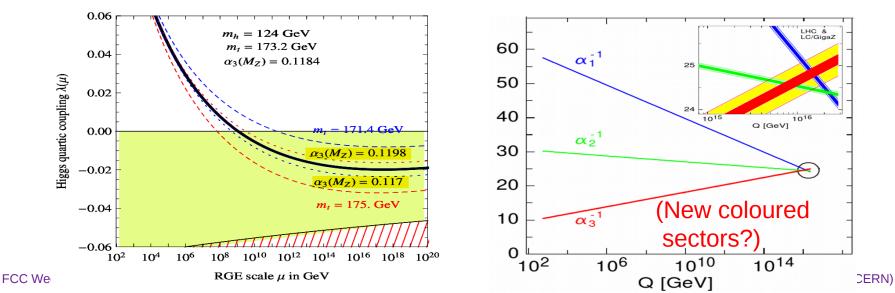
QCD coupling α_s

Determines strength of the strong interaction between quarks and gluons

> Determined at $Q = m_Z$, decreases as $\alpha_S \sim \ln(Q^2/\Lambda^2)$ with $\Lambda \sim 0.2$ GeV

> Least precisely known of all interaction couplings!

$$\delta \alpha \sim 10^{-10} \ll \delta G_{\rm F} \ll 10^{-7} \ll \delta G \sim 10^{-5} \ll \delta \alpha_{\rm S} \sim 10^{-3}$$


Importance of the QCD coupling α_S

Impacts all QCD cross sections and decays!

					Msbar mass error budget (from threshold scan)			
Process	σ (pb)	$\delta \alpha_s(\%)$	PDF + $\alpha_s(\%)$	Scale(%)	$(\delta M_t^{ m SD-low})^{ m exp}$	$(\delta M_t^{ m SD-loc})$	$(\delta \overline{m}_t(\overline{m}_t))^{ m converse}$	$\left(\left(\delta \overline{m}_t(\overline{m}_t) \right)^{\alpha_s} \right)$
ggH	49.87	± 3.7	-6.2 +7.4	-2.61 + 0.32	40 MeV	50 MeV	7 – 23 MeV	70 MeV
ttH	0.611	± 3.0	\pm 8.9	-9.3 + 5.9	\Rightarrow improvement	it in α_s crucia	al	$\delta\alpha_s(M_z) = 0.001$
Channel	$M_{ m H}[{ m GeV}]$	$\delta \alpha_s(\%)$	Δm_b (Δm_c	Quantity	FCC-ee	future param.un	c. Main source
$H \rightarrow c\bar{c}$	126	± 7.1	$\pm 0.1\%$ =	± 2.3 %	Γ_Z [MeV]	0.1	0.1	$\delta lpha_s$
$H \rightarrow gg$	126	± 4.1	$\pm 0.1\%$ =	± 0 %	$R_b \ [10^{-5}]$	6	< 1	$\delta lpha_s$
					R_{ℓ} [10 ⁻³]	1	1.3	$\delta \alpha_s$

Sven Heinemeyer – 1st FCC physics workshop, CERN, 17.01.2017

Impacts physics approaching Plank scale: EW vacuum stability, GUT, etc.

α_S from hadronic W/Z decays

- W and Z observables theoretically known at N³LO accuracy:
- The W and Z hadronic widths :

$$\Gamma_{\mathrm{W,Z}}^{\mathrm{had}}(Q) = \Gamma_{\mathrm{W,Z}}^{\mathrm{Born}} \left(1 + \sum_{i=1}^{4} a_i(Q) \left(\frac{lpha_S(Q)}{\pi} \right)^i + \mathcal{O}(lpha_S^5) + \delta_{\mathrm{EW}} + \delta_{\mathrm{mix}} + \delta_{\mathrm{np}} \right)^{-1}$$

• The ratio of W, Z hadronic-to-leptonic widths :

$$\mathrm{R}_{\mathrm{W},\mathrm{Z}}(Q) = \frac{\Gamma_{\mathrm{W},\mathrm{Z}}^{\mathrm{had}}(Q)}{\Gamma_{\mathrm{W},\mathrm{Z}}^{\mathrm{lep}}(Q)} = \mathrm{R}_{\mathrm{W},\mathrm{Z}}^{\mathrm{EW}} \left(1 + \sum_{i=1}^{4} a_i(Q) \left(\frac{\alpha_S(Q)}{\pi}\right)^i + \mathcal{O}(\alpha_S^5) + \delta_{\mathrm{mix}} + \delta_{\mathrm{np}}\right)$$

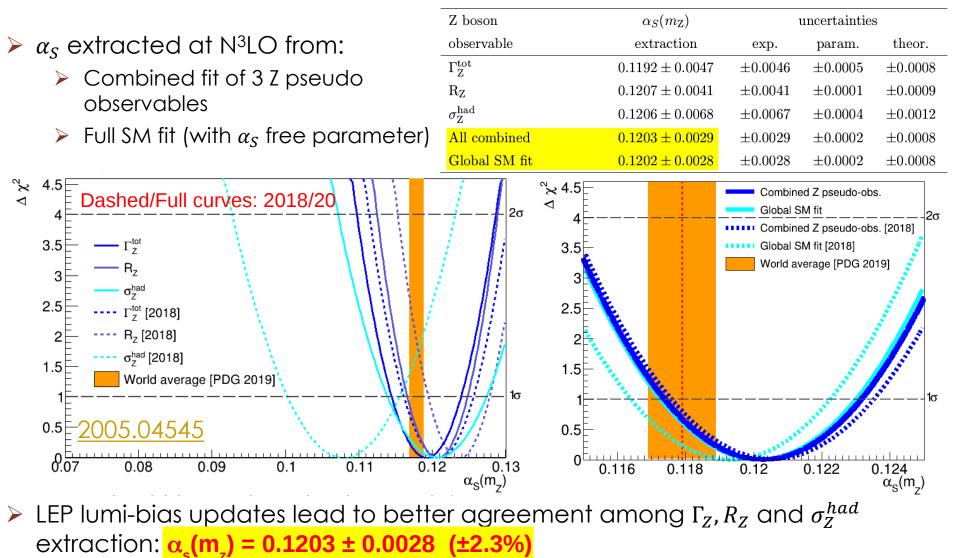
• In the Z boson case, the hadronic cross section at the resonance peak in e^+e^- :

$$\sigma_{\mathrm{Z}}^{\mathrm{had}} = rac{12\pi}{m_{\mathrm{Z}}} \cdot rac{\Gamma_{\mathrm{Z}}^{e}\Gamma_{\mathrm{Z}}^{\mathrm{had}}}{(\Gamma_{\mathrm{Z}}^{\mathrm{tot}})^{2}}$$

Theory unc. (α^2, α^3) included for Z): $\pm 0.015-0.03\%$ (Z) $\pm 0.015-0.04\%$ (W) Param. unc. (m_{W,Z}, α , V_{cs,ud}):

- ±0.01-0.03% (Z) ±1.1-1.7% (W)
- Measured at LEP with ±0.1-0.3% (Z), ±0.9-2% (W) exp. unc.

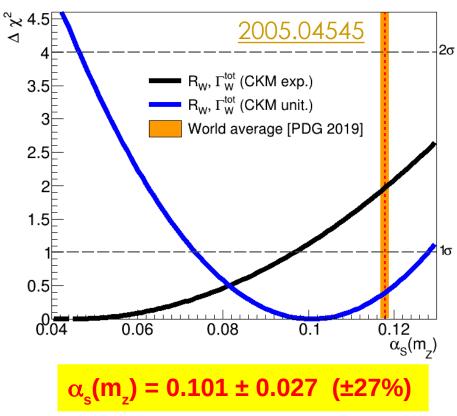
		theory	experiment			
	previous	new (this work)	change	previous [6]	new [20, 2	1] change
$\Gamma_{\rm Z}^{\rm tot} \ ({\rm MeV})$	$2494.2\pm0.8_{\rm th}$	$2495.2 \pm 0.6_{ m par} \pm 0.4_{ m th}$	+0.04%	2495.2 ± 2.3	2495.5 ± 2	.3 +0.012%
Rz	$20.733 \pm 0.007_{\rm th}$	$20.750 \pm 0.006_{ m par} \pm 0.006_{ m th}$	+0.08%	20.767 ± 0.025	20.7666 ± 0.0	0247 -0.040%
$\sigma_{ m Z}^{ m had}~({ m pb})$	$41490\pm6_{\rm th}$	$41494 \pm 5_{ m par} \pm 6_{ m th}$	+0.01%	41540 ± 37	41480.2 ± 3	<mark>2.5</mark> –0.144%
W boson	GFITTER 2.2 (NNLO) this work (N ³ LO) experiment					experiment
observables		(exp. CKM)		(CKM u		
$\Gamma_{\rm W}^{\rm had}$ (MeV)	_	$1440.3 \pm 23.9_{par} \pm$	$1440.3 \pm 23.9_{ m par} \pm 0.2_{ m th}$		$1410.2\pm 0.8_{\rm par}\pm 0.2_{\rm th}$	
$\Gamma_{\rm W}^{\rm tot} \ ({\rm MeV})$	$2091.8\pm1.0_{\rm pz}$	$2091.8 \pm 1.0_{\text{par}}$ $2117.9 \pm 23.9_{\text{par}} \pm$		$2087.9\pm1.0_{\rm p}$	$_{ m ar} \pm 0.7_{ m th}$	2085 ± 42
R_W	$-$ 2.1256 \pm 0.0353 _{par} \pm 0		0.0008 _{th}	$2.0812 \pm 0.0007_{\rm p}$	$ar \pm 0.0008_{th}$	2.069 ± 0.019


Recent update of LEP luminosity bias(*) change the Z values by few permil

<u>1908.01704</u>

23

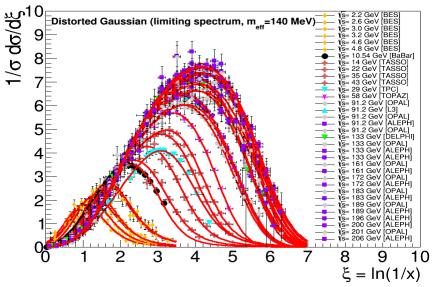
α_S from hadronic Z decays (today)


For which 2022 upped the second to a better agree then the full fit: $\alpha_s(m_z) = 0.1202 \pm 0.0028$

α_s from hadronic W decays (today)

> QCD coupling extracted from new N³LO combined fit of Γ_W and R_W :

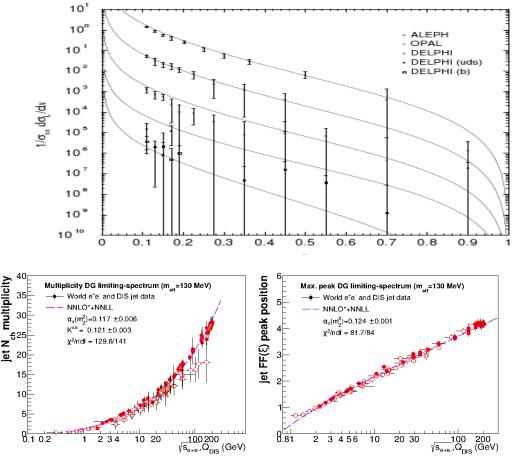
W boson	$lpha_S(m_{ m Z})$		uncertainties		
observables	extraction	exp.	param.	theor.	
$\Gamma_{\rm W}^{\rm tot}, {\rm R}_{\rm W} \; ({\rm exp. \ CKM})$	0.044 ± 0.052	± 0.024	$\pm 0.0 \frac{47}{47}$	(± 0.0014)	
$\Gamma_{\rm W}^{\rm tot}, { m R}_{ m W} \; ({ m CKM \; unit.})$	0.101 ± 0.027	± 0.0 27	(± 0.0002)	(± 0.0016)	
$\Gamma_{\rm W}^{\rm tot}$, $R_{\rm W}$ (FCC-ee, CKM unit.)	0.11790 ± 0.00023	± 0.00012	± 0.00004	± 0.00019	


- Large propagated parametric uncertainties from poor V_{cs} (±2%)
- > Imposing CKM unitary: large experimental uncertainties from Γ_W and R_W (0.9-2%)
- Propagated theory uncertainties (1.5%)
- Very imprecise extraction! QCD coupling constant extracted with 27% precision

α_S from jet fragmentation

Soft parton-to-hadron FFS:

<u>1505.02624</u> – NNLO*+NNLL


Combined fit of the jet-energy evolution of the FF moments (peak, width, multiplicity, etc.) with α_s as single free parameters

 $\alpha_{s}(m_{z}) = 0.1205 \pm 0.0022 (\pm 2\%)$

(full NNLO corrections missing)

Hard parton-to-hadron FFS (NLO):

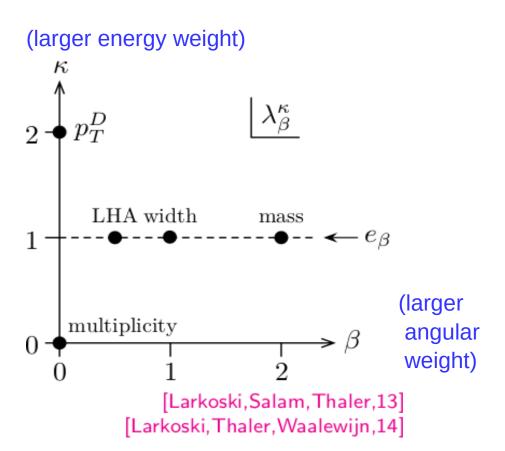
$\alpha_{s}(m_{z}) = 0.1176 \pm 0.0055 (\pm 4.7\%)$

Figure 3: Energy evolution of the charged-hadron multiplicity (left) and of the FF peak position (right) measured in e^+e^- and DIS data fitted to the NNLO^{*}+NNLL predictions. The obtained \mathscr{K}_{ch} normalization constant, individual NNLO^{*} $\alpha_s(m_z)$ values, and the goodness-of-fit per degree-of-freedom χ^2/ndf .

Eduardo Plooror (V/LIP)

Jet substructure

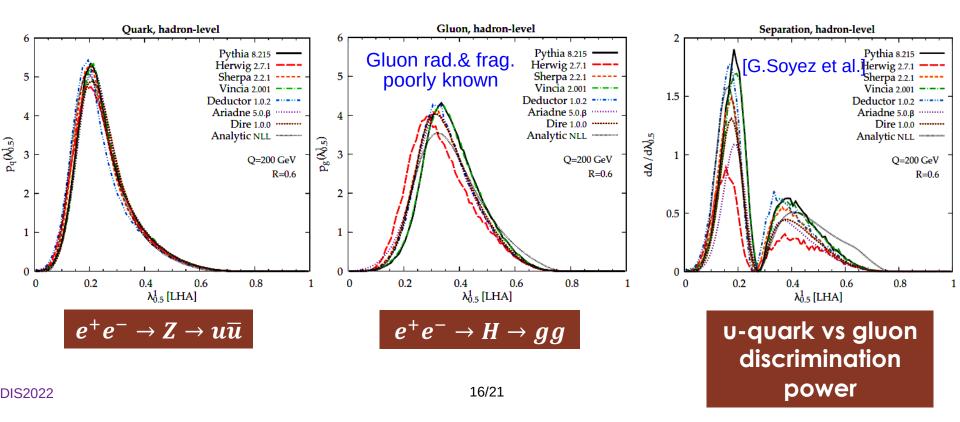
Need for state-of art jet substructure studies based on angularities


Variables of jet constituents: multiplicity, LHA, width/broadening, mass/thrust, C-parameter, ...

k=1: IRC-safe computable (NⁿLO + NⁿLL) via SCET (but uncertainties from non-pQCD effects)

 $\lambda_{\beta}^{\kappa} = \sum z_i^{\kappa} \theta_i^{\beta},$ i∈jet

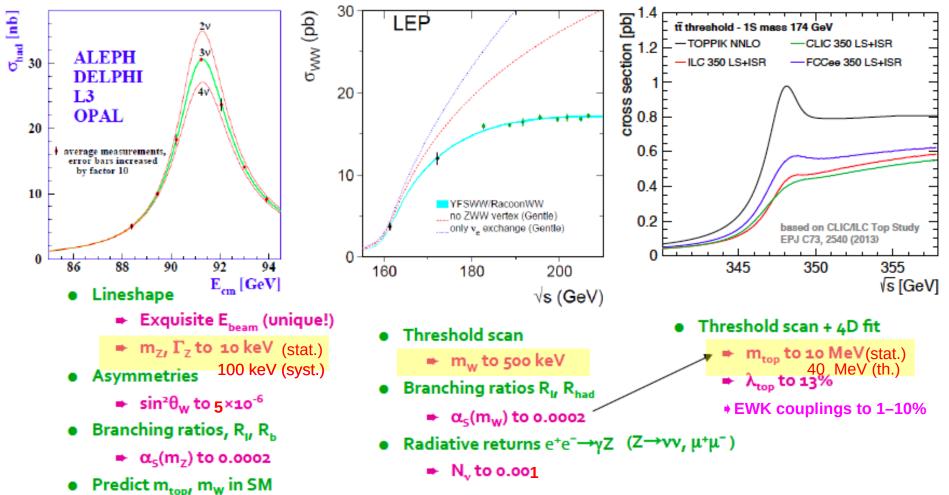
(normalized $E^n \times \theta^n$ products)


26

27

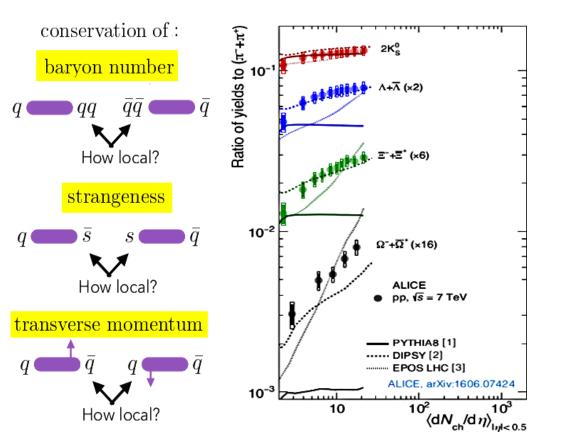
Showering differences in MC generators

- > Les Houches Angularity (LHA) is angularity with k = 1 and β = 0.5
- Not directly measured at LEP
- MC parton showers differ on gluon (less on quark) radiation patterns



Ultra-precise W,Z and top physics at FCC-ee

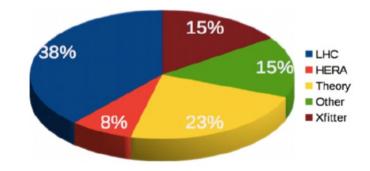
√s=161 GeV, 10⁸ W's


> Mostly thanks to the incredibly huge statistics available!

Threshold scans with $\delta E_{cm} \sim 0.1, 0.2, 2, 4$ MeV (Z, W, H and top-quark) DIS2022 MeV (Z, W, H and top-quark)

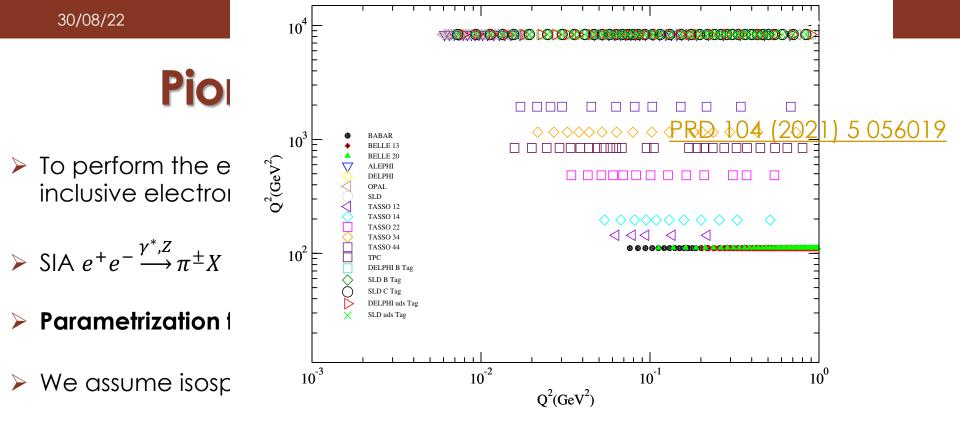
Detailed hadronization studies

> High-precision low- p_T PID hadrons in e^+e^- required for detailed studies:


- Baryon & strangeness production
- Colour string dynamics
- Final-state correlations (spin: Bose-Einstein, Fermi-Dirac; momenta, etc.)
- Bound state formation: Onia, multi-quark states, etc.

- Understand breakdown of universality of parton hadronization with system size observed at the LHC
- Baseline vacuum e⁺e⁻: studies for high density QCD in small and large systems
- Also impact e.g. ultra-high energy cosmic MCs

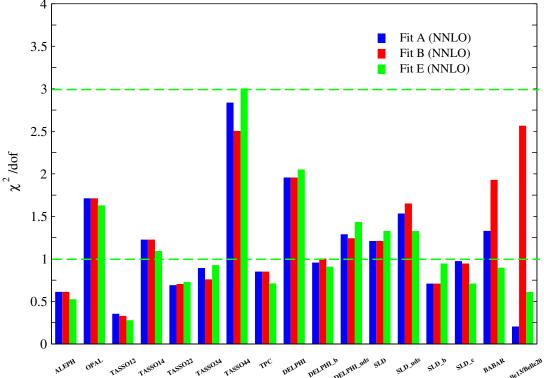
The xFitter Project


- The <u>xFitter</u> project (former HERAFitter) is a unique open-source QCD fit framework
- <u>GitLab</u> repository (open access to download for everyone)
- > This code allows users to:
 - extract PDFs from a large variety of data
 - assess the impact of new data on PDFs
 - check the consistency of experimental data
 - test different theoretical assumptions

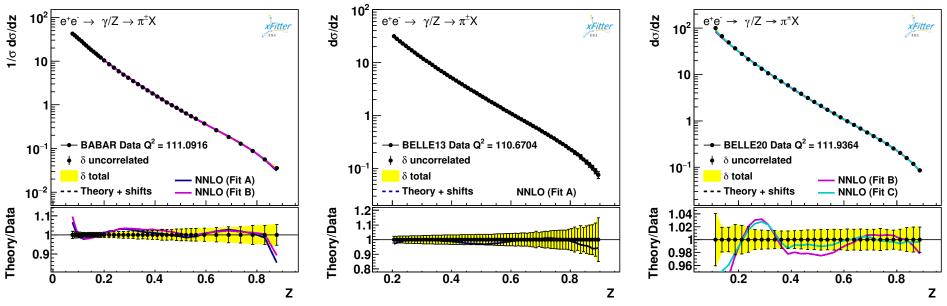
- Several active developers between experimentalists and theorists
- More than <u>100 publications</u> obtained using xFitter since the beginning of the project
- List of recent analyses by the xFitter Developers' Team:

Phys.Rev.D 104 (2021) 5, 056019,
arXiv:2105.11306•QCD analysis of pion fragmentation functions in the xFitter frameworkPhys.Rev.D 102 (2020) 1, 014040,
arXiv:2002.02902•Parton Distribution Functions of the Charged Pion Within The xFitter
Framework

MORE IN PREPARATION!

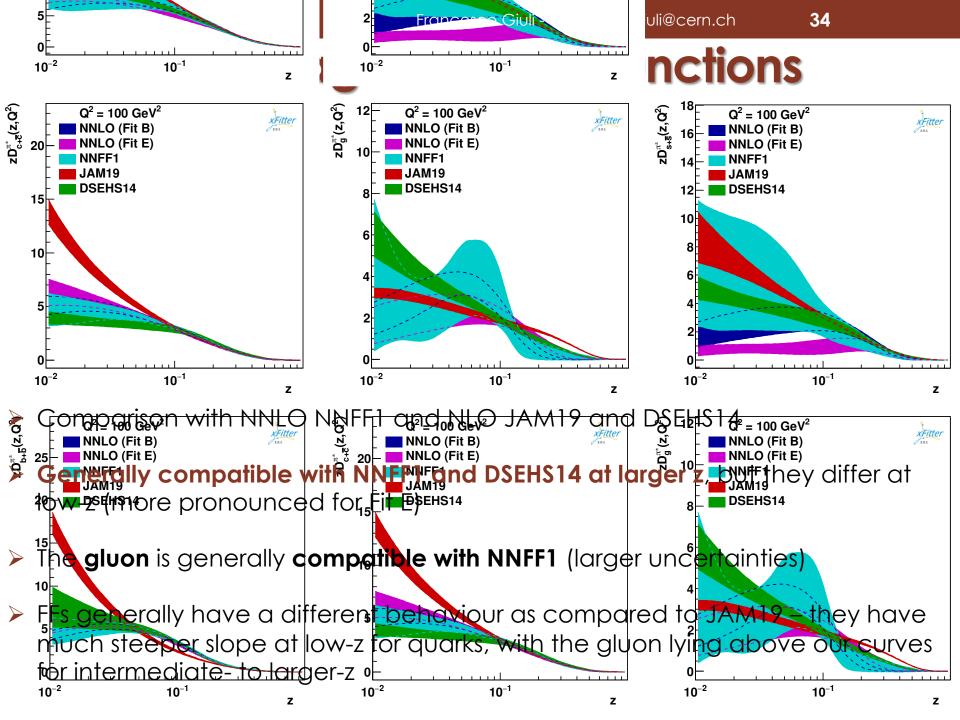


- > We assume the charge conjugate $D_i^n = D_i^n$ tor all the flavour component
- > We fit the flavour combinations $i = u^+, d^+, s^+, c^+, b^+$ and g
- > We parametrise FFs at a starting scale of $Q_0^2 = 5 \text{ GeV}^2$
- > 19 free parameters in total


> Fitted distributions:
$$\frac{d\sigma^h}{dz}$$
, $\frac{1}{\sigma_{tot}}\frac{d\sigma^h}{dp_h}$, $\frac{s}{\beta}\frac{d\sigma^h}{dz}$, $\frac{1}{\beta\sigma_{tot}}\frac{d\sigma^h}{dz}$, ... ($z = 2E_h/\sqrt{s}$)

Pion Fragmentation Functions

- > Several fits ran:
 - Fit A focuses on the impact of BELLE13 data (no BELLE20 data)
 - Fit B focuses on the impact of BELLE20 data (no BELLE13 data)
 - Fit C focuses on the impact of BELLE20 data without BaBar set (no BELLE13 data)
 - Fit D focuses on the impact of low-z BELLE20 data (No BELLE13 and BaBar data) z > 0.2
 - Fit E focuses on the impact of low-z BELLE20 and BaBar data (no BELLE 13 data) z > 0.2 (BELLE20) and z > 0.1 (BaBar)
- The inclusion of higher-order QCD corrections noticeably improves the quality of our fits
- Fits performed with enhanced tolerance T = $\sqrt{\Delta \chi^2}$ = 20
- ➢ FFS NLO and NNLO uncertainty bands overlap → perturbative uncertainties are under control (and reasonable choice of T)



Pion Fragmentation Functions

Theoretical predictions entirely consistent with the experimental data – partly due to larger uncertainties (BELLE13)

- Fits yield a good description of the data with the exception of the low-z region (BELLE20 and BaBar)
- > BELLE and BaBar data sets appear to pull the fit in opposite directions χ^2 (Fit B) for BELLE20 is 82/32 vs χ^2 (Fit C) for BELLE20 is 32/32
- > The effect of excluding low-z data is dramatic χ^2 /dof ~ 1.2 (similar cuts applied in JAM19)

