

LFC22: Strong interactions from QCD to new strong dynamics at LHC and Future Colliders

August 29, 2022

Muon Collider: status and perspectives

MInternational UON Collider Collaboration Thanks to many colleagues in Italy, EU, USA

Acknoledgement to the European Horizon 2020 Research and Innovation programme under Grant Agreement No 101004730

Input to EU Strategy of Particle Physics

Input Document to EU Strategy Update - Dec 2018:

"Muon Colliders," <u>arXiv:1901.06150</u> by CERN-WG on Muon Colliders

J.P. Delahaye et al.

2020 Update of the European Strategy for Particle Physics

19 June 2020 <u>10.17181/CERN.JSC6.W89E</u>

- Ensure Europe's continued scientific and technological leadership
- Strengthen the unique ecosystem of research centres in Europe

- An electron-positron Higgs factory is the highest-priority next collider.
 For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy.
 These compelling goals will require innovation and cutting-edge technology:
 - ramp up R&D on advanced accelerator technologies, in particular high-field superconducting magnets, including high-temperature superconductors
 - investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage
 - \checkmark the ILC in Japan would be compatible with this strategy
- The European particle physics community must **intensify accelerator R&D** and sustain it with adequate resources. **A roadmap should prioritise the technology**

EU Strategy - Accelerator R&D Roadmap

European Strategy Update – June 19, 2020:

High-priority future initiatives [..]

High-priority future nitiatives

In addition to the high field magnets the **accelerator R&D roadmap** could contain:

[..] an international design study for a muon collider, as it represents a **unique opportunity** to achieve a *multi-TeV energy domain* beyond the reach of *e⁺e⁻colliders*, and potentially within a *more compact circular tunnel* than for a hadron collider. The **biggest challenge** remains to produce an intense beam of cooled muons, but novel ideas are being explored.

CERN Laboratory Directors Group (LDG) established an Accelerator R&D roadmap to define a route towards implementation of the goals of the 2020 ESPPU bringing together the capabilities of CERN and the LNLs to carry out R&D and construction and operation of demonstrators

The compelling physics reach justifies establishment of an international collaboration to develop fully the muon collider design study and to pursue R&D priorities, according to an agreed upon work plan.

To facilitate implemention of the European Strategy LDG decided (July 2 2020) to: Agree to start building the collaboration for international muon collider design study

International Muon Collider Collaboration kick-off virtual meeting July 3rd, 2020

(>260 participants) <u>https://indico.cern.ch/event/930508/</u>

Linear vs Circular lepton e⁺e⁻ collider

Muon beams specific properties

Muons are leptons with mass (105.7 MeV/c²) 207 times larger than e^{\pm}

- ightarrow Negligible synchrotron radiation emission (∞m^{-4})
 - Multi-pass collisions (1000 turns) in collider ring:
- High luminosity with reasonable beam power and wall plug power needs
 - relaxed beam emittances & sizes, alignment & stability
 - Multi-detectors supporting broad physics communities
 - Large time (15 ms) between bunch crossings
 - No beam-strahlung at collision:
 - narrow luminosity spectrum
 - Multi-pass acceleration in rings or RLA:
 - Compact acceleration system and collider
 - Cost effective construction & operation
 - No cooling by synchrotron radiation in standard damping rings
 - Requires development of novel cooling method

Why a multi-TeV Muon Collider?

cost-effective and unique opportunity

for lepton colliders @ Ecm > 3 TeV

Strong interest to reuse existing facilities and infrastructure (i.e. LHC tunnel) in Europe

Muons: Issues & Challenges

– Limited lifetime: 2.2 μs at rest

- Race against death: fast generation, acceleration & collision before decay
- Muons decay in accelerator and detector
 - Physics feasibility with large background?
 - Shielding of detector and facility irradiation
- Decays in neutrinos:
 - Ideal source of well defined electron and muons neutrinos in equal quantities :

The neutrino factory concept

» Limitation in energy reach by neutrino radiation

- Generated as tertiary particles in large emittances

- powerful MW(s) driver
- novel cooling method (6D 10⁶ emittance reduction)

Development of novel ideas and technologies with key accelerator and detector challenges!

A unique facility

Jan 2021 nature physics

Muon colliders to expand frontiers of particle physics

K.Long, D.Lucchesi, M.Palmer, N.Pastrone, D.Schulte, V. Shiltsev

an idea over 50 years old has now the opportunity to become feasible

Different phyiscs benchmark simulated with Beam-Induced Background at 3 TeV to demonstrate feasibility and physics potential reach

International Collaboration

Project Leader: Daniel Schulte

Objective:

In time for the next European Strategy for Particle Physics Update, the Design Study based at CERN since 2020 aims to **establish whether the investment into a full CDR and a demonstrator is scientifically justified**.

It will **provide a baseline concept**, well-supported performance expectations and assess the associated key risks as well as cost and power consumption drivers.

It will also identify an R&D path to demonstrate the feasibility of the collider.

Scope:

- Focus on the high-energy frontier and two energy ranges:
- **3** TeV if possible with technology ready for construction in 10-20 years
- **10+ TeV** with more advanced technology, **the reason to choose muon colliders**
- Explore synergies with other options (neutrino/higgs factory)
- Define **R&D path**

Web page:

http://muoncollider.web.cern.ch

Physics potential

A dream machine to probe unprecedented energy scales and many different directions at once!

Muon Collider can be the game changer!

Great and growing interest in the theory community

→ many papers recently published, as:

The Muon Smasher's Guide,

https://doi.org/10.48550/arXiv.2103.14043

Strong and crucial synergies to design the machine and the experiment to reach the physics goals with energy and luminosity allowing % precision measurements

→ Physics benchmarks steer machine parameters and experiment design

Higgs physics

arXiv:2203.07256 Muon Collider Physics Summary arXiv:2203.07261 The physics case of a 3 TeV muon collider stage

https://snowmass21.org/energy/muon_forum

Higgs coupling sensitivities k-framework

		1		
	HL-LHC	HL-LHC	HL-LHC	
		+10 TeV	+10 TeV	
			+ee	
κ_W	1.7	0.1	0.1	
κ_Z	1.5	0.4	0.1	
κ_{g}	2.3	0.7	0.6	
κ_{γ}	1.9	0.8	0.8	
κ_c	-	2.3	1.1	
κ_b	3.6	0.4	0.4	
κ_{μ}	4.6	3.4	3.2	
$\kappa_{ au}$	1.9	0.6	0.4	Higgs trilinear
$\kappa^*_{Z\gamma}$	10	10	10	
κ_t^*	3.3	3.1	3.1	sen-couplings
* No in	put used for μ	collider		

12

Physics reach in a nutshell

g-2 @ Muon Collider

• High-Scale EW Models

proton (MAP) vs positron driven muon source

LEMMA: main idea Low EMittance Muon Accellerator

M. Antonelli and P. Raimondi, Snowmass Report (2013) - INFN-13-22/LNF Note

POSITRON DRIVEN MUON SOURCE : direct μ pairs production

Muons produced from $e^+e^- \rightarrow \mu^+\mu^-$ at the $\mu^+\mu^-$ threshold @ $\sqrt{s} \approx 0.212$ GeV

Asymmetric collisions maximize the $\mu^+\mu^-$ pairs production cross section and minimize the $\mu^+\mu^-$ beam angular divergence and energy spread

- → 45 GeV positron beam impinging on a target (e⁻ at rest)
- → μ⁺μ⁻produced @ ~22 GeV with low transverse emittance with γ(μ) ≈200 and μ laboratory lifetime of about 500 μs
 Aimed at obtaining high luminosity with relatively small μ[±] fluxes thus reducing background rates and activation problems due to high energy μ[±] decays

Proton-driven Muon Collider Concept

• Approved by DOE-HEP in 2011 → Ramp down recommended by P5 in 2014

AIM: to assess feasibility of technologies to develop muon accelerators for the Intensity and Energy Frontiers

International Design Study facility

Proton driver production as baseline

Focus on two energy ranges:

- technology ready for construction in 10-20 years 3 TeV
- **10+ TeV** with more advanced technology

Cost and power consumption drivers, limit energy reach e.g. 30 km accelerator for 10/14 TeV, 10/14 km collider ring

MAP to International Design Study

Luminosity and parameters goals

Target integrated luminosities

 $\mathcal{L} = (E_{CM}/10 \text{TeV})^2 \times 10 \text{ ab}^{-1}$

@	3 TeV	~	1 ab ⁻¹	5 years
@	10 TeV	~	10 ab ⁻¹	5 years

@ 14 TeV ~ 20 ab⁻¹ 5 years

Note: currently consider 3 TeV and either 10 or 14 TeV

- Tentative parameters achieve goal in 5 years
- FCC-hh to operate for 25 years
- Might integrate some margins
- Aim to have two detectors

Now study if these parameters lead to realistic design with acceptable cost and power Tentative target parameters Scaled from MAP parameters

Comparison: CLIC at 3 TeV: 28 MW

Parameter	Unit	3 TeV	10 TeV	14 TeV
L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	40
Ν	10 ¹²	2.2	1.8	1.8
f _r	Hz	5	5	5
P _{beam}	MW	5.3	14.4	20 💆
С	km	4.5	10	14
	т	7	10.5	10.5
ε	MeV m	7.5	7.5	7.5
σ _E / E	%	0.1	0.1	0.1
σΖ	mm	5	1.5	1.07
β	mm	5	1.5	1.07
3	μm	25	25	25
σ _{x,y}	μm	3.0	0.9	0.63

Cooling: Emittance Path

Final Cooling Challenge

Demonstrator and test facilities

(Muon production) and Cooling Demonstrator @ CERN

Strong synergies with nuSTORM and ENUBET

First attempt to design a site Great opportunity to contribute

It could be close to TT10, and inject beam from PS It would be on molasse, no radiation to ground water

Test facilities for enabling tecnologies: RF, Magnets, Target materials.....

Strong synergies with other future projects

Accelerator R&D Roadmap Bright Muon Beams and Muon Colliders

International Design Study Collaboration GOAL

In time for the next European Strategy for Particle Physics Update, aim to **establish whether the investment into a full CDR and a demonstrator is scientifically justified**

The Panel endorsed this ambition and concludes that:

- the MC presents enormous potential for fundamental physics research at the energy frontier
- → it is the future direction toward high-energy, high-luminosity lepton collider
- → it can be an option as next project after HL-LHC (i.e. operation mid2040s)
- at this stage the panel did not identify any showstopper in the concept and sees strong support of the feasibility from previous studies
- it identified important R&D challenges

The panel has identified a development path that can address the major challenges and deliver a 3 TeV muon collider by 2045

Nadia Pastrone

Accelerator R&D Roadmap

Bright Muon Beams and Muon Colliders

Panel members: **D. Schulte**,(Chair), M. Palmer (Co-Chair), T. Arndt, A. Chancé, J. P. Delahaye, A.Faus-Golfe, S.Gilardoni, P.Lebrun, K.Long, E.Métral, N.Pastrone, L.Quettier, T.Raubenheimer, C.Rogers, M.Seidel, D.Stratakis, A.Yamamoto Associated members: A. Grudiev, R. Losito, D. Lucchesi

Intense preparation and review activities in 2021: 3 <u>Community Meetings</u> (May, July, October) and a dedicated <u>Muon Collider Physics and Detector Workshop</u> presented to CERN Council in December and published <u>https://arxiv.org/abs/2201.07895</u>

now under implementation by LDG + Council...

Technically limited timeline

A 3 TeV muon collider could be ready by 2045, as reviewed by the Roadmap

Plan

The panel has identified a development path that can address the major challenges and deliver a 3 TeV muon collider by 2045

Scenarios

lional	Minimal		
[FTEy] [kCHF]		[kCHF]	
11875	193	2445	
	[kCHF] 11875	[kCHF] [FTEy] 11875 193	

~70 Meu/5 years

Label	Begin	End	Description	Aspirational		Minimal	
				[FTEy]	[kCHF]	[FTEy]	[kCHF]
MC.SITE	2021	2025	Site and layout	15.5	300	13.5	300
MC.NF	2022	2026	Neutrino flux miti-	22.5	250	0	0
			gation system				
MC.MDI	2021	2025	Machine-detector	15	0	15	0
	2022	2025	interface	10	0	10	0
MC.ACC.CR	2022	2025	Collider ring	10	0	10	0
MC.ACC.HE	2022	2025	High-energy com- plex	11	0	7.5	0
MC.ACC.MC	2021	2025	Muon cooling sys- tems	47	0	22	0
MC.ACC.P	2022	2026	Proton complex	26	0	3.5	0
MC.ACC.COLL	2022	2025	Collective effects across complex	18.2	0	18.2	0
MC.ACC.ALT	2022	2025	High-energy alter- natives	11.7	0	0	0
MC.HFM.HE	2022	2025	High-field magnets	6.5	0	6.5	0
MC.HFM.SOL	2022	2026	High-field solenoids	76	2700	29	0
MC.FR	2021	2026	Fast-ramping mag- net system	27.5	1020	22.5	520
MC.RF.HE	2021	2026	High Energy com- plex RF	10.6	0	7.6	0
MC.RF.MC	2022	2026	Muon cooling RF	13.6	0	7	0
MC.RF.TS	2024	2026	RF test stand + test cavities	10	3300	0	0
MC.MOD	2022	2026	Muon cooling test module	17.7	400	4.9	100
MC.DEM	2022	2026	Cooling demon- strator design	34.1	1250	3.8	250
MC.TAR	2022	2026	Target system	60	1405	9	25
MC.INT	2022	2026	Coordination and integration	13	1250	13	1250
			Sum	445.9	11875	193	2445

Nadia Pastrone

International Community

CONTEXT:

- Laboratory Directors' Group (LDG) initiated a muon collider collaboration July 2, 2020
- CERN Medium Term Plan 2021-2025 dedicated budget line 2MCHF/year
- International Design Study based at CERN → MoC signed by INFN July 2021 the project encompasses physics, machine, detector and Machine Detector Interface
- European LDG Accelerator R&D Roadmap → presented to December Council 2021 dedicated Muon Beams Panel - but also synergies in High field magnets, RF and ERL
- European ECFA **Detector R&D Roadmap** → **presented to December Council 2021** Muon collider @ 10 TeV is one of the targeted facilities emerging from the EPPSU
- US SnowMass Muon Collider Forum **since 2021** share ideas and studies across frontiers
- Snowmass/P5 process in the US → ready by 2023
- HORIZON-INFRA-2022-DEV-01-01 EU project for Design Study approved July 2022
 Research infrastructure concept development → supported by TIARA

Footprint of future colliders @ CERN

Muon Collider @ FNAL option

is actively exploring filler option

Key Challenge Areas

- **Physics potential** evaluation, including **detector concept and technologies**
- Impact on the environment
 - Neutrino flux mitigation and its impact on the site (first concept exists)
 - Machine Induced Background impact the detector, and might limit physics
- **High-energy systems** after the cooling (acceleration, collision, ...)
 - Fast-ramping magnet systems
 - High-field magnets (in particular for 10+ TeV)
- High-quality muon beam production
 - Special RF and high peak power
 - Superconducting solenoids
 - Cooling string demonstration (cell engineering design, demonstrator design)

• Full accelerator chain

– e.g. proton complex with H- source, compressor ring → test of target material

High energy complex requires known components

→ synergies with other future colliders

Plan for next 5 years

- End-to-end design with all systems
- Key performance specifications
- Evidence to achieve luminosity goal:
- beam parameters, collective effects, tolerances ...
- Evidence that the design is realistic:
- performance specification supported by technology
- key hardware performances
- radiation protection, impact and mitigation of losses
- cost and power scale, site considerations
- A path forward
- Test facility
- Component development
- Beam tests
- System optimisation

Key R&D challenges

Mark Palmer

Key R&D Challenges								
- Ugru	lssues	Status						
Target	 <i>Multi-MW</i> Targets High Field, Large Bore Capture Solenoid 	 Ongoing >1 MW target development Challenging engineering for capture solenoid 						
Front End	 Energy Deposition in FE Components RF in Magnetic Fields (see Cooling) 	Current designs handle energy deposition						
Cooling	 <i>RF in</i> Magnetic Field High and Very High Field SC Magnets Overall Ionization Cooling Performance 	 MAP designs use 20 MV/m → 50 MV/m demo >30 T solenoid demonstrated for Final Cooling Cooling design that achieves most goals 						
Acceleration	 Acceptance Ramping System Self-Consistent Design 	 Designs in place for accel to 125 GeV CoM Magnet system development needed for TeV-scale Self-consistent design needed for TeV-scale 						
Collider Ring	 Magnet Strengths, Apertures, and Shielding High Energy Neutrino Radiation 	 Self-consistent lattices with magnet conceptual design up to 3 TeV > ~5 TeV - v radiation solution required 						
MDI/Detector	 Backgrounds from μ Decays IR Shielding 	 Further design work required for multi-TeV Initial physics studies at 1.5 TeV promising 						

Design Study activities: EU project MuCol

Total EU budget 3 Meu - 48 months - 18(+14) beneficiaries (associated)

HORIZON-INFRA-2022-DEV-01-01: Research infrastructure concept development

The MuCol study will produce a coherent description of a novel particle accelerator complex that will collide muons of opposite charge at the energy frontier. The study will target a centre-of-mass energy (ECM) of 10 TeV with 3 TeV envisaged as a first stage.

The main outcome of MuCol will be a report documenting the facility design that should demonstrate that:

- the physics case of the muon collider is sound and detector systems can yield sufficient resolution and rejection of backgrounds;
- there are no principle technology showstoppers that will prevent the achievement of a satisfactory performance from the accelerator or from the detectors side;
- the muon collider provides a highly sustainable energy frontier facility as compared to other equivalent colliders;
- exploiting synergies with other scientific and industrial R&D projects, a valuable platform to provide Europe a leading edge not only in terms of discovery potential, but also for the development of associated technologies.

The final report will include a thorough assessment of benefits and risks of the accelerator and detector complex, including an evaluation of the scientific, industrial and societal return beyond high-energy physics, the cost scale and sustainability of the complex and the impact arising from an implementation on the CERN site.

Ultra-high-field solenoids (40...60 T) to achieve desired muon beam cooling

Open midplane or large dipoles and quadrupoles in the range of 10...16 T, bore in excess of 150 mm to allow for shielding against heat (500 W/m) and radiation loads

34

Neutrino Flux Mitigation

Need mitigation of arcs at 10+ TeV:

idea of Mokhov, Ginneken to move beam in aperture our approach: move collider ring components, e.g. vertical bending with 1% of main field

Legal limit 1 mSv/year MAP goal < 0.1 mSv/year Our goal: arcs below threshold for legal procedure < 10 µSv/year LHC achieved < 5 µSv/year

3 TeV, 200 m deep tunnel is about OK

Opening angle ± 1 mradiant

14 TeV, in 200 m deep tunnel comparable to LHC case

Need to study mover system, magnet, connections and impact on beam

Working on different approaches for experimental insertion

Machine Detector Interface

Advanced assessment of beam-induced background at a muon collider F. Collamati, C. Curatolo, D. Lucchesi, A. Mereghetti, P. Sala *et al.* 2021 <u>JINST 16 P11009</u>

Study Beam-Induced Background @ $\sqrt{s} = 1.5$ and 3 TeV, using MAP lattice – nozzle optimized at 1.5 TeV

➔ first lattice and MDI studies @ 10 TeV by CERN

The machine elements, MDI and interaction region must be properly designed and optimized @ each collider energy Nadia Pastrone

Beam Induced Background

Detector studies @ $\sqrt{s} = 1.5$ TeV

arXiv:2203.07964 Simulated Detector Performance at the Muon Collider arXiv:2203.07224 Promising Technologies and R&D Directions for the Future Muon Collider Detectors

Quite advanced conceptual design for 1.5 TeV and 3 TeV → More R&D on technologies required @ 10+ TeV

Nadia Pastrone

Tracker detector @ 1.5 TeV

Max radiation tolerance NIEL: 0.5x 10¹⁶ neq/cm²/year Max radiation tolerance TID: 300 Mrad/year

- Vertex detector properly designed to not overlap with the BIB hottest spots around IR
- Timing window applied to reduce hits from out-of-time BIB
- Granularity optimized to ensure $\lesssim 1\%$ occupancy
- Realistic digitization in progress → BIB suppression based on cluster shape
- If primary vertex could be known before \rightarrow effective angular matching of hit doublets
- To be tuned in presence of secondary vertices or long-lived particles

Calorimeters and Muon detectors

timing and longitudinal measurements play a key role in the BIB suppression

Muon System

Low BIB contribution, concentration in the low-radius endcap region

High Precision Measurements

Donatella Lucchesi et al.

$\mu^+\mu^- ightarrow Hx ightarrow b\overline{b}$ x with Beam-Induced Background at 3 TeV

Different phyiscs benchmark simulated with Beam-Induced Background at 3 TeV to demonstrate feasibility and physics potential reach

arXiv:2203.07261The physics case of a 3 TeV muon collider stagearXiv:2203.07964Simulated Detector Performance at the Muon Collider

Nadia Pastrone

 $\mu + \mu - \rightarrow H(\rightarrow b\bar{b}) + X$

@ 3 TeV - 1 ab⁻¹

A brief history of muon colliders

√s = 3 TeV

 $\mu^+\mu^- \rightarrow HH \nu\nu \rightarrow bbbb\nu\nu$

• New key technologies are becoming available

- New Physics opportunities
 - → Higher energy = Higher luminosity
 - ➔ Direct searches+precision reach physics program

Advances in detector and accelerator pair with the opportunities of the physics case

Collaboration Meeting of the Muon Collider Study @ CERN October 11-14, 2022 <u>https://indico.cern.ch/event/1175126/</u>

Thanks for the attention!

• CERN website

https://muoncollider.web.cern.ch/

- INFN Confluence website: full simulation https://confluence.infn.it/display/muoncollider
- International Design Study Indico @ CERN

https://indico.cern.ch/category/11818/

 Muon Collider SnowMass Forum USA <u>https://indico.fnal.gov/event/47038/</u> Please subscribe at the

CERN e-group "muoncollider":

MUONCOLLIDER-DETECTOR-PHYSICS

MUST-phydet@cern.ch

MUONCOLLIDER-FACILITY

MUST-mac@cern.ch

extras

International Design Study facility

- IMCC started officially on July 3nd 2020: Web site
- Several institutions are collaborating, US via the Snowmass process
- Muon collider is part of European Accelerator R&D Roadmap <u>Yellow Report</u>
- A lot of contributions submitted to the Snowmass process

MUon collider STrategy network – MUST

INFN – CERN (+BINP) – CEA – IJCLAB – KIT – PSI – UKRI – (USA not beneficiary)

Task 5.1

May 1, 2021 – April 30, 2024

It will serve as the common ground for a growing international muon-collider collaboration

MUST will support to establish an international collaboration and develop an optimized R&D roadmap towards a future muon collider, including the definition of optimum test facilities and possible intermediate steps

CAUSE 1 January 2022 - 31 December 2025 EU RISE project

aMUSE further provides an excellent platform for an ambitious EU-US network to advance the development of muon beams.

Objectives WP3 – leader: Donatella Lucchesi

- Study techniques of unstable particles beam cooling muon beams at different energies, aiming to validate the simulation with experimental tests
- High energy muon beams: determine the optimal interaction region configuration by studying the beam induced background and new detector technologies able to handle it
- Design and simulate detector for different centre of mass energies
- Evaluate the radiation hazards related to the neutrino flux emitted by the muon beams.

FAST

EU project: WP

WP 2: Physics and Detector Requirements

Leader D. Lucchesi Univ. PD + INFN (M. Casarsa) + many + + Univ. PV associated Link to the physics and detector studies, to provide a database with Beam-Induced Background (BIB) to the physics community and maintain a simplified model of the detector for physics studies. Based on feedback from the physics community, it will provide feedback and guidance to the accelerator design.

WP 3: The Proton Complex

Leader ESS-CERN-UU

key challenge of the proton complex design, the accumulation of the protons in very highcharge bunches and determine the required basic parameters of the complex.

WP 4: The Muon Production and Cooling

Leader STFC-CERN+ UK

Production of the muons by the proton beam hitting a target and the subsequent cooling

WP 5: The High-energy Complex

Leader CEA(Antoine Chance)-CERN-STFC-INFN (F. Collamati – RM1-TO) only MDI Acceleration and collision complex of the muons. Interaction Region and Machine Detector Interface.

EU project: WP

WP 6: Radio Frequency Systems

Leader CEA(C. Marchand)+INFN(D. Giove- MI - LNL)-CERN++++

Radio Frequency (RF) systems of the muon cooling and the acceleration complex.

WP 7: Magnet Systems

Leader CERN(L. Bottura)-CERN+++ INFN(GE, MI, BO) + Univ. BO associated Most critical magnets of the muon collider. In particular focus on the solenoids of the muon production and cooling, which are specific to the muon collider. The fast-ramping magnet system, which has ambitious requirements on power flow and power efficiency and limits the energy reach of the collider,

WP 8: Cooling Cell Integration

Leader CERN(R. Losito)+Univ. MI (L. Rossi)-STFC-INFN(M. Statera – mag. e D. Giove – RF) Design of the muon cooling cell, which is a unique and novel design and which faces integration challenges: interact to address the challenges of the muon collider concept.

Magnet R&D impact on Science and Society

Luca Bottura

- R&D on the magnet technology necessary for a muon collider has multiple implications for other fields of science, industry and society. Below some relevant examples:
 - The target solenoid requires large fields (15 T) in a large bore (2 m), in the range of field and geometry relevant for a full-body MRI of the next generation[1], or solenoid magnets for fusion[2]
 - Ultra-high field solenoids (40...60 T) with modest bore (50 mm) as required by the *final cooling stage* share the challenges of magnets for high-field science[3-5], as well as solenoids for NMR spectroscopy [6]
 - The fast-ramped magnets planned in the acceleration stage (4 T field swing, 400 Hz) are relevant to the development of rapid cycled synchrotrons for intense beams, nuclear physics, medical applications, and accelerator-driven reactors and transmutation systems [7]
 - Energy and power management for the fast ramped magnets in the accelerator complex, typically tens of MJ on the time scale of 1 ms, i.e. tens of GW, share challenges with pulsed power conversion for highfield magnets, as well as energy storage and power management for the power grid
 - Large aperture dipoles and quadrupoles for the collider will profit from the stress-management techniques developed for High-Field Magnets

- The instantaneous luminosity, \mathcal{L} , at different \sqrt{s} is taken from MAP.
- The acceptance, *A*, the number of signal events, *N*, and background, *B*, are determined with simulation.

\sqrt{s}	A	ϵ	L	\mathcal{L}_{int}	σ	N	В	$\frac{\Delta\sigma}{\sigma}$	$\frac{\Delta g_{Hbb}}{g_{Hbb}}$
[TeV]	[%]	[%]	$[cm^{-2}s^{-1}]$	$[ab^{-1}]$	[fb]			[%]	[%]
1.5	35	15	$1.25 \cdot 10^{34}$	0.5	203	5500	6700	2.0	1.9
3.0	37	15	$4.4 \cdot 10^{34}$	1.3	324	33000	7700	0.60	1.0
10	39	16	$2 \cdot 10^{35}$	8.0	549	270000	4400	0.20	0.91

	\sqrt{s} [TeV]	\mathcal{L}_{int} [ab ⁻¹]	$\frac{\Delta g_{Hbb}}{g_{Hbb}}$ [%]
	1.5	0.5	1.9
Muon Collider	3.0	1.3	1.0
	10	8.0	0.91
	0.35	0.5	3.0
CLIC	1.4	+1.5	1.0
	3.0	+2.0	0.9

CLIC numbers are obtained with a modelindependent multi-parameter fit performed in three stages, taking into account data obtained at the three different energies.

Results published on JINTST as <u>Detector and</u> <u>Physics Performance at a Muon Collider</u>

Extremely promising

- 1) muon produced with low emittance \rightarrow "no/low cooling" needed
- 2) muon produced already boosted with low energy spread

But difficult

- **1)** Low production cross section: maximum $\sigma(e^+e^- \rightarrow \mu^+\mu^-) \sim 1 \,\mu b$
- **2)** Low prodution efficiency (~ $9 \times 10^{-8} \mu$ per e^+ using a 3 mm Be target)
- **3)** Bremsstrahlung (high $Z \rightarrow Z^2$) & multiple scattering ($\sqrt{X_0}$) in production target
- **4) High heat load** and **stress** in μ production target
- 5) Synchrotron power O(100 MW) ← available 45 GeV positron sources
- need consolidation to overcome technical limitations to reach higher muon intensities
- LEMMA pre-CDR plan presented to INFN GE by Alessandro Variola October 2019

6D Cooling Cell Design

MuCool: >50 MV/m in 5 T Two solutions

- H2-filled copper cavities
- Cavities with Be end caps

High-gradient cavities in high magnetic field

 Tight integration of solenoids, RF, absorbers, instrumentation, cooling, vacuum, alignment, ...

Will aim for further optimisation This is the **unique** and **novel** system of the muon collider Will need a **test facility**

MICE (in the UK)

litude [mm]

Lepton Colliders: $\mu vs e @ \sqrt{s=125} \text{ GeV}$

Back on the envelope calculation:

