Physics at Future Linear Colliders

Swathi Sasikumar

LFC 2022

ECT* Trento

29th August 2022

Introduction

$$\bullet$$
 P(e-) = \pm 80%, P (e+) = \pm 30%

- Length 20 km (250 GeV), 31 km(500 GeV)
- Superconducting RF cavities

- Centre-of-mass energy 380 GeV 3 TeV
- $P(e-) = \pm 80\%$
- •Length 11 km (380 GeV), 50 km (3 TeV)
- Based of 2-beam acceleration scheme

Advantages of a linear e+e- collider

- Being an e+e- collider ILC mainly has EW production and therefore a very clean physics environment
- No trigger required
- e+e- being fundamental particles: initial state known
- Detectors with 4π coverage
- Radiation hardness not required: only few % X₀ in front of calorimeters
- Planned to run for 22 years: 250 GeV @ 2ab-1 + 500 GeV @ 4ab-1
- Under political discussion in Japan for hosting

Comparison between linear and circular e+e- collider

• Linear Collider:

- High energies can be achieved with more LINAC
- o Higher luminosity with higher energy
- o Beam polarisation at all energies

• Circular collider:

- Higher luminosity at lower energies
- Luminosity decreases with higher energy

ILC staged implementation

Integrated Luminosities [fb⁻¹]

- The proposed staged design for ILC is given the figure
- First stage at 250 GeV with highest luminosity of 2 ab⁻¹
- Luminosity upgrade would require twice the number of bunches per pulse

		$\int {\cal L}$	fraction	n with si	$gn(P(e^{-}))$	$P(e^{+}) = -$
	E_{CM} (GeV)	(fb^{-1})	(-+)	(+-)	()	(++)
ILC250	250	2000	45%	45%	5%	5%
ILC350	350	200	67.5%	22.5%	5%	5%
ILC500	500	4000	40%	40%	10%	10%

ILC detector concept

International Large Detector

- Time Projection Chamber(dE/dx)
- Radius of tracker- 1.8m
- B field = 3.5 T

Silicon Detector

- Silicon tracker
- Radius of tracker 1.2m
- B field = 5 T

- Particle flow concept to reconstruct particles
- Highly granular ECAL and HCAL
- •ILD has a p_T resolution of $\sigma(1/p_T) = 2 \times 10^{-5} \text{GeV}^{-1} \oplus 1 \times 10^{-3}/p_T \sin^{1/2}\theta \approx \text{CMS}/40$
- Vertexing: $\sigma(d_0) < 5 \oplus 10/(p[GeV] \sin^{3/2}\theta)\mu m \approx CMS/4$
- Jet energy resolution: 3-4 % \approx ATLAS/2

Single Higgs Production

- Higgstrahlung: ee ->ZH
 - o highest cross-section upto 500 GeV
- WW fusion: ee ->Hveve
 - o dominant above 500 GeV
 - o Large statistics at high energies
- ZZ fusion: ee->He+e
 - o Important above 500 GeV
- •ttH production:
 - High cross-sections above 500 GeV
 - Direct extraction of top-Yukawa coupling

Single Higgs Production

- Higgstrahlung: ee ->ZH
 - o highest cross-section upto 500 GeV
- WW fusion: ee ->Hveve
 - o dominant above 500 GeV
 - o Large statistics at high energies
- ZZ fusion: ee->He+e
 - o Dominant above 500 GeV
- •ttH production:
 - High cross-sections above 500 GeV
 - Direct extraction of top-Yukawa coupling

Recoil method for leptonic decays of Z

 Model-independent measurements of Higgs crosssection and M_H possible at ee colliders

$$m_{rec}^2 = (\sqrt{s} - E_Z)^2 - p_Z^2$$

- Since \sqrt{s} is known very well at lepton colliders
- With leptonic decays of Z, bigger backgrounds like ZZ and WW events not a problem
- Impact of beam energy spectrum and ISR is smaller

$$\sqrt{s} = 250 \, \mathrm{GeV}, L = 2 \, \mathrm{ab}^{-1}$$

$$\Delta \sigma(\mathrm{HZ})/\sigma(\mathrm{HZ}) = 1.0 \, \%$$

$$\Delta m_{\mathrm{H}} = 14 \, \mathrm{MeV}$$

Phys. Rev. D 94, 113002 (2016) Swathi Sasikumar

Recoil method for leptonic decays of Z

 Model-independent measurements of Higgs crosssection and M_H possible at ee colliders

$$m_{rec}^2 = (\sqrt{s} - E_Z)^2 - p_Z^2$$

- Since \sqrt{s} is known very well at lepton colliders
- With leptonic decays of Z, bigger backgrounds like ZZ and WW events not a problem
- Impact of beam energy spectrum and ISR is smaller

$$\sqrt{s}=250\,GeV, L=2\,ab^{-1}$$

$$\Delta\sigma(HZ)/\sigma(HZ)=1.0\,\%$$
 Value is used in other Higgs studies
$$\Delta m_H=14\,MeV$$

Phys. Rev. D 94, 113002 (2016) Swathi Sasikumar

Recoil method for hadronic decays of Z

- ee->Hqq have 10 times higher cross-section than leptonic decays
- However, at 250 GeV the HZ production is not far above threshold
- Recoil mass distribution is relatively closer to kinematic limit
- The region populated by huge backgrounds from processes like ee->qqqq (from ZZ or WW)
- •Separation of signal and background very challenging especially when Higgs decay hadronically too (H \rightarrow bb, WW)
- Recoil method for hadronic decays of Z can only be nearly model-independent

Recoil method for hadronic decays of Z

 At a study for CLIC it was found that hadronic Z decays provide best sensitivity at 350 GeV

\sqrt{s} [GeV]	L _{int} [fb ⁻¹]	σ (ZH)[fb]	$\Delta \sigma$ (ZH)
250	1000	136	2.58%
350	1000	93	1.27%
420	1000	68	1.86%

- A similar study at ILC being done at 250 GeV for a luminosity of 500 fb⁻¹
- The study confirms that 350 GeV is the best centre of mass energy to study Higgs using hadronic decays of Z

Eur. Phys. J. C 76, 72 (2016)

Hadronic decays of Higgs

- Direct reconstruction of Higgs from its decay products
- Hadronic decays of Higgs, e.g H->bb, cc or gluons are dominant
- Flavour tagging very important for experimental separation of the jets
- Excellent c and b tagging performance achieved
- Moreover, only $\sigma \times$ BR can be measured at the hadron colliders like LHC whereas both σ and BR can be individually measured at ILC

Hadronic decays of Higgs

- Direct reconstruction of Higgs from its decay products
- Hadronic decays of Higgs, e.g H->bb, cc or gluons are dominant
- Flavour tagging very important for experimental separation of the jets
- Excellent c and b tagging performance achieved

•
$$\sqrt{s}$$
 = 250 GeV, L = 2 ab⁻¹

- $\sigma(\mathrm{ZH}) \times \mathrm{BR}(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$ measured at 0.7 % precision
- $\sigma(\mathrm{ZH}) \times \mathrm{BR}(\mathrm{H} \to \mathrm{c}\overline{\mathrm{c}}, \mathrm{g}\overline{\mathrm{g}})$ Measured at 4 % precision

Eur. Phys. J. C 73

Leptonic Decays of Higgs

- Higgs decays to leptons can be measured if these
 BRs are similar to as predicted in SM
- The partial cross-section $\sigma(ZH) \times BR(H \to \tau\tau)$ can be measured at ILC 250 with a precision less than 2%
- The small branching ratio of H $ightarrow \mu\mu$ limits the statistics available at ILC
- However, the partial cross-section $\sigma({\rm ZH}) \times {\rm BR}({\rm H} \to \mu \mu)$ still can be measured with a precision of 17 % for combined 250 GeV and 500 GeV results

Higgs coupling sensitivity at different colliders

- ILC and CLIC are much more sensitive to Higgs couplings as compared to the HL-LHC
- Processes like H \rightarrow c \overline{c} very challenging at hadron colliders

Higgs self-coupling at ILC

- •Two relevant di-Higgs production $e^+e^- \rightarrow ZHH$ and $e^+e^- \rightarrow \nu \overline{\nu}HH$ (WW fusion)
- Cross-section as a function of centre-of-mass energy:
 - o double Higgsstrahlung around 500-600 GeV
 - WW fusion at and above 1 TeV
- If the Higgs coupling deviates from the SM, the two channels would interfere with the SM effects
- •The cross-section for ZHH increases with increase in triple Higgs coupling (λ) whereas that for HH $\nu\bar{\nu}$ decreases
- With both increase or decrease in λ , one of the processes will give sensitivity to it at the ILC

DESY-THESIS-2016-027

Higgs self-coupling measurements

18

- The prospect of measuring Higgs self-coupling both at \sqrt{s} = 500 GeV and 1 TeV studied
- At \sqrt{s} = 500 GeV double higgstrahlung can be observed with a significance of 8σ
- Combined channels HH \rightarrow bbb and HH \rightarrow bbWW*
- Therefore obtaining a measurement precision of 27% on λ
- With addition of measurement at 1 TeV with the ILC upgrade, the precision improves to 10 %

DESY-THESIS-2016-027
ATL-PHYS-PUB-2018-053

Top quark Yukawa Coupling

arXiv:1506.07830v1

• Main processes to access top:

o e+e⁻
$$\rightarrow$$
 t \bar{t} (threshold at 2m_T, 380-500 GeV)

- o e+e $^- \rightarrow t\bar{t}H$ (maximum at 800 GeV)
- o e+e- \rightarrow t $\bar{\text{t}}\nu_{e}\bar{\nu}_{e}$ (at highest energies)
- The tt threshold scan offers an indirect measurement of top Yukawa coupling with a precision of 4 %
- •The direct measurement using $e^+e^- \rightarrow t\bar{t}H$ process:
 - o The cross sections for other tt events decreases at and above 500 GeV

\sqrt{s} [GeV]	$L_{int}[ab^{-1}]$	precision [%]
550	4	2.8
1000	8	1

SUSY searches at ILC

- ILC offers different angles to explore SUSY compared to LHC
- Loop-hole free searches and complete coverage of compressed spectra
- Light Higgsinos motivated by naturalness

$$m_Z^2 = 2\frac{m_{H_d}^2 + \sum_d^d - (m_{H_u}^2 + \sum_u^u) \tan^2 \beta}{\tan^2 \beta - 1} - 2\mu^2$$

terms from SUSY breaking

higgsino mass parameter

Light Higgsinos expected in the electroweak scale

Higgsinos with low ΔM

 Observables for three different Higgsino-LSP models

Models	Benchmark	$\Delta M_{\tilde{\chi}_1^{\pm}}[\text{GeV}]$	$\Delta M_{\tilde{\chi}_1^0}$ [GeV]
NUHM1	ILC1	14.6	21.3
NUHM2	ILC2	10.2	9.7
Mixed	dM770	0.77	1.04
guage-gravitation	dM1600	1.6	2.7

 The Higgsinos masses for different scenarios can be measured at:

- •The Higgsinos masses can be measured at an uncertainty 0.004 1% for different benchmark scenarios
- The $\sigma \times BR$ could be measured at 1.6-5% uncertainty

arXiv:1912.06643

Eur. Phys. J. C (2013) 73:2660

Summary

- Due to the highly clean physics environment and possibility to upgrade to higher energies gives the possibility to access process that are highly challenging at hadron colliders
- Substantial improvements with respect to the hadron colliders possible at ILC for the discussed topics
- Precise measurements of single Higgs and Higgs self-coupling possible especially the modelindependent approach gives many higher possibilities
- Along with precision measurements, search for new particles in electroweak scale may also be possible at ILC

Backup Slides

Timeline

- European Strategy Output:
 - Electron positron collider as a Higgs factory highest priority
 - ILC timescale:

- •Timely realisation of ILC in Japan would be compatible with European strategy output, European particle physics community would wish to collaborate
- •The situation in Japan still very unclear positive statements from MEXT, stressing need for international contributions