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Goals of Snowmass Energy Frontier
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Organisation and contributions

Topical Group Contributions
EF01: EW Physics: Higgs Boson properties and couplings 20
EF02: EW Physics: Higgs Boson as a portal to new physics 8
EF03: EW Physics: Heavy flavor and top quark physics 10
EF04: EW Physics: EW Precision Physics and constraining new physics 13
EF05: QCD and strong interactions: Precision QCD 2
EF06: QCD and strong interactions: Hadronic structure and forward QCD 8
EF07: QCD and strong interactions: Heavy lons 3
EF08: BSM: Model specific explorations 13
EF09: BSM: More general explorations 26
EF10: BSM: Dark Matter at colliders 14
Total 149
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QCD and strong interactions



Introduction

@ Quantum Chormodynamics play a unique role in the SM

o Many QCD effects are universal and their related uncertainties are
often a limiting factor in SM measurements

@ The strong coupling constant is the least well measured

@ The upcoming era will be a new golden age for QCD (HL-LHC,
Belle Il, EIC, lattice QCD...)

@ PDFs and FFs will play a prominient role in future precision
experiments

@ Implementation of two- and three-loop computations of radiative

contributions would be requiered to exploit the future precision
experiments
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Future Facilities

@ High-luminosity LHC

@ Forward Physics Facility

@ The Electron lon Collider
@ The Belle Il Experiment

o Future Electron-Positron
Collider

@ Future Muon-Muon Collider

o Future Lepton-Hadron Collider

@ Future Hadron Colliders International
UON Collider
Collaboration _
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Future Facilities

o High-luminosity LHC
o Forward Physics Facility
@ The Electron lon Collider
@ The Belle Il Experiment

@ Future Electron-Positron
Collider

@ Future Muon-Muon Collider
@ Future Lepton-Hadron Collider

@ Future Hadron Colliders

Additional measurements of jet,
photon and top-quark cross-sections
Test of pQCD, PDFs, FFs and o,
running

Challenges on reconstruction
performance since the pileup increases

Studies on jet substructure could
mitigate the impact of the pileup
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Future Facilities

High-luminosity LHC

Forward Physics Facility

@ The Electron lon Collider m

The Belle 1l Experiment

@ Future Electron-Positron
Collider

@ Future Muon-Muon Collider

Future Lepton-Hadron Collider

Future Hadron Colliders

Located at 617-682 m west of the
ATLAS IP would detect 108 v at TeV

Sensitive to the very forward
production of light hadrons and
charmed mesons

Access the very low-x and the very
high-x regions of the colliding protons

Acts as a neutrino-induced DIS
experiment with TeV neutrino beams
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Future Facilities

@ High-luminosity LHC

e Forward Physics Facility

o The Electron lon Collider
@ The Belle Il Experiment

@ Future Electron-Positron
Collider

e Future Muon-Muon Collider
@ Future Lepton-Hadron Collider

@ Future Hadron Colliders

,,,,,,,,

]

B Precise measurements of hadron
structure electron-proton(nucleus) DIS
for /s =20 —140 GeV

B Probe unpolarised proton PDFs and
flavour composition for x > 0.1 for
scales of few GeV

B Phenomenological PDFs would be
great benchmarks for lattice QCD

V. Miralles Snowmass Energy Frontier: An Overview 5/23



Future Facilities

@ High-luminosity LHC

@ Forward Physics Facility

@ The Electron lon Collider
o The Belle Il Experiment

@ Future Electron-Positron
Collider

@ Future Muon-Muon Collider
@ Future Lepton-Hadron Collider

@ Future Hadron Colliders

vertex detector
2layers DEPFET
4 layers DSSD

central
drift chamber

B The LO hadronic contribution to a,
can be obtained from ete™ — had.

B Belle Il can resolve the discrepancy
between BABAR and KLOE

B Measurements of mulitdimensional
correlation of momenta and
polarisation of final-state hadrons will
increase our understanding of soft QCD
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Future Facilities -“w“‘u-“"fm"(m“’“‘g:
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@ High-luminosity LHC
@ Forward Physics Facility
@ The Electron lon Collider

@ The Belle Il Experiment

° Future Electron-Positron B Neutral QCD initial state — precision

Collider well beyond hadron colliders
e Future Muon-Muon Collider B Able of studing pure samples of gluon
jets (ete™ — HZ), poorly modeled
e Future Lepton-Hadron Collider and copiously produced at the LHC
B Improvement in understanding the b
e Future Hadron Colliders showering and hadronisation
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Future Facilities

@ High-luminosity LHC

o Forward Physics Facility
@ The Electron lon Collider
@ The Belle Il Experiment

@ Future Electron-Positron
Collider

@ Future Muon-Muon Collider
@ Future Lepton-Hadron Collider

@ Future Hadron Colliders

International
UON Collider
Collaboration

B Physical reach for discoveries similar to
high-energy hadron colliders

B Similar advantages as ete™ colliders
B Final state more complicated

B Critical difference — large
beam-induced background (it — evVv)
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Future Facilities

@ High-luminosity LHC

o Forward Physics Facility
@ The Electron lon Collider
@ The Belle Il Experiment

@ Future Electron-Positron
Collider

@ Future Muon-Muon Collider

@ Future Lepton-Hadron
Collider

@ Future Hadron Colliders

tune-up dump

10-GeV linac comp. RF

20, 40, 60 GeV'

10, 30, 50 GeV

total circumference ~ 8.9 km

++ 10-GeV linac

0.03km .16 ooy P

e- final focus

B The LHeC would extend DIS into the
TeV energy range

B A muon-hadron collider in existing
facilities could have an energy reach in
DIS similar to LHeC or FCC-eh

B A Muon-lon Collider could succeed the
EIC in 2040
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Future Facilities

@ High-luminosity LHC

@ Forward Physics Facility
@ The Electron lon Collider
@ The Belle Il Experiment

@ Future Electron-Positron m
Collider

@ Future Muon-Muon Collider -

@ Future Lepton-Hadron Collider
[ |

@ Future Hadron Colliders

Best opportunity to study a wide range
of precision measurements of pQCD
and non-pQCD

Two major proposals — FCC-hh and
SPPC with /s =100 TeV and 25 ab~!

Breakthroughs in accelerator
technology, detector design, and
physics object reconstruction
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Measurements Os

World average

. Miralles

0ts(Mz) = 0.1179 0.0009 (+0.8%)

Hadronic tau decay
0s(Mz) =0.1178 £0.0019 (+1.6%)

Quarkonia

0s(Mz) =0.1181+£0.037 (£3.3%)
DIS and PDFs fits

os(Mz) =0.1162+0.0020 (+1.7%)

ete™ — had. final states
as(Mz) = 0.1171 £0.0031 (£2.6%)

Hadron collider measurements
os(Mz) =0.1165 +0.0028 (£2.4%)

Electroweak precision fits

os(Mz) = 0.1208 +-0.0028 (£2.3%)
Lattice-QCD

os(Mz) = 0.118240.0008 (£0.7%)
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Measurements

Os

Method

Relative ev,m.Z uncertainty

Current

theory & exp. uncertainties sources

Near (long-term) future
theory & experimental progress

(1) Lattice

0.7%
Finite lattice spacing & stats.
N*LO pQCD truncation

= 0.3% (0.1%)
Reduced latt. spacing. Add more observables
Add N*LO, active charm (QED effects)
Higher renorm. scale via step-scaling to more observ.

(2) 7 decays

1.6%
NELO CIPT vs. FOPT diffs.
Limited 7 spectral data

Add NLO terms. Solve CIPT-FOPT diffs.

(3) QQ bound states

3.3%
N?*LO pQCD truncation
mep uncertainties

Improved 7 spectral functions at Belle TT

Add N*LO & more (%), (bb) bound states
Combined m . + oy fits

(4) DIS & PDF fits

1.7%

N2MILO PDF (SF) fits
Span of PDF-based results

~ 1% (0.2%)
NULO fits. Add new SF fits: FI", g; (EIC)
Better corr. matrices, sampling of PDF solutions.
More PDF data (EIC/LHeC/FCC-ch)

(5) e*e jets & evt shapes

2.6%

NNLO+NU2HLL truncation

Different NP analytical & PS corrs.
Limited datasets w/ old detectors

= 1.5% (< 1%)
Add N**LO+N*LL, power corrections
Improved NP corrs. via: NNLL PS5, grooming
actories (FCC-ee)

New improved data at B

(6) Electroweak fits

2.3%
NULO truncation
Small LEP+SLD datasets

(= 0.

NALO. reduced param. uncerts. (myy z. a. CKM)

(7) Hadron colliders

2.4%

NNLO(+NNLL) truncation, PDF uncerts.
Limited data sets (11, W, Z, e-p jets)

Add W boson. Tera-Z, Oku-W datasets (FCC-ee)

N*LO+NNLL (for color-singlets). improved PDFs

Add more datasets: Z pr, p-p jets, o, /o, ratios,...

World average

0.8%

= 0.4% (01%)
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Parton Distribution Functions: State of the art

TOPIC

STATUS, Snowmass’2013

STATUS, Snowmass’2021

Achieved accuracy of PDFs

PDFs with NLO EW
contributions

PDFs with resummations

Available LHC processes to
determine nucleon PDFs

Current, planned & proposed
experiments to probe PDFs
Benchmarking of PDFs for the
LHC

Precision analysis of specialized
PDFs

N?LO for evolution, DIS and vector
boson production
MSTW'04 QED, NNPDF2.3 QED

Small x (in progress)

W/Z, single-incl. jet, high-pr Z, tf,
W + ¢ production at 7 and 8 TeV

LHC Run-2
DIS: LHeC
PDF4LHC 2015 recommendation in

preparation

NZLO for all key processes; N°LO for
SOILe Processes

LuXQED and other photon PDFs
from several groups; PDFs with
leptons and massive bosons

Small-x and threshold resummations
implemented in several PDF sets

-+ tf, single-top, dijet, v/W/Z+jet,
low-(Q) Drell Yan pairs, ... at 7,8, 13
TeV

LHC Run-3, HL-LHC

DIS: EIC, LHeC, MulC, ...
PDF4LHC™21 recommendation
issued

Transverse-momentum dependent
PDFs, nuclear, meson PDFs

Obtain complete N*LO and
N®LO predictions for
PDF-sensitive processes
Develop and benchmark fast

N2LO interfaces

NEW TASKS in the HL-LHC ERA

Improve models for correlated
systematic errors

Estimate N*LO/N*LO theory

uncertainties

Find ways to constrain large-x PDFs
without relying on nuclear targets

New methods to combine PDF
stimate PDF
uncertainties, deliver PDFs for

ensembles,

applications
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Hadronisation and fragmentation functions: Future Facilities

@ To reach the new level of precision a better understanding of
hadronisation is required

@ Increasing the precision of the MCEG requires a model for correlated
production of multiple hadrons — Belle Il becomes a level arm

@ EIC will provide a solid ground for phenomenological analysis to
obtain transverse-momentum dependent PDFs and FFs

@ Nonperturbative uncertainties from final-state hadronic effects can
be reduced with FCC-ee data
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Top-quark physics and heavy flavour
production



Introduction

Origin of Higgs
boson mass
Flavor-changing

Quark mixin
9 neutral currents

Naturalness Stability of Universe

Top quark
Physics

Fundamental CPV and
or Composite? Baryogenesis

Is it unique? Origin of masses?

Detector
calibration
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Top-quark mass

@ A precision in the top-quark mass of 100 MeV corresponds to a
precision of W boson of about 1 MeV

@ The top-quark mass is not a physical parameter and depends on the
renormalisation scheme

@ Most NLO and NNLO calculations are only available in a particular
scheme

@ The on-shell condition has an intrinsic renormalon ambiguity of 110
to 250 MeV

@ The most precise measurements are done in the MC scheme

o The relation with the mM¢ with other well defined schemes is not
known with high enough precision

@ Top-quark mass measurement in a well defined scheme rely on
measuring cross-sections that depend on the mass
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Top-quark mass: Measurements
Direct top-quark mass measurements at hadron colliders

@ Obtained from direct reconstruction of the top decay products
o Top-quark mass measured in the Monte Carlo scheme (m
@ Issues in the universality of the results between different MCs
o Difficulties in the interpretation in terms of well-defined mass

schemes
mltv[C

and m

POl differ by 500-200 MeV

)

@ Need further precision when HL-LHC measurements are available

dmMC [MeV] Tevatron LHC HL-LHC
Run 1 Run 2 Run 3
ATLAS | CMS | ATLAS | CMS
/s [TeV] 1.96 7.8 7.8 13 13 13.6 14
E[ﬂ'fl] 9.7 5, 20 5, 20 36 36 300 3,000
Statistical uncert. 350 250 130 400 40 40 20
Systematic uncert. 540 410 470 670 380 300 170
Total uncert. 650 480 480 780 380 310 170
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Top-quark mass: Measurements

Indirect top-quark mass measurements at hadron colliders

@ Obtained from measuring cross sections sensitive to the top mass

@ Methods usually rely on the total inclusive t production cross
section based on NNLO QCD calculations
@ Huge sensitivity on a5 and the gluon PDFs which produce the
leading uncertainty

@ Using differential cross sections increases the sensitivy on the top

mass — Needs increasing the precision on the theoretical predictions
@ The tt invaraint mass distribution is highly sensitive to the top mass
in the threshold region

FmP'® [GeV] Tevatron | LHC Run 1 | LHC Run 2 | LHC Run 3 | HL-LHC
Vs [TeV] 1.96 7/8 13 13.6 14
Lb™"] 10 20 140 300 3,000
Experimental uncertainty 2.2 1.0 0.8 0.5 0.5
Theoretical uncertainty 1.4 0.7 1.0 0.5 0.25
Total uncertainty 2.5 1.2 1.3 0.7 0.56
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Top-quark mass: Measurements

Measurements at et e~ colliders

@ The methods developed at LHC can be used — cleaner hadronic

enviroment

@ Dependence on PDF is replaced by the one on the beam's luminosity

spectrum

@ Threshold scan method becomes extremely promising

dmbS [MeV] ILC | CLIC | FCC-ee
L[ 200 | 100 [200] | 200
Statistical uncertainty 10 20 [13] 9
Theoretical uncertainty (QCD) 40 - 45
Parametric uncertainty o 26 ‘ 26 ‘ 3.2
Parametric uncertainty y; (HL-LHC) 5
Non-resonant contributions < 40
Experimental systematic uncertainty 15 - 30 ‘ 1120
Total uncertainty 40 - 75
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Top-quark production
@ At LHC the top-quark is predominantly produced in tt pairs

@ The N3LO QCD corrections are not available yet but aN3LO
including third-order soft-gluon corrections from NNLL resumation

@ Single production provides an opportunity for direct studies of EW
properties of the top-quark

@ The sensitivity of the single top production to the CKM can be
enhanced measuring rations

@ At lepton colliders single top production is produced through
lepton-photon scattering (could be observed above 0.5 TeV)

K-factors for tt production in pp collisions
K-factor 7TeV |8 TeV |13 TeV [13.6 TeV| 14 TeV |27 TeV | 50 TeV | 100 TeV
NLO/LO 1.47 | 1.48 1.50 1.50 1.50 1.52 1.55 1.58
NNLO/LO 1.65 1.66 1.67 1.67 1.67 1.69 1.71 1.75
aN*LO/LO 1.72 1.72 1.72 1.72 1.72 1.73 1.75 1.78
aNLO/NLO 1.01 1.00 0.99 0.99 0.99 0.97 0.95 0.92
aNNLO/NNLO | 1.01 1.01 1.00 1.00 1.00 1.00 0.99 0.98
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Top-quark production: pp — ttX

o

The measurements at HL-LHC could only be beat by high-energy
lepton colliders and future hadron colliders

pp — ttj: First steps towards NNLO QCD corrections for on-shell
production

pp — tty: Challenging due to the decay t — Wby which generates
up to 50% of the signal. NNLO QCD necessary to exploit the
potential of the future data set

pp — ttZ. Current measurements already at the accuracy of
theoretical predictions at NLO+NNLL

pp — ttH: Efforts to extend the inclusive production to NNLO QCD
necessary for HL-LHC data

pp — ttW: NNLO QCD corrections for the production part are
needed for the HL-LHC run

pp — tttt: Hard to imagine that NNLO QCD corrections necessary
to match the 10% accuracy of HL-LHC are available soon.
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SMEFT operators relevant for the top-quark

2-quark operators

Couplings of the t- and b- EW dipole operators
quark to the Z

(Q’L’ 'Y‘uQ ( ) Ouw = Q’L’ otV S(p*WIV
= (27 0) (¢'iBu0) (@) (eorvt)
Opes) = (H(B)F"t(1)) (¢iD,0)

Chromo-magnetic dipole op. t-quark yukawa

20 7) (s0°) | 0w=(@0) (9" o'0)

L S S—
4-quark operators

Couplings of light quarks with t- and b-quarks

O = (Qo"'t) (9™ Byy)

08

8 8
Otu Otd tq

18 8 8 38
044 Ogu 0gd O04q

2-quark 2-lepton operators
Couplings of light leptons with t- and b-quarks
Oeb O Oet O

+
Oo

OeQ Ofo
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Observables from current colliders (LEP/SLC, Tevatron,

LHC run 1 & 2)

@ Here we show the observables included that have been measured in
the actual colliders

Process Observable NG < Experiment
pp — tt do/dmy; (1543 bins) 13 TeV 140 fbT CMS
pp — tt dAc/dmg (442 bins) 13 TeV 140 fb~1! ATLAS
pp — tiZ do/dpZ (7 bins) 13TeV | 140 fb? ATLAS
pp — tty do/dpY (11 bins) 13 TeV 140 fb? ATLAS
pp — ttH + tHq c 13 TeV 140 b1 ATLAS
pp — tZq c 13 TeV 77.4 fb~1 CMS
pp — tyq c 13 TeV 36 bt CMS
pp — ttW c 13 TeV 36 bt CMS
pp — tb (sch) c 8 TeV 20 fb? LHC

pp — tW c 8 TeV 20 fb~1! LHC

pp — tq (t-ch) c 8 TeV 20 fb~1 LHC
t— Wh Fo, F1 8 TeV 20 fb~?! LHC
pb — tb (s-ch) c 1.96 TeV | 9.7 fb! Tevatron
eet — bb Ry, AL o ~ 91 GeV | 202.1 pb~! | LEP/SLD
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Current constraints vs expected HL-LHC constraints
Shadowed (solid) bars —marginalised from global (individual) fit

10?

IF ~ BN LHCRun 2 + Tevatron + LEP BB +HL-LHC S2
S4
HEP]TT}

10!

10°

95% Interval (Tev~2)

107!

1072 —
Co Cw Co C3 Coo Cz Cor Cwo C& C& ChP C% C3F Chy Cia
Operator Coefficients
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Measurements

at ete™ colliders: bb production

Machine Polarisation Energy Luminosity Observable
o 250 GeV 2ab7? ]
ILC P(e", € ):(=30%.+80%) |——55 GV Zab T Obb
P(e*, e7):(+30%, —80%) 1TV 8ab T APB
o 380 GeV 2 ab7! o
CLIC P(e7, €7):(0%, +80%) 15 Tev 25ab T bb
P(e*, €7):(0%, —80%) 3TV 5 ab T APB
Z-pole 57.5/150 ab~! oun
CEPC/FCC-ee Unpolarised 240 GeV 20/5 ab~! A‘t:g
360/365 GeV 1/15 ab™! FB

@ These observables set constraints on the EW precision observables

Coa = Cpo T Coq and Cop

@ Also relevant for 2-quark 2-lepton operators C,B, Cp and Cgp

@ The higher-energy measurement are more relevant for the 2-quark
2-lepton operators

V. Miralles
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Measurements at ete™ colliders: tt production

Machine Polarisation Energy | Luminosity | Observable
ILC P(e*, e):(—30%, +80%) | 500 GeV 4 ab~?! Optimal
P(et, e):(+30%, —80%) | 1 TeV 8 ab~T Observables
P(e*, e7):(0%, +80% 380 Gev 2ab ! Optimal
cLiC (e, € ):(0% +80%) T BTV | 2.5 ab P
P(e™, e7):(0%, —80%) 3 TV 52p=T Observables
. 350 GeV | 0.2ab” T Optimal
CEPC/FCCoee Unpolarised 365 GeV | 1/1.5ab T | Observables

e Optimal observables maximally exploit the information in the fully
differential eTe™ — tt — bW bW~ distribution

@ These constrain the 2-fermion operators quQ, Cot, Gw and Gz

@ Also the 2-quark 2-lepton operators Q Cir, Cer and Ceq

@ With these we eliminate blind directions in the C(f,lc\), -C

(% plane

o Two different energies above the tt threshold are needed to
constrain all the 2- and 4-fermion operators
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Measurements at ete™ colliders: ttH production

Machine Polarisation Energy Luminosity | Observable
ILC P(e*, e):(—30%, +80%) | 500/550 GeV 4 ab7t Inclusive
P(et, e7):(4+30%, —80%) 1 TeV 8ab ! cross section
cLIC P(e*, e):(0%, +80%) 15 TeV 25 ab-1 |nc|u5|v.e
P(e*, e7):(0%, —80%) cross section
@ Essential measurement in order to improve the limits on the

top-quark Yukawa

The effect of an ILC run at 550 GeV has been studied

@ At ILC550 the production cross section increases a factor of 3 w.r.t.
ILC500 improving the statistical sensitivity by more than a 50%

V. Miralles

Snowmass Energy Frontier: An Overview

ILC550 and CLIC1500 have a similar sensitivity as HL-LHC
ILC1000 improves the expected HL-LHC sensitivity by a factor of two
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Expected constraints for different e™e™ operation energies

BN |HC Run2 + Tevatron + LEP  EEE +HL-LHCS2  EEE +ILC250 m=m +|LC500/550 mmm +ILC1000

IFIC

95% Interval (TeV~—2)
=
o
L
1

| L]

Co Cw Coo ) Coo Cz Co Ce Ceo Cn C Cee Cr Cp
Operator Coefficients
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Comparison of future colliders

I HL-LHC B HL-LHC + CEPC HL-LHC + FCCee B HL-LHC + ILC I HL-LHC + CLIC
FIT
—
1o HEP]
fi
0
& 10
3
S
b ) - -
Z -
% L
<107t I
n
o
1072 |
1073

Co Cw Cot C,,g Coo Cz Cop Cev Ceo Cw» Cf Ce Cr Cp
Operator Coefficients
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Top-quark Yukawa coupling uncertainties

Values in % units ‘ LHC ‘ HL-LHC ‘ ILC500 ‘ ILC550 ‘ ILC1000 ‘ CLIC ‘
Global fit 6.12 2.53 1.57 1.30 0.739 1.48
Indiv. fit 5.08 1.85 1.41 1.17 0.705 1.26

oy:

@ Since the sensitivity at ILC500 is worse than in HL-LHC there is no a
huge improvement for the individual constraint

@ For the global fit the improvement is relevant even for ILC500,
thanks to constraining the Yukawa with more than one observable

@ Increasing the energy by 50 GeV provides an important improvement
in the constraints thanks to the growth in the cross section

@ Similar results are found for CLIC

@ An improvement higher than a factor of 2.5 would be obtain at the
final stage of ILC w.r.t. the HL-LHC
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Summary

@ The potential of the future facilities to improve our knowledge of
QCD have been summarised

@ The EIC machine will be crutial in reducing the uncertainties on the
PDFs and a possible FPF could cover additinal regions

@ Many advancements on determining o and the inclusion of higher
corrections is expected for the next decades

@ For the top-quark a better understainding of the relation of the MC
mass and the masses on well-defined schemes is needed

e With a high-energy lepton collider a precise measurement in a
well-defined scheme would be possible

@ More QCD corrections should be included in the production
processes to guarantee that the theoretical error does not dominate
the total uncertainty in the HL-LHC

@ Lepton colliders working above the tt threshold are needed to
significantly reduce the error on the top-quark EW couplings

@ Significant improvements for the limits on the top-quark yukawa are
found when operating above 550 GeV
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