# Snowmass Energy Frontier: An Overview

LFC22: Strong interactions from QCD to new strong dynamics at LHC and Future Colliders

Trento, 29th August 2022

Víctor Miralles





## Outline

- 1.- Goals and contributions of Snowmass Energy Frontier
- 2.- QCD and strong interactions
  - 2.1.- Developments at future facilities
  - 2.2.- Developments of  $\alpha_s$  measurements
  - 2.3.- Developments on Parton Distribution Functions
  - 2.4.- Developments on hadronisation and fragmentation functions
- 3.- Heavy flavour and top-quark physics
  - 3.1.- Top-quark mass
  - 3.2.- Top-quark production
  - 3.3.- Top-quark couplig measurements from EFT fits
  - 3.4.- Top-quark Yukawa

## Goals of Snowmass Energy Frontier

|                 |                    |                                                                   |                          | $\alpha_{s}$                        |            |                      |
|-----------------|--------------------|-------------------------------------------------------------------|--------------------------|-------------------------------------|------------|----------------------|
|                 | W/Z mas            | s Flavor physics                                                  |                          | pdf                                 |            |                      |
| W/Z couplings   | EW                 | Bin Questions                                                     | Stro<br>Interac<br>Prope | ng<br>ction <sub>Jet</sub><br>rties | ts         |                      |
| Multibosons     | Gauge              | Evolution of early Univ                                           | verse                    | Axion-like                          | e partic   | cles                 |
| Higgs couplings | Deseris            | Matter Antimatter Asym                                            | metry                    |                                     |            |                      |
| Higgs CP        | Nature<br>of Higgs | Nature of Dark Matt<br>Origin of Neutrino M<br>Origin of EW Scale | er<br>ass                | Direc                               | t<br>on of | Missing E/p          |
|                 |                    | Origin of Flavor                                                  |                          | Dark Ma                             | tter       | Long lived particles |
| Rare decays     | Top                | Exploring                                                         |                          | New                                 | SUS        | Y                    |
| Top mass        | Physics            | the Unknown                                                       | Ir                       | Particles<br>nteractions            | Hear       | vy gauge bosons      |
|                 |                    |                                                                   | -                        | , milliouries                       | Lepto      | oquarks              |
|                 | Top spin           | FCNC Ne                                                           | w scalars                | B Heavy                             | neutri     | nos                  |

## Organisation and contributions

| Topical Group                                                         | Contributions |
|-----------------------------------------------------------------------|---------------|
| EF01: EW Physics: Higgs Boson properties and couplings                | 20            |
| EF02: EW Physics: Higgs Boson as a portal to new physics              | 8             |
| EF03: EW Physics: Heavy flavor and top quark physics                  | 10            |
| EF04: EW Physics: EW Precision Physics and constraining new physics   | 13            |
| EF05: QCD and strong interactions: Precision QCD                      | 2             |
| EF06: QCD and strong interactions: Hadronic structure and forward QCD | 8             |
| EF07: QCD and strong interactions: Heavy lons                         | 3             |
| EF08: BSM: Model specific explorations                                | 13            |
| EF09: BSM: More general explorations                                  | 26            |
| EF10: BSM: Dark Matter at colliders                                   | 14            |
| EF General                                                            | 32            |
| Total                                                                 | 149           |

## QCD and strong interactions

## Introduction

- Quantum Chormodynamics play a unique role in the SM
- Many QCD effects are universal and their related uncertainties are often a limiting factor in SM measurements
- The strong coupling constant is the least well measured
- The upcoming era will be a new golden age for QCD (HL-LHC, Belle II, EIC, lattice QCD...)
- PDFs and FFs will play a prominient role in future precision experiments
- Implementation of two- and three-loop computations of radiative contributions would be requiered to exploit the future precision experiments

- High-luminosity LHC
- Forward Physics Facility
- The Electron Ion Collider
- The Belle II Experiment
- Future Electron-Positron Collider
- Future Muon-Muon Collider
- Future Lepton-Hadron Collider
- Future Hadron Colliders



Snowmass Energy Frontier An Overview

- High-luminosity LHC
- Forward Physics Facility
- The Electron Ion Collider
- The Belle II Experiment
- Future Electron-Positron Collider
- Future Muon-Muon Collider
- Future Lepton-Hadron Collider
- Future Hadron Colliders



- Additional measurements of jet, photon and top-quark cross-sections
- Test of pQCD, PDFs, FFs and α<sub>s</sub> running
- Challenges on reconstruction performance since the pileup increases
- Studies on jet substructure could mitigate the impact of the pileup

- High-luminosity LHC
- Forward Physics Facility
- The Electron Ion Collider
- The Belle II Experiment
- Future Electron-Positron Collider
- Future Muon-Muon Collider
- Future Lepton-Hadron Collider
- Future Hadron Colliders



- Located at 617-682 m west of the ATLAS IP would detect 10<sup>6</sup> v at TeV
- Sensitive to the very forward production of light hadrons and charmed mesons
- Access the very low-x and the very high-x regions of the colliding protons
- Acts as a neutrino-induced DIS experiment with TeV neutrino beams

- High-luminosity LHC
- Forward Physics Facility
- The Electron Ion Collider
- The Belle II Experiment
- Future Electron-Positron Collider
- Future Muon-Muon Collider
- Future Lepton-Hadron Collider
- Future Hadron Colliders



- Precise measurements of hadron structure electron-proton(nucleus) DIS for \sqrt{s} = 20 - 140 GeV
- Probe unpolarised proton PDFs and flavour composition for x > 0.1 for scales of few GeV
- Phenomenological PDFs would be great benchmarks for lattice QCD

V. Miralles

- High-luminosity LHC
- Forward Physics Facility
- The Electron Ion Collider
- The Belle II Experiment
- Future Electron-Positron Collider
- Future Muon-Muon Collider
- Future Lepton-Hadron Collider
- Future Hadron Colliders



- The LO hadronic contribution to  $a_{\mu}$  can be obtained from  $e^+e^- \rightarrow$  had.
- Belle II can resolve the discrepancy between BABAR and KLOE
- Measurements of mulitdimensional correlation of momenta and polarisation of final-state hadrons will increase our understanding of soft QCD

- High-luminosity LHC
- Forward Physics Facility
- The Electron Ion Collider
- The Belle II Experiment
- Future Electron-Positron Collider
- Future Muon-Muon Collider
- Future Lepton-Hadron Collider
- Future Hadron Colliders



- Neutral QCD initial state → precision well beyond hadron colliders
- Able of studing pure samples of gluon jets (e<sup>+</sup>e<sup>-</sup> → HZ), poorly modeled and copiously produced at the LHC
- Improvement in understanding the b showering and hadronisation

- High-luminosity LHC
- Forward Physics Facility
- The Electron Ion Collider
- The Belle II Experiment
- Future Electron-Positron Collider
- Future Muon-Muon Collider
- Future Lepton-Hadron Collider
- Future Hadron Colliders



Non Collider Collaboration

- Physical reach for discoveries similar to high-energy hadron colliders
- Similar advantages as e<sup>+</sup>e<sup>-</sup> colliders
- Final state more complicated
- Critical difference  $\rightarrow$  large beam-induced background ( $\mu \rightarrow e v \bar{v}$ )

- High-luminosity LHC
- Forward Physics Facility
- The Electron Ion Collider
- The Belle II Experiment
- Future Electron-Positron Collider
- Future Muon-Muon Collider
- Future Lepton-Hadron Collider
- Future Hadron Colliders



- The LHeC would extend DIS into the TeV energy range
- A muon-hadron collider in existing facilities could have an energy reach in DIS similar to LHeC or FCC-eh
- A Muon-Ion Collider could succeed the EIC in 2040

- High-luminosity LHC
- Forward Physics Facility
- The Electron Ion Collider
- The Belle II Experiment
- Future Electron-Positron Collider
- Future Muon-Muon Collider
- Future Lepton-Hadron Collider
- Future Hadron Colliders



- Best opportunity to study a wide range of precision measurements of pQCD and non-pQCD
- Two major proposals  $\rightarrow$  FCC-hh and SPPC with  $\sqrt{s} = 100$  TeV and 25 ab<sup>-1</sup>
- Breakthroughs in accelerator technology, detector design, and physics object reconstruction

V. Miralles

## Measurements $\alpha_s$

## World average

- $\alpha_s(M_Z) = 0.1179 \pm 0.0009 (\pm 0.8\%)$
- Hadronic tau decay  $\alpha_{\rm s}({\rm M_Z}) = 0.1178 \pm 0.0019 \ (\pm 1.6\%)$
- Quarkonia  $lpha_s(M_Z) = 0.1181 \pm 0.037 (\pm 3.3\%)$
- DIS and PDFs fits  $\alpha_s(M_Z) = 0.1162 \pm 0.0020 (\pm 1.7\%)$
- $e^+e^- \to had.$  final states  $\alpha_s(M_Z) = 0.1171 \pm 0.0031 (\pm 2.6\%)$
- Hadron collider measurements  $\alpha_s(M_Z) = 0.1165 \pm 0.0028 (\pm 2.4\%)$
- Electroweak precision fits  $\alpha_s(M_Z) = 0.1208 \pm 0.0028 (\pm 2.3\%)$
- Lattice-QCD  $\alpha_s(M_Z) = 0.1182 \pm 0.0008 (\pm 0.7\%)$



V. Miralles

## Measurements $\alpha_s$

|                                  | Relative $\alpha_s m Z$ uncertainty                    |                                                                                   |  |  |
|----------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|
| Method                           | Current                                                | Near (long-term) future                                                           |  |  |
|                                  | theory & exp. uncertainties sources                    | theory & experimental progress                                                    |  |  |
| (1) Lattino                      | 0.7%                                                   | $\approx 0.3\% (0.1\%)$                                                           |  |  |
| (1) Lattice                      | Finite lattice spacing & stats.                        | Reduced latt. spacing. Add more observables                                       |  |  |
|                                  | N <sup>2,3</sup> LO pQCD truncation                    | Add N <sup>3,4</sup> LO, active charm (QED effects)                               |  |  |
|                                  |                                                        | Higher renorm. scale via step-scaling to more observ.                             |  |  |
| (2) = doceve                     | 1.6%                                                   | < 1.%                                                                             |  |  |
| (2) 7 decays                     | N <sup>3</sup> LO CIPT vs. FOPT diffs.                 | Add N <sup>4</sup> LO terms. Solve CIPT–FOPT diffs.                               |  |  |
|                                  | Limited $\tau$ spectral data                           | Improved $\tau$ spectral functions at Belle II                                    |  |  |
| (2) $O\bar{O}$ hound states      | 3.3%                                                   | $\approx 1.5\%$                                                                   |  |  |
| (3) QQ bound states              | N <sup>2,3</sup> LO pQCD truncation                    | Add N <sup>3,4</sup> LO & more $(c\overline{c})$ , $(b\overline{b})$ bound states |  |  |
|                                  | $m_{c,b}$ uncertainties                                | Combined $m_{c,b} + \alpha_s$ fits                                                |  |  |
| (4) DIS & PDF fite               | 1.7%                                                   | $\approx 1\%$ (0.2%)                                                              |  |  |
| (4) DIS & I DI IIIS              | N <sup>2,(3)</sup> LO PDF (SF) fits                    | $N^{3}LO$ fits. Add new SF fits: $F_{2}^{p,d}$ , $g_{i}$ (EIC)                    |  |  |
|                                  | Span of PDF-based results                              | Better corr. matrices, sampling of PDF solutions.                                 |  |  |
|                                  |                                                        | More PDF data (EIC/LHeC/FCC-eh)                                                   |  |  |
| (5) $e^+e^-$ jote fr out shapped | 2.6%                                                   | $\approx 1.5\% \ (< 1\%)$                                                         |  |  |
| (b) e e jets & evt snapes        | NNLO+N <sup>(1,2,3)</sup> LL truncation                | Add N <sup>2,3</sup> LO+N <sup>3</sup> LL, power corrections                      |  |  |
|                                  | Different NP analytical & PS corrs.                    | Improved NP corrs. via: NNLL PS, grooming                                         |  |  |
|                                  | Limited datasets w/ old detectors                      | New improved data at B factories (FCC-ee)                                         |  |  |
| (6) Electroweak fits             | 2.3%                                                   | $(\approx 0.1\%)$                                                                 |  |  |
| (0) Electroweak hts              | N <sup>3</sup> LO truncation                           | N <sup>4</sup> LO, reduced param. uncerts. ( $m_{W,Z}$ , $\alpha$ , CKM)          |  |  |
|                                  | Small LEP+SLD datasets                                 | Add W boson. Tera-Z, Oku-W datasets (FCC-ee)                                      |  |  |
| (7) Hadron colliders             | 2.4%                                                   | $\approx 1.5\%$                                                                   |  |  |
| (7) Hadron conders               | NNLO(+NNLL) truncation, PDF uncerts.                   | N <sup>3</sup> LO+NNLL (for color-singlets), improved PDFs                        |  |  |
|                                  | Limited data sets $(t\bar{t}, W, Z, e-p \text{ jets})$ | Add more datasets: Z $p_{\rm T},$ p-p jets, $\sigma_i/\sigma_j$ ratios,           |  |  |
| World average                    | 0.8%                                                   | $\approx 0.4\% \; (0.1\%)$                                                        |  |  |

V. Miralles

| TOPIC                                 | STATUS, Snowmass'2013                                  | STATUS, Snowmass'2021                                          |
|---------------------------------------|--------------------------------------------------------|----------------------------------------------------------------|
| Achieved accuracy of PDFs             | $N^{2}LO$ for evolution, DIS and vector                | N <sup>2</sup> LO for all key processes; N <sup>3</sup> LO for |
|                                       | boson production                                       | some processes                                                 |
| PDFs with NLO EW                      | MSTW'04 QED, NNPDF2.3 QED                              | LuXQED and other photon PDFs                                   |
| contributions                         |                                                        | from several groups; PDFs with                                 |
|                                       |                                                        | leptons and massive bosons                                     |
| PDFs with resummations                | Small x (in progress)                                  | Small-x and threshold resummations                             |
|                                       |                                                        | implemented in several PDF sets                                |
| Available LHC processes to            | $W/Z$ , single-incl. jet, high- $p_T Z$ , $t\bar{t}$ , | $+$ $t\bar{t}$ , single-top, dijet, $\gamma/W/Z$ +jet,         |
| determine nucleon PDFs                | W + c production at 7 and 8 TeV                        | low-Q Drell Yan pairs, at 7, 8, 13                             |
|                                       |                                                        | TeV                                                            |
| Current, planned & proposed           | LHC Run-2                                              | LHC Run-3, HL-LHC                                              |
| experiments to probe PDFs             | DIS: LHeC                                              | DIS: EIC, LHeC, MuIC,                                          |
| Benchmarking of PDFs for the          | PDF4LHC'2015 recommendation in                         | PDF4LHC'21 recommendation                                      |
| LHC                                   | preparation                                            | issued                                                         |
| Precision analysis of specialized     |                                                        | Transverse-momentum dependent                                  |
| PDFs                                  |                                                        | PDFs, nuclear, meson PDFs                                      |
|                                       | NEW TASKS in the HL-LHC                                | ERA                                                            |
| Obtain complete N <sup>2</sup> LO and | Improve models for correlated                          | Find ways to constrain large-x PDFs                            |
| N <sup>3</sup> LO predictions for     | systematic errors                                      | without relying on nuclear targets                             |
| PDF-sensitive processes               |                                                        |                                                                |
| Develop and benchmark fast            | Estimate N <sup>2</sup> LO/N <sup>3</sup> LO theory    | New methods to combine PDF                                     |
| N <sup>2</sup> LO interfaces          | uncertainties                                          | ensembles, estimate PDF                                        |
|                                       |                                                        | uncertainties, deliver PDFs for                                |
|                                       |                                                        | applications                                                   |

## Parton Distribution Functions: State of the art

## Hadronisation and fragmentation functions: Future Facilities

- To reach the new level of precision a better understanding of hadronisation is required
- Increasing the precision of the MCEG requires a model for correlated production of multiple hadrons → Belle II becomes a level arm
- EIC will provide a solid ground for phenomenological analysis to obtain transverse-momentum dependent PDFs and FFs
- Nonperturbative uncertainties from final-state hadronic effects can be reduced with FCC-ee data

# Top-quark physics and heavy flavour production

## Introduction



## Top-quark mass

- A precision in the top-quark mass of 100 MeV corresponds to a precision of W boson of about 1 MeV
- The top-quark mass is not a physical parameter and depends on the renormalisation scheme
- Most NLO and NNLO calculations are only available in a particular scheme
- The on-shell condition has an intrinsic renormalon ambiguity of 110 to 250 MeV
- The most precise measurements are done in the MC scheme
- The relation with the  $m_t^{MC}$  with other well defined schemes is not known with high enough precision
- Top-quark mass measurement in a well defined scheme rely on measuring cross-sections that depend on the mass

## Top-quark mass: Measurements

Direct top-quark mass measurements at hadron colliders

- Obtained from direct reconstruction of the top decay products
- Top-quark mass measured in the Monte Carlo scheme  $(m_t^{
  m MC})$
- Issues in the universality of the results between different MCs
- Difficulties in the interpretation in terms of well-defined mass schemes
- $m_t^{
  m MC}$  and  $m_t^{
  m pole}$  differ by 500-200 MeV
- Need further precision when HL-LHC measurements are available

| $\delta m_t^{MC}$ [MeV]         | Tevatron | LHC   |       |       |     |       | HL-LHC |
|---------------------------------|----------|-------|-------|-------|-----|-------|--------|
|                                 |          | Run 1 |       | Run 2 |     | Run 3 |        |
|                                 |          | ATLAS | CMS   | ATLAS | CMS |       |        |
| $\sqrt{s}  [\text{TeV}]$        | 1.96     | 7,8   | 7,8   | 13    | 13  | 13.6  | 14     |
| $\mathcal{L}[\mathrm{fb}^{-1}]$ | 9.7      | 5, 20 | 5, 20 | 36    | 36  | 300   | 3,000  |
| Statistical uncert.             | 350      | 250   | 130   | 400   | 40  | 40    | 20     |
| Systematic uncert.              | 540      | 410   | 470   | 670   | 380 | 300   | 170    |
| Total uncert.                   | 650      | 480   | 480   | 780   | 380 | 310   | 170    |

V. Miralles

## Top-quark mass: Measurements

Indirect top-quark mass measurements at hadron colliders

- Obtained from measuring cross sections sensitive to the top mass
- Methods usually rely on the total inclusive  $t\bar{t}$  production cross section based on NNLO QCD calculations
- Huge sensitivity on  $\alpha_s$  and the gluon PDFs which produce the leading uncertainty
- Using differential cross sections increases the sensitivy on the top mass  $\rightarrow$  Needs increasing the precision on the theoretical predictions
- The  $t\bar{t}$  invaraint mass distribution is highly sensitive to the top mass in the threshold region

| $\delta m_t^{pole}$ [GeV]       | Tevatron | LHC Run 1 | LHC Run $2$ | LHC Run $3$ | HL-LHC |
|---------------------------------|----------|-----------|-------------|-------------|--------|
| $\sqrt{s}  [\text{TeV}]$        | 1.96     | 7/8       | 13          | 13.6        | 14     |
| $\mathcal{L}[\mathrm{fb}^{-1}]$ | 10       | 20        | 140         | 300         | 3,000  |
| Experimental uncertainty        | 2.2      | 1.0       | 0.8         | 0.5         | 0.5    |
| Theoretical uncertainty         | 1.4      | 0.7       | 1.0         | 0.5         | 0.25   |
| Total uncertainty               | 2.5      | 1.2       | 1.3         | 0.71        | 0.56   |

V. Miralles

## Top-quark mass: Measurements

#### <u>Measurements at $e^+e^-$ colliders</u>

- $\bullet\,$  The methods developed at LHC can be used  $\rightarrow\,$  cleaner hadronic enviroment
- Dependence on PDF is replaced by the one on the beam's luminosity spectrum
- Threshold scan method becomes extremely promising

| $\delta m_t^{\rm PS}$ [MeV]           | ILC     | CLIC      | FCC-ee  |
|---------------------------------------|---------|-----------|---------|
| $\mathcal{L}[\mathrm{fb}^{-1}]$       | 200     | 100 [200] | 200     |
| Statistical uncertainty               | 10      | 20 [13]   | 9       |
| Theoretical uncertainty (QCD)         |         | 40 - 45   |         |
| Parametric uncertainty $\alpha_s$     | 26      | 26        | 3.2     |
| Parametric uncertainty $y_t$ (HL-LHC) | ) 5     |           |         |
| Non-resonant contributions            | < 40    |           |         |
| Experimental systematic uncertainty   | 1       | 5 - 30    | 11 - 20 |
| Total uncertainty                     | 40 - 75 |           |         |

## Top-quark production

- At LHC the top-quark is predominantly produced in  $t\overline{t}$  pairs
- The N<sup>3</sup>LO QCD corrections are not available yet but aN<sup>3</sup>LO including third-order soft-gluon corrections from NNLL resumation
- Single production provides an opportunity for direct studies of EW properties of the top-quark
- The sensitivity of the single top production to the CKM can be enhanced measuring rations
- At lepton colliders single top production is produced through lepton-photon scattering (could be observed above 0.5 TeV)

| K-factors for $t\bar{t}$ production in $pp$ collisions |       |              |         |                 |               |               |               |                 |
|--------------------------------------------------------|-------|--------------|---------|-----------------|---------------|---------------|---------------|-----------------|
| K-factor                                               | 7 TeV | $8 { m TeV}$ | 13  TeV | $13.6 { m TeV}$ | $14 { m TeV}$ | $27 { m TeV}$ | $50 { m TeV}$ | $100~{\rm TeV}$ |
| NLO/LO                                                 | 1.47  | 1.48         | 1.50    | 1.50            | 1.50          | 1.52          | 1.55          | 1.58            |
| NNLO/LO                                                | 1.65  | 1.66         | 1.67    | 1.67            | 1.67          | 1.69          | 1.71          | 1.75            |
| aN <sup>3</sup> LO/LO                                  | 1.72  | 1.72         | 1.72    | 1.72            | 1.72          | 1.73          | 1.75          | 1.78            |
| aNLO/NLO                                               | 1.01  | 1.00         | 0.99    | 0.99            | 0.99          | 0.97          | 0.95          | 0.92            |
| aNNLO/NNLO                                             | 1.01  | 1.01         | 1.00    | 1.00            | 1.00          | 1.00          | 0.99          | 0.98            |

## Top-quark production: $pp \rightarrow t\bar{t}X$

- The measurements at HL-LHC could only be beat by high-energy lepton colliders and future hadron colliders
- $pp \rightarrow t\bar{t}j$ : First steps towards NNLO QCD corrections for on-shell production
- $pp \rightarrow t\bar{t}\gamma$ : Challenging due to the decay  $t \rightarrow Wb\gamma$  which generates up to 50% of the signal. NNLO QCD necessary to exploit the potential of the future data set
- $pp \rightarrow t\bar{t}Z$ : Current measurements already at the accuracy of theoretical predictions at NLO+NNLL
- $pp \rightarrow t\bar{t}H$ : Efforts to extend the inclusive production to NNLO QCD necessary for HL-LHC data
- $pp \rightarrow t\bar{t}W$ : NNLO QCD corrections for the production part are needed for the HL-LHC run
- $pp \rightarrow t\bar{t}t\bar{t}$ : Hard to imagine that NNLO QCD corrections necessary to match the 10% accuracy of HL-LHC are available soon.

## SMEFT operators relevant for the top-quark



## Observables from current colliders (LEP/SLC, Tevatron, LHC run 1 & 2) • Here we show the observables included that have been measured in

 Here we show the observables included that have been measured in the actual colliders

| Process                                        | Observable                          | $\sqrt{s}$    | $\int \mathscr{L}$         | Experiment |
|------------------------------------------------|-------------------------------------|---------------|----------------------------|------------|
| $pp \rightarrow t \overline{t}$                | $d\sigma/dm_{t\bar{t}}$ (15+3 bins) | 13 TeV        | 140 fb <sup>-1</sup>       | CMS        |
| $pp \rightarrow t  \overline{t}$               | $dA_C/dm_{t\bar{t}}$ (4+2 bins)     | 13 TeV        | 140 fb <sup>-1</sup>       | ATLAS      |
| $pp \rightarrow t \overline{t} Z$              | $d\sigma/dp_T^Z$ (7 bins)           | 13 TeV        | 140 fb <sup>-1</sup>       | ATLAS      |
| $ ho p  ho 	o t \overline{t} \gamma$           | $d\sigma/dp_T^\gamma$ (11 bins)     | 13 TeV        | 140 fb <sup>-1</sup>       | ATLAS      |
| $pp \rightarrow t  \overline{t}  H + t H q$    | σ                                   | 13 TeV        | 140 fb <sup>-1</sup>       | ATLAS      |
| $pp \rightarrow tZq$                           | σ                                   | 13 TeV        | 77.4 fb <sup>-1</sup>      | CMS        |
| $pp \rightarrow t \gamma q$                    | σ                                   | 13 TeV        | 36 fb <sup>-1</sup>        | CMS        |
| $pp \rightarrow t  \overline{t}  W$            | σ                                   | 13 TeV        | 36 fb <sup>-1</sup>        | CMS        |
| $ ho p  ho  ightarrow t  ar{b}   (	ext{s-ch})$ | σ                                   | 8 TeV         | 20 fb <sup>-1</sup>        | LHC        |
| $pp \rightarrow tW$                            | σ                                   | 8 TeV         | 20 fb <sup>-1</sup>        | LHC        |
| pp  ightarrow tq (t-ch)                        | σ                                   | 8 TeV         | 20 fb <sup>-1</sup>        | LHC        |
| $t \rightarrow Wb$                             | Fo, FL                              | 8 TeV         | 20 fb <sup>-1</sup>        | LHC        |
| $ ho ar{ ho}  ightarrow t ar{b}$ (s-ch)        | σ                                   | 1.96 TeV      | 9.7 fb <sup>-1</sup>       | Tevatron   |
| $e^-e^+  ightarrow b ar{b}$                    | $R_b$ , $A_{FBLR}^{bb}$             | $\sim$ 91 GeV | $202.1 \ \mathrm{pb^{-1}}$ | LEP/SLD    |

### Current constraints vs expected HL-LHC constraints Shadowed (solid) bars →marginalised from global (individual) fit



V. Miralles

## Measurements at $e^+e^-$ colliders: $b\bar{b}$ production

| Machine             | Polarisation                                                                                     | Energy      | Luminosity                    | Observable  |
|---------------------|--------------------------------------------------------------------------------------------------|-------------|-------------------------------|-------------|
|                     | $D(z^{+}, z^{-}) = (200/z^{+} 200/z^{+})$                                                        | 250 GeV     | 2 ab <sup>-1</sup>            | σ-          |
| ILC                 | $P(e^+, e^-):(-30\%, +80\%)$                                                                     | 500 GeV     | 4 ab <sup>-1</sup>            | <br>        |
|                     | $P(e^+, e^-):(+30\%, -80\%)$                                                                     | 1 TeV       | 8 ab <sup>-1</sup>            | AFB         |
| CLIC                | P(e <sup>+</sup> , e <sup>-</sup> ):(0%, +80%)<br>P(e <sup>+</sup> , e <sup>-</sup> ):(0%, -80%) | 380 GeV     | 2 ab <sup>-1</sup>            | σ-          |
|                     |                                                                                                  | 1.5 TeV     | 2.5 ab <sup>-1</sup>          | 0 <u>66</u> |
|                     |                                                                                                  | 3 TeV       | 5 ab <sup>-1</sup>            | AFB         |
|                     |                                                                                                  | Z-pole      | $57.5/150 \ \mathrm{ab}^{-1}$ | σ-          |
| CEPC/FCC- <i>ee</i> | Unpolarised                                                                                      | 240 GeV     | $20/5 \text{ ab}^{-1}$        | <br>        |
|                     |                                                                                                  | 360/365 GeV | $1/1.5 \ { m ab}^{-1}$        | AFB         |

- These observables set constraints on the EW precision observables  $C^+_{\phi Q} = C^1_{\phi Q} + C^3_{\phi Q}$  and  $C_{\phi b}$
- Also relevant for 2-quark 2-lepton operators  $C_{IQ}^+$ ,  $C_{Ib}$  and  $C_{eb}$
- The higher-energy measurement are more relevant for the 2-quark 2-lepton operators

## Measurements at $e^+e^-$ colliders: $t\bar{t}$ production

| Machine | Polarisation                                     | Energy  | Luminosity             | Observable  |  |
|---------|--------------------------------------------------|---------|------------------------|-------------|--|
|         | P(e <sup>+</sup> , e <sup>-</sup> ):(-30%, +80%) | 500 GeV | 4 ab <sup>-1</sup>     | Optimal     |  |
|         | P(e <sup>+</sup> , e <sup>-</sup> ):(+30%, -80%) | 1 TeV   | 8 ab <sup>-1</sup>     | Observables |  |
| CLIC    | $P(e^+, e^-):(0\%, +80\%)$                       | 380 GeV | 2 ab <sup>-1</sup>     | Ontimal     |  |
|         |                                                  | 1.5 TeV | 2.5 ab <sup>-1</sup>   | Observables |  |
|         | P(e', e):(0%, -80%)                              | 3 TeV   | 5 ab <sup>-1</sup>     | Observables |  |
|         | Unnolarised                                      | 350 GeV | 0.2 ab <sup>-1</sup>   | Optima      |  |
|         | Unpolatised                                      | 365 GeV | $1/1.5 \ { m ab}^{-1}$ | Observables |  |

- Optimal observables maximally exploit the information in the fully differential  $e^+e^- \rightarrow t\bar{t} \rightarrow bW^+\bar{b}W^-$  distribution
- These constrain the 2-fermion operators  $C^-_{\varphi Q}$ ,  $C_{\varphi t}$ ,  $C_{tW}$  and  $C_{tZ}$
- Also the 2-quark 2-lepton operators  $C_{IQ}^-$ ,  $C_{It}$ ,  $C_{et}$  and  $C_{eQ}$
- With these we eliminate blind directions in the  $\,C^{(1)}_{arphi Q} C^{(3)}_{arphi Q}$  plane
- Two different energies above the tt threshold are needed to constrain all the 2- and 4-fermion operators

V. Miralles

## Measurements at $e^+e^-$ colliders: $t\bar{t}H$ production

| Machine | Polarisation                                     | Energy      | Luminosity         | Observable    |
|---------|--------------------------------------------------|-------------|--------------------|---------------|
| ШС      | P(e <sup>+</sup> , e <sup>-</sup> ):(-30%, +80%) | 500/550 GeV | 4 ab <sup>-1</sup> | Inclusive     |
|         | P(e <sup>+</sup> , e <sup>-</sup> ):(+30%, -80%) | 1 TeV       | 8 ab <sup>-1</sup> | cross section |
|         | P(e+, e-):(0%, +80%)                             | 15 TaV      | 25 ab-1            | Inclusive     |
|         | P(e+, e-):(0%, -80%)                             | 1.5 160     | 2.J ab             | cross section |

- Essential measurement in order to improve the limits on the top-quark Yukawa
- The effect of an ILC run at 550 GeV has been studied
- At ILC550 the production cross section increases a factor of 3 w.r.t. ILC500 improving the statistical sensitivity by more than a 50%
- ILC550 and CLIC1500 have a similar sensitivity as HL-LHC
- ILC1000 improves the expected HL-LHC sensitivity by a factor of two

## Expected constraints for different $e^+e^-$ operation energies



V. Miralles

Snowmass Energy Frontier: An Overview

20 / 23

## Comparison of future colliders



V. Miralles

Top-quark Yukawa coupling uncertainties

| Values in % units |            | LHC  | HL-LHC | ILC500 | ILC550 | ILC1000 | CLIC |
|-------------------|------------|------|--------|--------|--------|---------|------|
| $\delta y_t$      | Global fit | 6.12 | 2.53   | 1.57   | 1.30   | 0.739   | 1.48 |
|                   | Indiv. fit | 5.08 | 1.85   | 1.41   | 1.17   | 0.705   | 1.26 |

- Since the sensitivity at ILC500 is worse than in HL-LHC there is no a huge improvement for the individual constraint
- For the global fit the improvement is relevant even for ILC500, thanks to constraining the Yukawa with more than one observable
- Increasing the energy by 50 GeV provides an important improvement in the constraints thanks to the growth in the cross section
- Similar results are found for CLIC
- An improvement higher than a factor of 2.5 would be obtain at the final stage of ILC w.r.t. the HL-LHC

## Summary

- The potential of the future facilities to improve our knowledge of QCD have been summarised
- The EIC machine will be crutial in reducing the uncertainties on the PDFs and a possible FPF could cover additinal regions
- Many advancements on determining  $\alpha_s$  and the inclusion of higher corrections is expected for the next decades
- For the top-quark a better understainding of the relation of the MC mass and the masses on well-defined schemes is needed
- With a high-energy lepton collider a precise measurement in a well-defined scheme would be possible
- More QCD corrections should be included in the production processes to guarantee that the theoretical error does not dominate the total uncertainty in the HL-LHC
- Lepton colliders working above the  $t\bar{t}$  threshold are needed to significantly reduce the error on the top-quark EW couplings
- Significant improvements for the limits on the top-quark yukawa are found when operating above 550 GeV

# Thank you!