Concluding remarks

Andreas Athenodorou Maria Paola Lombardo Andrea Shindler

Neutron Electric Dipole Moment: from theory to experiment

August 1-5, 2022

Experiments

Experiment	Location	UCN source	Features		
n2EDM	PSI	Spallation, SD_2	Ramsey method, double cell, ¹⁹⁹ Hg		
			comagnetometer		
PanEDM	ILL	Reactor, LHe	Ramsey method, double cell, ¹⁹⁹ Hg		
			comagnetometer		
LANL nEDM	LANL	Spallation, SD_2	Ramsey method, double cell, ¹⁹⁹ Hg		
			comagnetometer		
Tucan	TRIUMF	Spallation, LHe	Ramsey method, double cell, ¹²⁹ Xe		
			comagnetometer		
nEDM@SNS	ORNL	In-situ production	Cryogenic, double cell, ³ He comagne-		
		in LHe	tometer, 3 He as the spin analyzer		

Smith, Purcell, Ramsey		PSI
$d_{\rm n} < 5 \times 10^{-20} {\rm e} {\rm cm}$	~ 60 years	$d_{n} < 1.8 \times 10^{-26} \mathrm{e} \mathrm{cm} (90\% \mathrm{C.L.})$
PR 108 (1957) 120		Abel C. et al. PRL124 (2020) 081803

Leung: The nEDM @ Spallation Neutron Source experiment: our novel approach and other physics reach

Schmidt-Wellenburg: The most stringent limit on the nEDM and future improvements at PSI

Experiments

Piegsa: BeamEDM – A beam experiment to search for the neutron electric dipole moment

 $\pmb{\sigma}(\pmb{d}_n) pprox \pmb{5} imes \pmb{10}^{-26}$ e cm per day

Performed proof-of-principle experiments at PSI and ILL

Future competitive full-scale experiment intended for ESS

• Axion-like particles couple with gluons to induce an oscillating nEDM signal [Abel et al., Phys. Rev. X 7, 041034 (2017)]:

$$\omega_n(t) = |\gamma_n| B_0 \pm \frac{2d_n|E|}{\hbar} + \frac{2|E|\alpha_{\rm ax}}{\hbar} \cos(\omega_{\rm ax}t + \phi_{\rm ax}) \qquad \text{phase (free parameter in analysis)} \\ \omega \approx m_a c^2/\hbar, \text{ Axion-field coherently oscillates}$$

Degenkolb: Updates on the PanEDM experiment and future outlook

			\frown	
SuperSUN	Phase I			PanEDM is moving forward
Saturated source				
density [cm ⁻³]	330	E ≈ 2 IVIV/m T ≈ 250 c		
Diluted density [cm ⁻³]	63	7 ≈ 250 S	\frown	
Density in cells [cm ⁻³]	3.9	u ≈ 0.85	(2)	Comagnetometry is very hard
PanEDM Sensitivity $[1\sigma, e \text{ cm}]$		Transfer losses		
Per run	5.5×10^{-25}	including dilution:		
Per day	3.8×10^{-26}	97-99% (for filling)	\frown	
Per 100 days	3.8×10^{-27}		3	Statistics can be improved!
				(systematics not yet clear)

Experiments

Ito: The LANL nEDM Experiment

- MSR was delivered in January 2022. It meets performance requirements. More detailed characterization is necessary.
- nEDM apparatus is being assembled.
- We plan to start an engineering run this summer.
 - · We will start with confirming UCN transport and storage.

Theory review

Ramsey-Musolf: EDMs and Baryogenesis

- Provide a context for drawing implications of EDM measurements for the cosmic baryon asymmetry
- Explain how electroweak baryogenesis works
- Review recent theoretical developments in EWBG and corresponding phenomenological implications

Covi: Cosmological implications of the Neutron Electric Dipole Moment

- Electroweak baryogenesis remains a theoretically attractive, phenomenologically viable, and experimentally testable scenario
- Collider & gravitational wave searches probe the "pre-conditions" for successful EWBG
 - EDMs remain the most powerful probe of the necessary CPV for EWBG
 - Considerable challenges remain at the "theory frontier" to achieve the most robust confrontation of EWBG with experiment

Cosmological implications of nEDM New model where PQ is an accidental symmetry of a new gauged U(1) symmetry

The axion can be DM if there are many exotic quarks, otherwise the RH neutrino can be a FIMP

Theory review

D'Elia: Theta Dependence of QCD and QCD-like Theories

 $b_2 = -0.193(10)/N_c^2$

Piegsa: BeamEDM – A beam experiment to search for the neutron electric dipole moment

• introduce a suitable defect (M. Hasenbusch 1706.04443, C. Bonanno et al 2205.06190) : computationally expensive

•Problem: given a lattice field $\{U_l\}_0$, how to calculate its physical density Q(x)?

 \implies Some extra methods: 'repetition', blocking, smearing

Theory review

Meißner: Aspects of strong CP violation

- Calculated the θ -dependence of hadron masses and couplings
- Decreasing neutron lifetime for increasing heta, dramatic for $heta \gtrsim 2.0$
- Deuteron stronger bound, dineutron & diproton bound for $heta \gtrsim 0.2$ & $heta \gtrsim 0.7$
- Binding energies of ³H, ³He and ⁴He also increase
- BBN: ⁴He mass fraction drops off for $heta \gtrsim 1.0$
- Stellar evolution: still hydrogen burning, reaction rates of 3α process affected \hookrightarrow lack of ¹⁶O for $\theta \gtrsim 0.1$
- Constraints on θ from nucleosynthesis, as long as $\theta \lesssim 0.1,$ the Universe is not much altered
- \hookrightarrow anthropic principle not at work to explain the tiny heta

$$\sigma(aN o \pi N) pprox rac{F_\pi^2}{f_a^2} \sigma(\pi N o \pi N)$$

Pion axioproduction $10^{-1} - 10^{-5}$ suppressed

CP-violation strong interactions

Tamarit: Cluster decomposition, the index theorem, and the strong CP problem

Garbrecht: Fermion correlations and absence of CP violation in the strong interactions

$$\mathcal{L}_{\text{pion}} = \frac{1}{4} f_{\pi}^{2} \text{Tr} D_{\mu} U D^{\mu} U^{\dagger} + (a f_{\pi}^{3} \text{Tr} M U + |b|e^{-i\xi} f_{\pi}^{4} \det U + \text{h.c.}) |d_{n}| \propto (\xi + \alpha_{u} + \alpha_{d} + \alpha_{s})$$

$$|d_{n}| \propto (\xi + \alpha_{u} + \alpha_{d} + \alpha_{s})$$
It is generally thought that $\xi = \theta$ [Baluni, Crewther et al]
Only real computation that we know of is `t Hooft's, using dilute instanton gas and yielding $\xi = \theta$ (\rightarrow CP violation)
$$\frac{1}{\sqrt{T} \int d^{4}x \langle \bar{\psi}_{l} P_{L} \psi \rangle} = \lim_{N \to \infty} \lim_{\substack{N \to \infty \\ \Delta m = -N}} \sum_{\substack{n \to \infty \\ \Delta m = -N}}^{2} \frac{1}{\sqrt{T}} \int d^{4}x \langle \bar{\psi}_{l} P_{L} \psi \rangle_{\Delta m}} = \frac{2}{2m_{c} \partial_{m,m_{1}} \beta(m_{k} m_{k}^{*})}, \\ \frac{1}{\sqrt{T}} \int d^{4}x \langle \bar{\psi}_{l} P_{L} \psi \rangle = \lim_{N \to \infty \\ \Delta m = -N} \sum_{\substack{n \to \infty \\ \Delta m = -N}}^{2} \frac{1}{\sqrt{T}} \int d^{4}x \langle \bar{\psi}_{l} P_{L} \psi \rangle_{\Delta m}} = \frac{2}{2m_{c} \partial_{m,m_{1}} \beta(m_{k} m_{k}^{*})}, \\ \frac{1}{\sqrt{T}} \int d^{4}x \langle \bar{\psi}_{l} P_{L} \psi \rangle = \lim_{N \to \infty \\ \Delta m = -N} \sum_{\substack{n \to \infty \\ \Delta m = -N}}^{2} \frac{1}{\sqrt{T}} \int d^{4}x \langle \bar{\psi}_{l} P_{L} \psi \rangle_{\Delta m}} = \frac{2}{2m_{c} \partial_{m,m_{1}} \beta(m_{k} m_{k}^{*})}, \\ \frac{1}{\sqrt{T}} \int d^{4}x \langle \bar{\psi}_{l} P_{L} \psi \rangle = \lim_{N \to \infty \\ \Delta m = -N} \sum_{\substack{n \to \infty \\ \Delta m = -N}}^{2} \frac{2}{\sqrt{T}} \int d^{4}x \langle \bar{\psi}_{l} P_{L} \psi \rangle_{\Delta m}} = \frac{2}{2m_{c} \partial_{m,m_{1}} \beta(m_{k} m_{k}^{*})}, \\ \frac{1}{\sqrt{T}} \int d^{4}x \langle \bar{\psi}_{l} P_{L} \psi \rangle = \lim_{N \to \infty \\ \Delta m = -N} \sum_{\substack{n \to \infty \\ \Delta m = -N}}^{2} \frac{2}{\sqrt{T}} \int d^{4}x \langle \bar{\psi}_{l} P_{L} \psi \rangle_{\Delta m}} = \frac{2}{2m_{c} \partial_{m,m_{1}} \beta(m_{k} m_{k}^{*})}, \\ \frac{1}{\sqrt{T}} \int d^{4}x \langle \bar{\psi}_{l} P_{L} \psi \rangle = \lim_{N \to \infty \\ \Delta m = -N} \sum_{\substack{n \to \infty \\ \Delta m = -N}}^{2} \frac{2}{\sqrt{T}} \int d^{4}x \langle \bar{\psi}_{l} P_{L} \psi \rangle = \lim_{N \to \infty \\ \Delta m = -N} \sum_{\substack{n \to \infty \\ \Delta m = -N}}^{2} \frac{2}{\sqrt{T}} \int d^{4}x \langle \bar{\psi}_{l} P_{L} \psi \rangle = \lim_{N \to \infty \\ \Delta m = -N} \sum_{\substack{n \to \infty \\ \Delta m = -N}}^{2} \frac{2}{\sqrt{T}} \int d^{4}x \langle \bar{\psi}_{l} P_{L} \psi \rangle = \lim_{N \to \infty \\ \Delta m = -N} \sum_{\substack{n \to \infty \\ \Delta m = -N}}^{2} \frac{2}{\sqrt{T}} \int d^{4}x \langle \bar{\psi}_{l} P_{L} \psi \rangle = \lim_{N \to \infty \\ \Delta m = -N} \sum_{\substack{n \to \infty \\ \Delta m = -N}}^{2} \frac{2}{\sqrt{T}} \int d^{4}x \langle \bar{\psi}_{l} P_{L} \psi \rangle = \lim_{N \to \infty \\ \Delta m = -N} \sum_{\substack{n \to \infty \\ \Delta m = -N}}^{2} \frac{2}{\sqrt{T}} \int d^{4}x \langle \bar{\psi}_{l} P_{L} \psi \rangle = \lim_{N \to \infty \\ \Delta m = -N} \sum_{\substack{n \to \infty \\ \Delta m = -N}}^{2} \frac{2}{\sqrt{T}} \int d^{4}x \langle \bar{\psi}_{l} P_{L} \psi \rangle = \lim_{N \to \infty \\ \Delta$$

Next we proceed to calculate the phase of QCD correlators starting from the path integral and using clustering and the index theorem.

CP-violation strong interactions

Schierholz: Neutron electric dipole moment from QCD?

• In this talk I will investigate the long-distance properties of the theory in the presence of the θ term, S_{θ} , and show that CP is naturally conserved in the confining phase

Alexandrou: Neutron electric dipole moment using lattice QCD

• $g_T^u = 0.784(28)(10), g_T^d = -0.204(11)(10), g_T^s = -0.0027(16)$ [PNDME 18B]

Liu: Neutron Electric Dipole Moment from the Theta Term with Overlap Fermions

 $d_n = 0.00123(32) \theta e \cdot fm$

Kim: QCD Theta term contribution to nEDM with Stabilized Wilson Fermion on the lattice

$$S_n = -1.7(3) \times 10^{-4} \bar{\theta} efm^3$$

Physics BSM with EDM

Mereghetti: Disentangling physics beyond the Standard Model with EDMs

CP-odd pion-nucleon couplings

Walker-Loud: Estimating CP-violating nucleon matrix elements from CP-conserving ones

[□]The strategy should be to perform simultaneous calculations and extrapolations of the nucleon mass splitting combined with EDMs

 \square Solution: do simultaneous extrapolation of M_N and g_A - this is in the works for us

 $g_A = 1.2711(125) \rightarrow 1.2641(93) [0.74\%]$

r-subtracted matrix element $-\frac{2}{f_{\pi}} \left(\langle p | \bar{q} \sigma_{\mu\nu} G_{\mu\nu} q | p \rangle_{latt} - r \langle p | \bar{q} q | p \rangle \right)$

Axion and QCD topology

Bonanno: The Peccei-Quinn axion and QCD topology

Thanks!!

Personal conclusion

- nEDM experiments will improve by factors 10 (5 years) to 100 (10 years)
- New techniques (SNS+Beam EDM)
- OP-violation on strong interactions —> need to clarify
- In the image of the image of
- Relevant for axion physics (DM)
- Lattice QCD: new results for theta-term + first results for qCEDM & gCEDM CP-odd couplings