The Peccei–Quinn axion and QCD topology

Istituto Nazionale di Fisica Nucleare

Speaker: C. BONANNO INFN FIRENZE claudio.bonanno@fi.infn.it

NEUTRON ELECTRIC DIPOLE MOMENT: FROM THEORY TO EXPERIMENT 01-05/08/2022 - ECT*, Trento

The strong-CP problem

QCD admits CP-violations by the topological term

$$S_{\text{QCD}} = S_{\text{YM}} + S_{\text{ferm}} \to S_{\text{QCD}}(\theta) = S_{\text{QCD}} + \theta Q$$
$$Q = \frac{1}{16\pi^2} \int \text{Tr} \left[G_{\mu\nu}(x) \widetilde{G}^{\mu\nu}(x) \right] d^4x \in \mathbb{Z}$$

Experimental measure of the neutron Electric Dipole Moment (nEDM) $|\vec{d_N}|$ puts the most stringent upper bound:

- $|\vec{d}_N| = |0.9 \pm 2.4| \cdot 10^{-3} |\theta| \ e \cdot \text{fm}$ (Lattice QCD Alexandrou et al., 2020)
- $|\vec{d}_N| = (2.9 \pm 0.9) \cdot 10^{-3} |\theta| \ e \cdot \text{fm}$ (ChPT Guo, Meißner, 2012)
- $|\vec{d}_N| \lesssim 1.8 \cdot 10^{-13} \ e \cdot \text{fm}$ (PSI measure Abel et al., 2020)

 $\implies \theta$ is either vanishing or unnaturally small: $|\theta| \lesssim 10^{-10}$.

Problem: $\theta = 0$ is special because $\operatorname{CP} Q = -Q$ $\implies S_{\operatorname{QCD}}(\theta)$ is invariant under CP only if $\theta = 0$ ($\theta = \pi \to \operatorname{SSB}$) \longrightarrow fine tuning issue known as strong-CP problem.

C. Bonanno (INFN Firenze) The Peccei–Quinn axion and QCD topology 05/08/22-ECT* 1/21

Possible solutions to the strong-CP problem

Several dynamical solutions to strong-CP problem have been proposed:

• If up quark has $m_u = 0$, under U(1)_A S_{QCD} gets just an anomalous variation:

$$u \rightarrow e^{i\gamma_5\alpha}u$$

S_{QCD}(θ) \rightarrow S_{QCD}(θ) - 2 α Q = S_{QCD}(θ - 2 α)

Choosing $2\alpha = \theta \rightarrow S_{\text{QCD}}(\theta) = S_{\text{QCD}}(\theta = 0)$. Ruled out by lattice results: $m_u = 2.14(8)$ MeV (FLAG Review 2021).

- Other dynamical solutions within QCD have been proposed (see, e.g., talks by B. Garbrecht, G. Schierholz and C. Tamarit in this workshop).
- Beyond Standard Model (SM) solutions such as the Peccei–Quinn axion.

The Peccei–Quinn axion

The axion solution (Peccei, Quinn, 1977; Weinberg, 1978; Wilczek, 1978) requires to supplement SM with few new ingredients:

- new global axial abelian symmetry $U(1)_{PQ}$,
- U(1)_{PQ} is spontaneously broken at $\sim f_a$,
- axion scale extremely large: $10^8 \text{ GeV} \lesssim f_a \lesssim 10^{12} \text{ GeV}.$

This simple recipe provides dynamical mechanism (PQ mechanism) to solve the strong-CP problem:

- new light pseudo Nambu-Goldstone boson: the PQ axion;
- by anomaly matching the term $\left(\frac{a}{f_a} \theta\right) q(x)$ is effectively generated at scales $\ll f_a$ (indep. of UV completions; see, e.g., talk by L. Covi);
- axion shift symmetry $a \underset{U(1)_{PQ}}{\rightarrow} a \alpha f_a$ relaxes $\theta = 0$ choosing $\alpha = \theta$.

Bonus: axion couplings to SM particles are suppressed as $f_a \implies$ axion is a possible Dark Matter candidate and may play an important cosmological role.

Axion cosmology

Evolution of the axion field a in the FLRW metric:

$$\ddot{a} + 3H\dot{a} + \frac{dV_{\text{eff}}(a)}{da} = 0, \qquad V_{\text{eff}}(a) = \frac{1}{2}m_a^2a^2 + \dots, \qquad H \equiv \frac{\dot{R}}{R} = \text{Hubble rate}$$

Define the temperature T_{osc} as $3H(T_{\text{osc}}) \equiv m_a(T_{\text{osc}})$:

- $T \gg T_{\text{osc}}$: friction term 3*H* dominates over mass term $m_a \rightarrow \theta = \theta_0 \neq 0$,
- $T \sim T_{\text{osc}}$: axion starts to feel the potential and descends towards the minimum (corresponding to $\theta = 0$) \rightarrow axion production;
- $T \ll T_{\text{osc}}$: mass term dominates over friction term \rightarrow decaying oscillations around the minimum $\rightarrow \theta = 0$ & axion number freezes.

Solving Einstein + axion equations gives Ω_a (axion energy density), which can account for (part of) the observed Dark Matter (DM) energy density.

Once $V_{\text{eff}}(a)$ (most importantly, the mass m_a) is plugged into the game, this procedure gives Ω_a as a function of f_a . Comparing Ω_a with the experimentally observed Ω_{DM} , one can put a theoretical bound on the axion scale f_a .

Axion physics and θ -dependence in QCD

The θ -dependent QCD free energy (density) can be expressed in terms of the Euclidean path integral:

$$f_{\rm QCD}(\theta) = -\frac{1}{V} \log \int [dA] e^{-S_{\rm YM} + i\theta Q} \prod_{f=1}^{N_f} \det \left\{ \not\!\!D + m_f \right\}.$$

By virtue of the interaction term proportional to the charge density:

$$\mathcal{L}_{\text{QCD}}(\theta) + \mathcal{L}_a = \mathcal{L}_{\text{QCD}} + \frac{1}{2} \partial_\mu a \partial_\mu a + i \left(\frac{a}{f_a} - \theta\right) q(x), \quad Q = \int q(x) \, d^4x,$$

the following relation holds (integrating out QCD sector):

$$V_{\text{eff}}(a) = f_{\text{QCD}}\left(\theta = \frac{a}{f_a}\right).$$

It is thus clear that theoretical predictions regarding axion cosmology need the QCD input about the θ -dependence of the QCD free energy.

Axion field cosmological evolution

Figure adapted from "Axion Cosmology Revisited", O. Wantz and E.P.S. Shellard, Phys. Rev. D 82 (2010) 123508 [arXiv:0910.1066]

θ -dependence of the free energy in QCD

The θ -dependent QCD free energy

$$f_{\rm QCD}(\theta) = -\frac{1}{V} \log \int [dA] e^{-S_{\rm YM} + i\theta Q} \prod_{f=1}^{N_f} \det \left\{ \not\!\!\!D + m_f \right\}$$

is an even function of θ that is usually parametrized as

$$f_{\rm QCD}(\theta) - f_{\rm QCD}(0) = \frac{1}{2} \chi \theta^2 \left(1 + b_2 \theta^2 + b_4 \theta^4 + \dots \right),$$
$$V_{\rm eff}(a) = \frac{1}{2} m_a^2 a^2 \left(1 + \lambda_2 a^2 + \lambda_4 a^4 + \dots \right).$$

The coefficients are related to the **cumulants** of the topological charge distribution at $\theta = 0$. For example:

$$\chi = \frac{\langle Q^2 \rangle}{V} \bigg|_{\theta=0} = \frac{m_a^2}{f_a^2} \qquad (\text{Topological Susceptibility})$$
$$b_2 = -\frac{1}{12} \frac{\langle Q^4 \rangle - 3 \langle Q^2 \rangle^2}{\langle Q^2 \rangle} \bigg|_{\theta=0} \qquad (\text{First non-quadratic correction})$$

C. Bonanno (INFN Firenze) The Peccei–Quinn axion and QCD topology 05/08/22-ECT* 7/21

QCD θ -dependence at T = 0: Chiral Perturbation Theory

Effective theory with pseudo Nambu–Goldstone bosons (pions) as dof:

$$\mathcal{L}_{\text{eff}}^{(\text{LO})}(U) = \frac{f_{\pi}^2}{4} \partial_{\mu} U \partial^{\mu} U^{\dagger} + \frac{\Sigma}{4} \Re \left\{ U M_q^{\dagger} \right\}, \qquad U = e^{i \frac{\pi a}{f_{\pi}} \tau_a}, \, \Sigma = -\left\langle \overline{\psi} \psi \right\rangle$$

How to study θ dependence? Trade θ -term for a **phase** in quark mass matrix:

$\psi o e^{i\gamma_5 \alpha} \psi$	$U(1)_A$ transformation
$\overline{\psi}_L M_q \psi_R \to e^{2i\alpha} \overline{\psi}_L M_q \psi_R$	non invariance of mass term
$\theta \to \theta - 2\alpha N_f$	anomaly

Choosing $\alpha = \theta/(2N_f)$, θ is fully moved into quark mass matrix M_q :

$$\mathcal{L}_{\text{eff}}^{(\text{LO})}(U,\theta) = \frac{f_{\pi}^2}{4} \partial_{\mu} U \partial^{\mu} U^{\dagger} + \frac{\Sigma}{4} \Re \left\{ e^{i\theta/N_f} U M_q^{\dagger} \right\}.$$

Free energy is obtained from field configuration $U_{\min}(\theta)$ minimizing $\mathcal{L}_{\text{eff}}^{(\text{LO})}(U,\theta)$:

$$f_{\rm ChPT}^{\rm (LO)}(\theta) = \frac{1}{V} \mathcal{L}_{\rm eff}^{\rm (LO)}(U_{\rm min}(\theta), \theta)$$
$$(N_f = 2) \qquad f_{\rm ChPT}^{\rm (LO)}(\theta) = m_\pi^2 f_\pi^2 \sqrt{1 - \frac{4m_u m_d}{(m_u + m_d)^2} \sin^2\left(\frac{\theta}{2}\right)}$$

C. Bonanno (INFN Firenze) The Peccei–Quinn axion and QCD topology 05/08/22-ECT* 8/21

Main ChPT results about θ -dependence

At LO with (u, d) quarks, topological quantities can be expressed in terms of f_{π} , m_{π} and $z = m_u/m_d$ (Di Vecchia and Veneziano, 1980; Leutwyler and Smilga, 1992):

$$\chi_{\text{LO-ChPT}} = \frac{z}{(1+z)^2} m_{\pi}^2 f_{\pi}^2, \qquad b_2^{(\text{LO-ChPT})} = -\frac{1}{12} \frac{1+z^3}{(1+z)^3}.$$

Also NLO corrections are known for χ and b_2 (Di Cortona, 2016)

$$\chi_{\text{NLO-ChPT}} = (77.8(4) \text{ MeV})^4, \qquad m_u = m_d$$

$$\chi_{\text{NLO-ChPT}} = (75.5(5) \text{ MeV})^4, \quad \text{physical } m_u, m_d$$

For comparison, result for the quenched theory (see also M. D'Elia's talk): $\chi_{\rm YM} \simeq (180 \text{ MeV})^4$, (Witten-Veneziano Eq.; Bonati et al., 2016; CB et al., 2021)

$$\begin{split} b_2^{\rm NLO-ChPT} &= -0.029(2), & m_u = m_d \\ b_2^{\rm NLO-ChPT} &= -0.022(1), & \text{physical } m_u, m_d \\ b_2^{\rm (YM)} &\simeq -0.0216(5), & (\text{Bonati et al., 2016, CB et al., 2021}) \end{split}$$

Results so far: T = 0. ChPT provides also finite-T results which are expect to hold below T_c .

QCD θ -dependence at high T: Dilute Instanton Gas Approximation (DIGA)

For $T > T_c$, ChPT breaks down. For asymptotically-large $T \gg \Lambda_{QCD}$: semi-classical approximation + perturbation theory \rightarrow Dilute Instanton Gas Approximation (DIGA) (Gross, Pisarski, Yaffe, 1981; Schäfer & Shuryak, 1998; Boccaletti & Nogradi, 2020)

$$f_{\text{DIGA}}(T,\theta) = \left(\frac{2Z_1(T)}{V}\right)(1-\cos\theta) \qquad \text{From diluteness assumption}$$
$$\equiv \chi(T)(1-\cos\theta)$$
$$\chi(1-\cos\theta) \leftrightarrow \frac{\chi\theta^2}{2}\left(1+b_2\theta^2+\dots\right) \implies b_2^{(\text{DIGA})} = -\frac{1}{12} \simeq -0.083$$

$$\chi(T) \underset{T \gg \Lambda_{\rm QCD}}{\sim} T^{-c}$$
Perturbation around 1 instanton
$$c = 4 - \frac{1}{3}N_f - \frac{11}{3}N_c$$

$$(c = 8 \text{ for 3 light flavors})$$

Axion cosmology interesting range: $T \gg T_c$ down to ~ GeV scale \implies non-perturbative physics dominate when T close to QCD scale Non-perturbative lattice QCD needed to fully control $\chi(T)$ above T_c

C. Bonanno (INFN Firenze) The Peccei–Quinn axion and QCD topology 05/08/22 - ECT *10/21

Dominance of the Q = 0 sector

At high $T \chi$ is suppressed, thus $\langle Q^2 \rangle = V \chi \ll 1$. The probability of visiting $|Q| \neq 0$ sectors is **strongly suppressed** at high-T on typical lattice volumes.

An example for the same lattice spacing $a \simeq 0.0572$ fm

C. Bonanno (INFN Firenze) The Peccei–Quinn axion and QCD topology 05/08/22-ECT^{*} 11/21

Topology, chiral symmetry and Dirac zero-modes

Configurations are weighted in the path integral according to the fermion determinant

$$e^{-Vf_{\rm QCD}(\theta)} = \int [dA]e^{-S_{\rm YM} + i\theta Q} \prod_{f=1}^{N_f} \det\left\{ \not\!\!D + m_f \right\}$$

$$\det\{\not\!\!D + m_f\} = \prod_{\lambda \in \mathbb{R}} (i\lambda + m_f) = m_f^{n_0} \prod_{\lambda > 0} \left(\lambda^2 + m_f^2\right).$$

The *Index Theorem* relates the presence of zero-modes $(\lambda = 0)$ in the spectrum of D to the topological charge of the gluon field:

$$Q = n_0^{(+)} - n_0^{(-)}.$$

If configuration has $Q \neq 0$, lowest eigenvalues: $\lambda_{\min} = m_f$.

Typical lattice fermionic discretizations (e.g., Wilson, staggered) do not have exact zero-modes \implies determinant fails to efficiently suppress configurations

$$\lambda_{\min} = m_f \longrightarrow m_f + i\lambda_0, \qquad \lambda_0 \underset{a \to 0}{\longrightarrow} 0.$$

C. Bonanno (INFN Firenze) The Peccei–Quinn axion and QCD topology 05/08/22-ECT* 12/21

Large lattice artifacts at high T

Uneffective suppression of configuration \implies large cut-off effects at finite lattice spacing

 \implies continuum extrapolation not under control (Fig. Bonati et al., 2018):

Topological Critical Slowing Down (topological freezing)

Approaching the continuum limit $a \to 0$, standard algorithms (such as Hybrid Monte Carlo), becomes less and less ergodic.

This means that they become incapable of changing the topological charge of the configuration in a reasonable Monte Carlo time.

Left to right: $a \simeq 0.082$ fm, 0.057 fm and 0.040 fm (figs. Bonati et al., 2016)

In the continuum topological sectors are separated by infinite free-energy barriers: cannot change Q by local configuration updating.

Simulations on very fine lattice spacings are thus extremely challenging. C. Bonanno (INFN Firenze) The Peccei-Quinn axion and QCD topology 05/08/22-ECT^{*} 14/21

Reweighting + fixed-sector integral

Strategies outlined by BMW collab. to compute $\chi(T)$ (Borsanyi et al., 2016)

• Reweighting

To restore the proper suppression due to Dirac zero-modes:

$$\chi = \frac{\langle Q^2 \rangle}{V} \longrightarrow \chi_{\rm rew} = \frac{1}{V} \frac{\langle Q^2 w(Q) \rangle}{\langle w(Q) \rangle}, \qquad \qquad w(Q) = \prod_{f=1}^{N_f} \prod_{i=1}^{2|Q|} \left(\frac{m_f^2}{m_f^2 + \lambda_i^2} \right)^{\frac{1}{4}}$$

• Fixed-sector integral

Assuming DIGA holds: $P_0 \gg P_1 \gg P_2 \implies \chi \simeq \frac{2}{V} \frac{P_1}{P_0}$ Strategy to obtain P_1/P_0 :

– Perform simulations at fixed value of Q = 0, 1 and compute:

$$B_{1} \equiv -\frac{d}{d\log T} \left(\frac{P_{1}}{P_{0}}\right) = -\left(\frac{d\beta}{d\log a}\right) \left(\left\langle S_{g}\right\rangle_{1} - \left\langle S_{g}\right\rangle_{0}\right), \qquad S_{\mathrm{YM}}^{(L)} \equiv \beta S_{g}$$

- compute $(P_1/P_0)(T_0)$ for a temperature T_0 where it is feasible for the simulation to naturally explore different topological sectors
- compute $B_1(T')$ for several $T_0 < T' < T$
- obtain $(P_1/P_0)(T)$ for the target temperature T via

$$\left(\frac{P_1}{P_0}\right)(T) = \left(\exp\left\{\int_{T_0}^T d\log T' B_1(T')\right\}\right) \left(\frac{P_1}{P_0}\right)(T_0)$$

C. Bonanno (INFN Firenze) The Peccei–Quinn axion and QCD topology 05/08/22-ECT* 15/21

Multicanonical approach

Multicanonic algorithm: add bias potential to the action to enhance the probability of visiting suppressed topological sectors (Jahn et al., 2018; Bonati et al., 2018)

$$S_{\rm QCD}^{(L)} \to S_{\rm QCD}^{(L)} + V_{\rm topo}(Q) \qquad \Longrightarrow \qquad P \propto e^{-S_{\rm QCD}^{(L)}} \to P_{\rm mc} \propto e^{-S_{\rm QCD}^{(L)}} e^{-V_{\rm topo}(Q)}$$

Mean values $\langle \mathcal{O} \rangle$ with respect to P recovered through reweighting:

C. Bonanno (INFN Firenze) The Peccei–Quinn axion and QCD topology 05/08/22-ECT* 16/21

Fermionic definitions of the lattice topological charge

Simplest lattice discretization of the topological charge achieved via plaquette: gluonic lattice topological charge:

Improved gluonic discretizations can be built from $n \times m$ loops. These discretizations know nothing of the chiral properties of fermions, which are tighty related to topology.

Large cut-off effects affecting χ_{gluo} may be reduced adopting a fermion definition, based on the Index Theorem.

Fig. from Alexandrou et al., 2017 at zero temperature: improved scaling towards the continuum with fermionic definition of χ compared to standard gluonic definition.

C. Bonanno (INFN Firenze) The Peccei–Quinn axion and QCD topology 05/08/22 - ECT* 17/21

Fermionic topological susceptibility: two examples

Index Theorem:
$$Q = n_0^{(+)} - n_0^{(-)} = \text{Tr}(\gamma_5)$$

• Chiral Susceptibility
$$\rightarrow Q = m \operatorname{Tr} \left\{ \gamma_5 (\not D + m)^{-1} \right\}$$

$$\chi = \frac{m^2}{V} \left\langle \left(\operatorname{Tr} \left\{ \gamma_5 (\not D + m)^{-1} \right\} \right)^2 \right\rangle \equiv m^2 \chi_5^{(\text{disc})}$$

On the lattice $\chi_5^{(\text{disc})}$ is measured via the disconnected chiral susceptibility $\chi^{(\text{disc})}$ assuming U(1)_A is restored (Petreckzy et al. 2016; Lombardo et al., 2020):

$$\chi_5^{(\text{disc})} = \chi^{(\text{disc})} = \frac{1}{V} \left\langle (\text{Tr}\left\{ (\not\!\!D + m)^{-1} \right\})^2 \right\rangle - (\left\langle \text{Tr}\left\{ (\not\!\!D + m)^{-1} \right\} \right))^2$$

• Spectral Projectors $\rightarrow Q = \sum_{\lambda=0} u_{\lambda}^{\dagger} \gamma_5 u_{\lambda}$

On the lattice, extend sum up to $\lambda \leq M$ if fermions break chiral symmetry $Q_{\text{SP}} = \sum_{\lambda \leq M} u_{\lambda}^{\dagger} \gamma_5 u_{\lambda} = \text{Tr} \{\gamma_5 \mathbb{P}_M\}, \quad \mathbb{P}_M = \sum_{\lambda \leq M} u_{\lambda} u_{\lambda}^{\dagger}$ $\chi_{\text{SP}} = Z_{\text{SP}}^2 \frac{\langle Q_{\text{SP}}^2 \rangle}{V}, \quad Z_{\text{SP}}^2 = \frac{\langle \nu(M) \rangle}{\langle \text{Tr}\{(\gamma_5 \mathbb{P}_M)^2\} \rangle}$

C. Bonanno (INFN Firenze) The Peccei–Quinn axion and QCD topology 05/08/22-ECT* 18/21

Lattice QCD results for $\chi(T)$

Common qualitative agreement that a DIGA-like power-law sets in for $T \gtrsim 300$ MeV can be observed among different determinations.

Clear common qualitative agreement still to be achieved, in particular for 300 MeV $\lesssim T \lesssim 400$ MeV (see also Kotov, Trunin, Lombardo, 2020 for a similar discussion).

Lattice QCD results for $b_2(T)$

Lattice determinations for $T > T_c$ approach the DIGA $b_2^{(\text{DIGA})} = -1/12$, but deviations are visible (for the finest lattice spacing) up to $T \sim 300 - 350$ MeV. Agreeing findings in other recent works (e.g., Lombardo et al., 2020)

It would be interesting to provide controlled continuum extrapolations of b_2 in the shown temperature range.

C. Bonanno (INFN Firenze) The Peccei–Quinn axion and QCD topology 05/08/22-ECT* 20/21

Conclusions

Take-home messages

- Topology and θ -dependence in QCD related both to intriguing non-perturbative theoretical aspects (phase diagram, CP-violation, fermion chiral properties) and to phenomenology (e.g., PQ axion)
- Axions are promising candidates to simultaneously solve the strong-CP problem and explain (part of) observed Dark Matter
- Theoretical bounds on axion cosmology can be precisely assessed from the computation of $\chi(T)$ at high T in QCD by *misalignement*
- Lattice non-perturbative computation of $\chi(T)$ needed to gain full control over these predictions but several nontrivial computational problems have to be faced
- Several different works computed $\chi(T)$ in QCD during the last years with different strategies: complete quantitative agreement still lacking

Future outlooks

- Current main obstacle: topological critical slowing down (finer lattice spacing and/or higher temperatures)
- Several proposals, expected major improvements in the next years: Parallel Tempering on Boundary Conditions (Hasenbusch, 2017, CB et al., 2021, CB et al., 2022), machine-learning Equivariant Flows (Kanwar et al., 2020), Density of States method (Cossu et al., 2021).

C. Bonanno (INFN Firenze) The Peccei–Quinn axion and QCD topology 05/08/22-ECT^{*} 21/21