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OUTLINE

• θ-dependence in QCD and available predictions

• θ-dependence from lattice QCD: main technical issues

• Lattice results for SU(N) pure gauge theories:

how θ-dependence changes across the various phases

and how the phase diagram itself is influenced by θ



Many non-perturbative properties of strong interactions are related to the presence

in the path-integral of configurations with non-trivial topology.

gauge configurations divide into non-trivial homotopy classes, labelled by an integer

winding number Q =
∫

d4x q(x)
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g2

32π2
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a
µν(x) =

g2

64π2
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GG ∝ ~Ea · ~Ea + ~Ba · ~Ba ; GG̃ ∝ ~Ea · ~Ba

q(x) is a total derivative, but global topology makes it non-trivial

Homotopy group: π3(SU(3)) = Z (actually, π3(SU(N)) = π3(SU(2)) ∀N )



GG̃ is renormalizable and a possibile coupling to it is a free parameter of QCD

Z(θ) =

∫

[DA][Dψ̄][Dψ] e−SQCD eiθQ

the theory at θ 6= 0 is well defined, but presents explicit breaking of CP symmetry.

Non-trivial θ-dependence emerges because of the existence of configurations with

finite action and Q 6= 0

classical solutions: instantons and anti-instantons

|θ| < 10−10 (strong CP-problem)

however θ-dependence is related to essential aspects of strong interactions anyway

and to BSM physics too (axion cosmology)

Numerical computations are made difficult by the appearance of a complex factor in

the path-integral: sign problem



How to compute QCD at non-zero θ

The free energy density f(θ) = −T logZ/V is a periodic even function of θ

It can be related to the probability distribution P (Q) at θ = 0 via Taylor expansion:

f(θ)− f(0) = 1

2
f (2)θ2 +

1

4!
f (4)θ4 + ... ; f (2n) =

d2nf

dθ2n
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2n〉c
V

A common parametrization is the following

f(θ, T )− f(0, T ) = 1

2
χ(T )θ2

(

1 + b2(T )θ
2 + b4(T )θ

4 + · · ·
)
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P (Q) is non-perturbative: a lattice investigation is the ideal first-principle approach



Dynamical fermions enter the game in a non-trivial way, essentially because of the

Atiyah-Singer index theorem and the axial anomaly equation:

Index theorem =⇒ Q = D = n+ − n− = Tr(γ5)

where n± are, respectively, the number of left-handed and right-handed zero-modes

of the Dirac operator D.

Axial anomaly =⇒ ∂µj
5
µ = 2Nfq(x) ; j5µ =

Nf
∑

f=1

ψ̄fγµγ5ψf

An axial U(1)A rotation on fermion fields moves θ to the quark sector

ψf → eiαγ5ψf , ψ̄f → ψ̄fe
iαγ5 =⇒ θ → θ−2α and mf ψ̄fψf gets a complex phase



Interplay with light fermions

• in the presence of massless quarks, θ can be freely changed, θ → θ − 2α, with

no other effect, hence one expects a trivial θ-dependence

Intuitive understanding:

Z(θ) =

∫

DUe−SY M det(D +mf )e
iθQ

for mf = 0, the determinant vanishes because of the zero modes when Q 6= 0

=⇒ P (Q) = 0 for Q 6= 0

• in the presence of light quarks, the θ term can be moved to the (small) mass

term, hence θ-dependence can be reliably studied within the framework of chiral

perturbation theory (χPT)



Experimental bounds on the electric dipole of the moment set stringent limits to the

amount of CP-violation in strong interactions.

|θ| . 10−10

So: why do we bother with θ-dependence at all?

• θ-dependence←→ P (Q) at θ = 0 =⇒ it enters phenomenology anyway.

e.g., Witten-Veneziano mechanism:

χYMlarge N =
f 2
π

2Nf

(

m2
η′ +m2

η′ − 2m2
K

)

=⇒ χYMlarge N ≃ (180 MeV)4

• Rich interplay between θ-dependence and QCD phase structure

• Strong CP-problem: why θ = 0? mf = 0 is ruled out.

A possible mechanism (Peccei-Quinn) invokes the existence of a new scalar field

(axion) whose properties are largely fixed by θ-dependence

Axions are popular dark matter candidates, so the issue is particularly important

→ Claudio Bonanno’s talk on Friday



Predictions about θ-dependence - I

Dilute Instanton Gas Approximation (DIGA) for high T (Gross, Pisarski, Yaffe 1981)

Can we integrate around classical solutions?

Effective action known only perturbatively. The one-instanton contribution is

exp (−8π2/g2(ρ)) times a prefactor depending on a 1-loop computation

g(ρ) is the running coupling at the instanton scale ρ.

• by asymptotic freedom, works well for small instantons, which are then exponentially

suppressed, implying the validity of a dilute instanton gas approximation (DIGA)

• however, perturbation theory breaks down for large instantons (1/ρ . ΛQCD),

which become dominant, overlap with each other, and break DIGA.

Indeed, the instanton size distribution has an IR divergence:

dnI ∼ d4x dρ ρ11Nc/3−5

DIGA may work well only in the presence of an effective IR cutoff, like, e.g., a finite

temperature T & ΛQCD



DIGA prediction for θ-dependence

• Instantons and Anti-Instantons are treated as uncorrelated (non-interacting) objects

=⇒ Poisson distribution with an average probability density p per unit volume

Zθ ∝
∞
∑

n−,n+=0

1

n+!n−!
(V4p)

n++n−eiθ(n+−n−) = exp
[

V4p(e
iθ − e−iθ)

]

= e2V4p cos θ

F (θ, T )− F (0, T ) ≃ χ(T )(1− cos θ) =⇒ b2 = −1/12 ; b4 = 1/360 ; . . .

• Instantons of size ρ ≫ 1/T suppressed by thermal fluctuations, for high T

instantons of effective perturbative action 8π/g2(T ) dominate. Including leading

order contributions from light fermions:

χ(T ) ∼ T 4
(m

T

)Nf

e−8π2/g2(T ) ∼ mNfT 4− 11
3
Nc−

1
3
Nf ∝ T−7.66 (forNf = 2)

Notice: perturbative limit implies diluteness, hence DIGA, however DIGA might be

good before reaching the asymptotic perturbative behavior



Predictions about θ-dependence - II

Large-Nc for low T SU(Nc) gauge theories

Instanton computation is expected to fail at low T . It would also give a vanishing

θ-dependence in the large-Nc limit, contrary to Witten-Veneziano formula.

Indeed, since g2Nc = λ is kept fixed as Nc →∞ (’t Hooft scaling):

=⇒ Effective instanton weight e−8π2Nc/λ → 0 as Nc →∞

Standard argument by E. Witten (Nucl.Phys.B 156 (1979) 269-283)

LYM(θ) =
1

4
Ga
µνG

a
µν + θ

g2

32π2
Ga
µνG̃

a
µν =

1

4
Ga
µνG

a
µν + θ

λ

32π2Nc

Ga
µνG̃

a
µν

the natural variable is θ/Nc, and the vacuum energy, including its θ dependence,

must be proportional to N2
c (numbers of degrees of freedom)

F (θ) = N2
c F̄ (θ̄)

where F̄ has a non-trivial dependence on θ̄ for Nc →∞



Large-Nc scaling: consequences

∆F (θ) = F (θ)−F (0) = N2
c

(

power series in θ̄2
)

=
χ

2
θ2

(

1 + b2θ
2 + b4θ

4 + . . .
)

Matching powers of θ̄ and θ we obtain

χ ∼ N0
c ; b2 ∼ N−2

c ; b2n ∼ N−2n
c

P (Q) is Gaussian in the large Nc limit. Periodicity in θ enforces a multibranched

structure with phase transitions at θ = (2k + 1)π (like in the QM model at T = 0)

θ)

0 π 2π θ3π−π

F(

Further observations:

• Is it like having effective degrees of freedom with fractional Q ∝ 1/Nc?

Maybe, but lattice simulations show they are not weakly interacting

• Large-Nc predictions are more quantitative for vector-like models

e.g., for CPN−1 models in two dimensions



Predictions about θ-dependence - III

Chiral Perturbation Theory (χPT) for low T

In the presence of light fermions, θ can be moved to the light quark sector by a U(1)

axial rotation. Then, χPT can be applied as usual.

Result for the ground state energy (Di Vecchia, Veneziano 1980)

E0(θ) = −m2
πf

2
π

√

1− 4mumd

(mu +md)2
sin2 θ

2

χ =
z

(1 + z)2
m2
πf

2
π , b2 = −

1

12

1 + z3

(1 + z)3
, z =

mu

md

Explicitly

z = 0.48(3) χ1/4 = 75.5(5)MeV b2 = −0.029(2)
z = 1 χ1/4 = 77.8(4)MeV b2 = −0.022(1)

this is the physical case and fixes the axion mass =⇒ ma ∼ 10−5

(

1012 GeV

fa

)



Studying topology on the lattice

outline of main questions about θ-dependence

• Check of large-Nc predictions (Witten-Veneziano formula, scaling of b2n coefficients)

• Is there a transition to a DIGA regime at high T? Where? Any relation with

confinement/deconfinement?

• How does θ influence the QCD phase diagram?

• Useful predictions for axion cosmology?

→ talk by Claudio Bonanno

• Non-perturbative predictions for the electric dipole moment of the neutron?

→ main topic of this workshop



Studying topology on the lattice

basic introduction

(n’)
U (n)µ

n n+µ ψ

Gauge fields are 3 × 3 unitary complex matrixes living on

lattice links (link variables)

Uµ(n) ≃ P exp

(

ig

∫ n+µ

n

Aµdxµ

)

Fermion fields live on lattice sites, fermion matrix written in

terms of gauge fields

M [U ] = Dµγµ +mq

Z(V, T ) = Tr
(

e−
HQCD

T

)

⇒
∫

DUDψDψ̄e−(SG[U ]+ψ̄M [U ]ψ) =

∫

DUe−SG[U ] detM [U ]

1
T T =

1

τ
=

1

Nta(β,m)

τ is the extension of the compactified time



Studying topology on the lattice

outline of main issues and technical problems

• Renormalization issues

– Choose a discretization of Q (either gluonic or fermionic)

– Take care of renormalizations or make use of smoothing techniques to suppress them

• Control on continuum limit extrapolation

– approach to continuum limit can be much worse in the presence of light fermions

– det(D+m) should suppressQ 6= 0, but fails because of bad chiral properties of the discretization

• Access to higher order cumulants

– Discrimination between different predictions for θ-dependence needs access to O(θ4) in F (θ)

– Having access to θ = 0 simulations only, that requires measuring tiny deviations from an

almost Gaussian distribution

• Algorithmic issues: critical slowing down and sampling of rare events

– in the continuum limit, homotopy classes are no more connected by finite action configurations.

Algorithms may lose ergodicity (problem increases exponentially at large N )

– in a finite volume, it may happen that 〈Q2〉 = χV ≪ 1. One may need prohibitively long runs

to achieve enough statistics



Results from various methods for χ in SU(3) pure gauge - T = 0

agreement when expressed in the

same units: Sommer parameter

r0 ≃ 0.5 fm (r0/a from R. Sommer,

arXiv:1401.3270)

Fit to a constant: χ2/d.o.f. = 4.93/5

overall agreement and correct

assessment of systematics
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1. Subtraction of renormalizations: B. Alles, M. D’Elia and A. Di Giacomo, Nucl. Phys. B 494, 281-292

(1997), hep-lat/9605013, now rescaled by r0 and continuum extrapolated

2. Latest cooling result: A. Athenodorou and M. Teper, arXiv:2007.06422

3. Wilson flow: M. Cè, M. Garcı́a Vera, L. Giusti and S. Schaefer, PLB 762, 232-236 (2016), arXiv:1607.05939

4. Overlap fermions: L. Del Debbio, L. Giusti and C. Pica, PRL 94, 032003 (2005) hep-th/0407052

5. Spectral projectors (Wilson): M. Luscher and F. Palombi, JHEP 09, 110 (2010), arXiv:1008.0732

6. Spectral projectors (staggered): C. Bonanno, G. Clemente, M. D’Elia and F. Sanfilippo, JHEP 10,

187 (2019), [arXiv:1908.11832].



Large-N behaviour of χ
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The topological susceptibility has a smooth and finite large-N limit

data from C. Bonati, M. D’Elia, P. Rossi and E. Vicari, Phys. Rev. D 94, no.8, 085017 (2016), arXiv:1607.06360



Large-N behaviour of F (θ)?

F (θ, T )− F (0, T ) = χ(T )(1− cos θ)

(DIGA)

OR

∆F (θ) = F (θ)− F (0) = χ

2
θ2

(

1 + b2θ
2 + b4θ

4 + . . .
)

χ ∼ N0
c ; b2 ∼ N−2

c ; b2n ∼ N−2n
c

large-N Witten ansatz: scaling variable is θ/N

finite χ not compatible with DIGA, it is interesting anyway to test the scaling if further

coefficients



Numerical results for b2:
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recent improved determination obtained by a

new algorithm which mitigates the topological

freezing =⇒ b̄2 = −0.193(10)



What about finite temperature SU(N)?

• At a critical temperature Tc ≃ 280 MeV the theory undergoes a phase transition

to a deconfined phase where center symmetry is spontaneously broken

• At high enough temperature one expects a transition to a DIGA regime

F (θ) ∝ cos θ

In principle that could happen at asymptotically high T where a perturbative expansion

makes sense

Any relation between the two transitions?



The topological susceptibility has a drop at Tc, sharper and sharper as Nc grows:
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known for SU(3) since long

B. Alles, M. D. and A. Di Giacomo, NPB 494, 281-292 (1997),

hep-lat/9605013
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L. Del Debbio, H. Panagopoulos and E. Vicari, JHEP 09, 028

(2004), arXiv:hep-th/0407068

Drop of χ compatible with an effective DIGA regime, but not compelling. There are

examples (e.g., 2dCPN−1 models), where DIGA does not work with a vanishing χ



More compelling evidence from b2 or from the power law drop of χ:
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The perturbative power law behavior predicted for

χ at high T has been verified

χ(T ) ∝ 1/T b, where b = 7.1(4)(2) (perturbative

prediction b = 7), but absolute value a factor 10

larger



Emerging picture for SU(N) pure Yang-Mills theories:

• shortly after Tc, topological excitations behave as a dilute non-interacting gas,

F (θ) ∝ (1 − cos(θ)). Residual interactions around Tc are repulsive. Agreement

with perturbative DIGA, at least for the power law.

• The scenario changes completely moving into the confined region, largeN predictions

sets in and F = F (θ/N).

• Sometimes this is interpreted in terms of decomposition into topological objects

with charge 1/N (instanton quarks). However, lattice results, show a different

situation: at least, such objects are not weakly interacting.

Non interacting gas of 1/N charged objects would give

F ∝ (1− cos(θ/N)) =⇒ b2 = −
0.08333

N2

we obtain instead b2 = −0.193(10)/N2, hence corrections must be significant.



Let us now a consider a different, but related question

• can θ affect the location and nature of the transition? How does Tc changes if we

switch a non-zero θ on?

We are looking for yet another extension of the

QCD phase diagram, the θ-axis

We consider SU(3) pure gauge theory

1st order transition for Tc(θ = 0) ≃ 280 MeV

(θ)?c

θ

T

Tc
T

The theory is CP even at θ = 0 =⇒ Tc must be an even function of θ



Large Nc estimate

M. D. and F. Negro, PRL 109, 072001 (2012) 1205.0538

Main idea:

• Deconfinement transition is first order for Nc ≥ 3, latent heat ∆ǫ ∝ N2
c

• We have two free energy density sheets (confined and deconfined) crossing at Tc

T

 

T
_fc

f d_

• Around Tc:
fc
T
= Ac t+O(t2) fd

T
= Ad t+O(t2) t ≡ T−Tc

Tc

• Latent heat: ∆ǫ = −T 2 [∂(fd/T )/∂T − ∂(fc/T )/∂T ]Tc = Tc(Ac − Ad)
• θ 6= 0 shifts free energy f(T, θ) = f(T, θ = 0) + χ(T ) θ2/2 +O(θ4)

χ = 〈Q2〉/V is the topological susceptibility

χ(T ) differs in the two phases =⇒ the two sheets moves separately =⇒ Tc moves!



• The equilibrium condition fc = fd then reads

Act+(χc/Tc) θ
2/2 ≃ Adt+(χd/Tc) θ

2/2 =⇒ tc(θ) =
Tc(θ)

Tc(0)
−1 = −∆χ

2∆ǫ
θ2+O(θ4)

• We know that indeed χ(T ) drops at the deconfinement transition!

In the large Nc limit the dependence simplifies (step function):

– χ(T ) = χ(T = 0) ≡ χ in the confined phase

– χ(T ) = 0 in the deconfined phase

• leading Nc estimates ( B. Lucini, M. Teper, U. Wenger, 2004, 2005; H. Panagopoulos, E. Vicari, 2008)

χ

σ2
≃ 0.0221(14) ;

∆ǫ

N2
c T

4
c

≃ 0.344(72) ;
Tc√
σ
≃ 0.5970(38)

Tc(θ)

Tc(0)
= 1−Rθ θ

2 +O(θ4) Rθ =
χ

2∆ǫ
≃ 0.253(56)

N2
c

+O(1/N4
c )

A similar, decreasing behavior is also predicted by various effective models and

semiclassical approximations (M. Unsal, 2012; E. Poppitz, T. Schäefer and M. Unsal, 2013; M. M. Anber,

2013; T. Sasaki, J. Takahashi, Y. Sakai, H. Kouno and M. Yahiro, 2011- 2012)



Lattice determination

QCD at finite θ is affected by a sign problem. We can borrow methods and strategies

used to partially overcome the problem for QCD at finite baryon chemical potential µB

One possibility is analytic continuation: θ = i θI Z(T, θI) =
∫

[dA] e−SQCD−θIQ

Tc(θI)

Tc(0)
= 1 +Rθ θ

2
I +O(θ4I ) =⇒ Tc(θ)

Tc(0)
= 1−Rθ θ

2 +O(θ4)

I will show you:

• a determination by analytic continuation (M. D. and F. Negro, PRL 109, 072001 (2012)

1205.0538)

• a comparison with reweighting in θ (M. D. and F. Negro, PRD 88, 034503 (2013) 1306.2919)

More recent work, with consistent results on the same topic, can be found in

N. Otake and N. Yamada, JHEP 06, 044 (2022) doi:10.1007/JHEP06(2022)044 [arXiv:2202.05605 [hep-lat]].



Lattice implementation

ZL(T, θ) =

∫

[dU ] e−SL[U ]−θLQL[U ]

SL = β
∑

x,µ>ν(1− ReTrΠµν(x)/N) β = 2N/g20 (Wilson action)

Which choice for QL =
∑

x qL(x)?

• A gluonic definition tipically leads to renormalizations

qL(x)
a→0∼ a4Z(β)q(x) +O(a6) =⇒ θI = Z(β) θL +O(a2)

• A fermionic, renormalization free definition (e.g. based on overlap operators)

would lead to unreasonable computational requirements

Optimal Strategy: simplest gluonic definition (no smearing) so that heat-bath +

over-relaxation works, then compute the multiplicative renormalization Z(β)

qL(x) =
−1
29π2

∑

±4
µνρσ=±1 ǫ̃µνρσTr (Πµν(x)Πρσ(x)) Πµν →

+ ν

n n

nn

+ µ

+ µ + ν



Locating the phase transition

Z(N) center symmetry, which is spontaneously broken at the deconfinement transition

of pure SU(N) gauge theories, is still exact in presence of a θ term.

=⇒ The Polyakov loop is still a good order parameter to locate deconfinement

〈L〉 ≡ 1

Vs

∑

~x

1

N
〈Tr

Nt
∏

t=1

U0(~x, t)〉 χL ≡ Vs (〈L2〉 − 〈L〉2)〉 ,

Polyakov loop and its susceptibility as a

function of β for Nt = 6 and a few θL

βc(θL) located at the peak of χL

βc(θL) −→ Tc(θL) =
1

Nt a(βc(θL)) 5.86 5.88 5.9 5.92 5.94 5.96 5.98 6

β
0

0.04
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0.12

θ
L
 = 0

θ
L
 = 15

θ
L
 = 20



Best fit to

Tc(θ)/Tc(0) = 1−Rθ θ
2

for data at different values of Nt
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Continuum extrapolation (Nt →∞) assuming

O(a2) corrections (χ2/d.o.f. ≃ 0.97)

Rcont
θ = 0.0178(5)

large Nc estimate is a bit larger: Rθ ≃
0.0281(62) but indeed χ(T ) does not drop to

zero at Tc for Nc = 3.



Analytic continuation vs. Reweighting

Location of Tc
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LEFT: Polyakov loop susceptibility for different real θ

RIGHT: Tc(θ): extrapolation from imaginary θ compared to reweighting.

〈O〉θ =
∫

[dU ] e−SL[U ]+iθQO
∫

[dU ] e−SL[U ]+iθQ
=
〈eiθQO〉θ=0

〈cos(θQ)〉θ=0

.

Results from reweighting are compatible with those from analytic continuation



Sketching the T − θ phase diagram

M. D. and F. Negro, PRD 88, 034503 (2013)

• low-T dependence is on θ/N (Witten). Periodicity in θ restored by first order

phase transitions at θ = (2k + 1)π (multi-branched vacuum energy)

• high-T dependence of the free energy is on θ, from semiclassical instanton computations.

Lattice simulations show that this actually happens right after Tc

Free energy dependence is smoothly periodic in θ in the high T regime.

• Tc(θ) itself depends on θ/N , and could be dominated, at largeN , by the quadratic

term down to θ = π. Most likely, it is a multibranched function as well

Tc(θ)

Tc(0)
≃ 1−Rθmin

k
(θ + 2πk)2 Rθ ∼

1

N2
c



This is the resulting conjectured phase diagram
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There is, actually, a further unjustified assumption: the critical line Tc(θ) touches the

low-T transition present at θ = π exactly at its endpoint.



Conclusions

Numerical results for pure gauge SU(N) gauge theories provide a clear picture,

consistent with available expectations and suggesting a strict relation between

confining/deconfining properties and θ-dependence.

Moreover, θ itself enhances the onset of deconfinement

A few interesting topics have not been covered in this talk:

• Numerical study of θ-dependence in 2D CPN−1 models, where precise analytical

predictions exist

C. Bonanno et al arXiv:1807.11357, arXiv:1911.03384, arXiv:2009.14056

C. Bonanno, MD, F. Margari, explicit numerical evidence of topological susceptibility divergence

for N = 2, on arXiv tomorrow

• Closer look at the relation between θ-dependence and center symmetry realization

in trace deformed Yang-Mills theories M. Cardinali et al arXiv:1807.06558, arXiv:1912.02662,

arXiv:2010.03618, arXiv:2012.13246


