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• continuum topology : a brief sketch

• topology : continuum −→ lattice

• calculating topology on the lattice

• ‘freezing’ of topology as a → 0 and/or N → ∞

• some further methods for lattice topology
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continuum topology : a brief sketch

In a finite volume with periodic boundary conditions, the gauge field possesses a

topological charge

Q =
∫

d4xQ(x) = integer

where

Q(x) = 1
32π2 ǫµνρσTr{Fµν(x)Fρσ(x)}.

The minimum action Q = 1 field in SU(2) is the ’instanton’:

AI
µ(x) =

x2

x2+ρ2
g−1(x)∂µg(x) ; g(x) =

x0I+ixjσj

(xµxµ)1/2

where g(x) covers the SU(2) group once as xµ covers the surface at xµxµ = ∞.

To obtain an instanton in a periodic finite but large volume make the singular

gauge transformation g†(x) (or equivalent).

The instanton action is SI = 8π2/g2 and SI (x), Q(x) 6= 0 for x2 ≤ O(ρ)

One obtains an SU(N) instanton by embedding SU(2) in SU(N)
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density of instantons - classical:

D(ρ) dρ
ρ

∝ dρ
ρ

1
ρ4

v(N)

g4N exp
{

− 8π2

g2

}

=⇒
density of instantons - quantum (1 loop):

D(ρ) ∝ 1
ρ4

v(N)

g4N exp
{

− 8π2

g2(ρ)

}

N→∞
=⇒

D(ρ) ∝ 1
ρ4

{

const
λ2 exp

{

−8π2/λ(ρ)
}

}N
; λ = g2N

=⇒

small instantons disappear exponentially with N : larger instantons?

plausibly not ...
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Interlaced θ-vacua in SU(N) gauge theories

Consider the gauge action with a θ term

S[g2, θ] = 1
4g2

∫

d4xTrFµνFµν + iθ
16π2

∫

d4xǫµνρσTrFµνFρσ

Now
1

16π2

∫

d4xǫµνρσTrFµνFρσ = Q = integer =⇒ E(θ) = E(θ + 2π) ∀N

But for a smooth N → ∞ limit, we need to factor N from S so that the couplings

to keep fixed are 1/g2N , θ/N , ... i.e.

E(θ) = N2h(θ/N)

=⇒ E(θ) is a multi-branched function E.Witten hep-th/9807109

Ek(θ) = N2h
(

θ+2πk
N

)

; E(θ) = mink Ek(θ)

so that: E(θ) = E(θ + 2π) while each Ek(θ) is periodic in 2πN
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e.g. SU(10):

θ/2π

E(θ)

109876543210

0

domain wall tension between different ‘k-vacua’ is O(N) so as N → ∞ these will
all become stable ... Witten: AdS/CFT ; Shifman: N = 1 SUSY

5



topology : continuum −→ lattice

Let Uµν(x) be the plaquette at x in the µν plane. On smooth fields

Uµν(x) = 1 + a2Fµν(x) + ....

so on smooth fields:

QL(x) ≡ 1
32π2 ǫµνρσTr{Uµν(x)Uρσ(x)} = a4Q(x) +O(a6)

However QL(x) is not a topological quantity and is not protected from local UV

fluctuations that are O(1/β3) and these will swamp the O(a4) physical piece on

rough Monte Carlo fields, particularly since

〈QL(x)〉Q = Z(β)Q(x) ≪ Q(x) ; Z1−loop
SU3≃ 1− 5.45/β +O(1/β2)

Practical strategy: smoothen the lattice gauge field so that QL ≃ Q e.g. cooling,

gradient flow, ... – here I shall use ‘cooling’ i.e. a few sweeps where heat bath is

replaced by action minimisation/reduction ...
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an instanton on the lattice

• continuum SU(2) instanton of size ρ:

AI
µ(x) =

x2

x2+ρ2
g−1(x)∂µg(x) ; g(x) =

x0I+ixjσj

(xµxµ)1/2

• corresponding lattice field:

UI
µ(x) = P

{

exp
∫ x+aµ̂
x AI

µ(x)dx
}

;

divide link in sections, exponentiate at centre of each section, then multiply

matrices in order recalling exp{iθnkσk} = I cos(θ) + inkσk sin(θ);

perform the gauge transformation g†(x) so that UI
µ(x) ≃ I at boundary;

perform a few cooling/smoothening sweeps to iron out any remaining ‘bumps’ at

boundary

• for an SU(N) instanton:

e.g. take the N ×N unit matrix and replace the top left hand 2× 2 submatrix by

the SU(2) instanton UI
µ(x)
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profile QL(t) =
∑

x̄ QL(t, x̄) of a ρ = 8a instanton on a 404 lattice

t
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For the original lattice field, •, and after 20 cooling sweeps, ◦.
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calculating topology of a ‘rough’ lattice gauge field

e.g.

• cooling – smoothening by a few sweeps where heat bath is replaced by action

minimisation/reduction ...

• gradient flow – an ‘RG invariant’ smoothening

• zero modes of (Neuberger) overlap Dirac operator – or ‘near’ zero modes with

other lattice Dirac operators

· · · =⇒

cooling and gradient flow lead to ∼same results : Bonati,D’Elia 1401.2441,

Alexandrou, Athenodorou,Jansen et al 1509.04259

cooling and Dirac spectral methods lead to ∼same results : Alexandrou et al,

1708.00696, Cundy et al, hep-lat/0203030
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Cooling: SU(8) lattice fields on a 20330 lattice with a
√
σ ≃ 0.133:

QL after 2 (◦) and 20 (•) cooling sweeps.

QL

N(QL)
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SU(8) lattice fields on a 20330 lattice with a
√
σ ≃ 0.133:

QL after 2 cooling sweeps for fields with QL = 0, 1, 2 (◦,�,�) after 20 cooling

sweeps.
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Cooling: SU(5) 20324 lattice at β = 18.04 with a
√
σ ≃ 0.156:

QL after 2 (◦) and 20 (•) cooling sweeps.
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topological susceptibility: SU(3) χ1/4
√

σ
= 0.4246(36) + 0.09(8)a2σ

(AA,MT: 2106.00364v2,2007.06422)

a2σ
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σ
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χ1/4
√

σ = 0.4246(36)|su3 −→ χ1/4 = 206(4)MeV

using r0
√
σ = 1.160(6) and r0 = 0.472(5)fm (Sommer: 1401.3270)
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topological susceptibility: SU(N) χ1/4
√

σ = 0.368(3) + 0.47(2)

N2 (AA,MT: 2106.00364)
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Q integer (•), Q raw (◦) (AA,MT: 2106.00364)
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Qhot = Z(β)Q on 26338 lattices at β = 6.5 in SU(3)

Q

Qhot
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Average topological charge on lattice fields which have a charge Q after 20 cools

15



Qhot = Z(β)Q versus β in SU(3)

β

Z(β)
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Z(β) interpolating fit (solid line) and one-loop perturbative result (dashed line)
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interpolating fits for Z(β) in SU(N) for ranges of β = 2N/g2 shown:

Zint
Q = 1− z0g

2N − z1(g
2N)2

N z0 z1 β ∈ χ2/ndf

2 0.190(30) 0.023(9) [2.45,2.80] 1.17

3 0.162(10) 0.0425(31) [5.69,6.70] 0.62

4 0.156(20) 0.047(7) [10.70,11.60] 1.32

5 0.203(21) 0.035(7) [16.98,18.37] 2.76

6 0.205(30) 0.036(11) [24.67,26.71] 1.37

8 0.187(24) 0.043(9) [44.10,47.75] 1.71

10 0.141(44) 0.060(16) [69.20,73.35] 1.05

12 0.182(24) 0.071(22) [99.86,105.95] 2.22

can be useful for θ 6= 0 calculations where exp{iθQ} ≃ exp{iθZ(β)−1Qhot}
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‘freezing’ of topology as a → 0 and/or N → ∞

basic idea: Q → Q− 1 involves an instanton shrinking from ρ ∼ O(1)fm to ρ ∼ a

and then disappearing within a hypercube, so upper bound is probability of

finding very small I with ρ ∼ a× few:

D(ρ) ∝ 1

ρ5
1

g4N
exp

{

− 8π2

g2(ρ)

}

N→∞∝ 1

ρ5

{

exp

{

− 8π2

g2(ρ)N

}}N
ρ∼a∝ (aΛ)

11N
3

−5 .

so let: τQ = average number sweeps forQ → Q± 1

=⇒
τQ ։ ∞ for a → 0 at fixed N or for N → ∞ at fixed a
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topological freezing at fixed a and large N :

two sequences of SU(8) lattice fields on a 20330 lattice with a
√
σ ≃ 0.133:

QL after 2 (◦,�) and 20 (•,�) cooling sweeps.

sweeps

QL
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topological freezing at fixed N = 3 and decreasing a, β ∈ [5.99, 6.50]:

correlation length ξQ : 〈Q(is)Q(is+ ξQ)〉/〈Q2〉 = e−1

a2σ

ξQ

0.060.050.040.030.020.010

104

103

102

Solid line is ξQ ∝ 1/(a
√
σ)6; dashed line is ξQ ∝ exp{c/a√σ}.
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τQ vs N with fits τQ = b exp{cN} :

N

ln{τ̃Q}
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a
√
σ ∼ 0.15 (•) and a

√
σ ∼ 0.33 (◦).
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τQ vs a with fits τQ = b{1/a√σ}c :

ln{1/a√σ}

ln{τ̃Q}

2.82.62.42.221.81.61.41.21
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SU(3) (•), SU(4) (◦), SU(5) (�), SU(6) (�), SU(8) (�) on volume = (3/
√
σ)4.
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does the freezing matter here?

• not for large N :
〈C(t)Q2〉

〈C(t)〉〈Q2〉
∼ 1 +O(1/N2) (Witten’s interlaced θ-vacua)

• for N ≤ 5 and most N = 6 no freezing issue in our calculations

• for N ≥ 8 freezing, but explicit check ⇒ no visible effect

• improvement: multiple parallel sequences starting with different Q with a

‘reasonable’ distribution

BUT: cannot calculate Q-dependent properties, e.g. susceptibility, for

N ≥ 8 (or even 6)
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dealing better with freezing:

• very large (physical) volumes : computationally expensive!

• open (non-periodic) boundary : only partial success

• introduce a suitable defect (M. Hasenbusch 1706.04443, C. Bonanno et al

2205.06190) : computationally expensive

Of course changes in Q are a lattice artifact, albeit a useful one!
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Some further methods for lattice topology MT 2202.02528

•We have many mutually consistent methods for calculating the total topological

charge Q of a lattice field

•But calculating the charge density Q(x) is more tricky: alterred by any

smoothing

•Problem: given a lattice field {Ul}0, how to calculate its physical density Q(x)?

=⇒Some extra methods: ‘repetition’, blocking, smearing

MT Phys.Lett. B232 (1989) 227 – see also DeGrand,Hasenfratz,Kovacs

hep-lat/9711032
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‘Repetition’ - relatively simple and unambiguous if (computationally) expensive

{Ul}0 → {Ul}ih with ih heat bath sweeps at same β

repeat with different random numbers → generate an ensemble of nr such fields

{Ul}jih ; j = 1, ..., nr each just ih heat bath sweeps from {Ul}0

calculate the average density:

Qih
(x) = 1

nr

∑nr
j=1 Q

j
ih
(x)

for ih very small, e.g. ih = 3, this will average the most UV fluctuations but not

those on physical length scales

expensive : good for calibrating other faster methods
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Q averaged over 104 repetitions of 3 heat bath sweeps starting from five separate

starting fields with Q = −1, 0, 1, 2, 3, generated at β = 6.235 on a 18326 lattice:

Qih=3

Q

0.80.60.40.20−0.2−0.4

3

2

1

0

−1

Diagonal line is QL = Z(β)Q with correct Z(β = 6.235) = 0.1808
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Profile of QL (•) from 104 fields each 3 heat bath sweeps from a single Q = −1

SU(3) lattice field generated at β = 6.235.(Normalised)

t
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Profile in t of QL (•) from 10000 fields each 3 heat bath sweeps from a single

Q = −1 SU(3) lattice field generated at β = 6.235, compared to profile of original

Q = −1 field after 2 cooling sweeps (◦).(Normalised to same Q.)
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Profile in t of QL (•) from 10000 fields each 3 heat bath sweeps from a single

Q = −1 SU(3) lattice field generated at β = 6.235, compared to profile of original

Q = −1 field after 2 cooling sweeps (◦).(Normalised to same Q.)
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Smearing: profile in t of QL (•) from 10000 fields each 3 heat bath sweeps from a

single Q = −1 SU(3) lattice field generated at β = 6.50, compared to profile of

original Q = −1 field after 6 smearing sweeps (◦).(Normalised to same Q.)
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Blocking: QL on a sequence of doubly blocked SU(3) gauge fields generated at

β = 6.70. Histograms of fields with Q = 3 (◦), Q = 1 (•), Q = −1 (�),Q = −3 (�),

where the value of Q is obtained after 20 cooling sweeps of the unblocked fields
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Final remarks
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