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continuum topology : a brief sketch

In a finite volume with periodic boundary conditions, the gauge field possesses a
topological charge
Q = [d*zQ(z) = integer

where
Qz) = ﬁewm Tr{Fv (z)Fpo () }.

The minimum action @ =1 field in SU(2) is the ’instanton’:
2 zol+izjo;

Al(2) = g @)Oug(@)  gle) = T

where g(x) covers the SU(2) group once as x, covers the surface at z,z, = cc.

To obtain an instanton in a periodic finite but large volume make the singular
gauge transformation g (x) (or equivalent).

The instanton action is S; = 872/¢g? and S;(x),Q(z) #0 for 22 < O(p)

One obtains an SU(N) instanton by embedding SU(2) in SU(N)



density of instantons - classical:
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density of instantons - quantum (1 loop):
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small instantons disappear exponentially with N: larger instantons?

plausibly not ...



Interlaced 6-vacua in SU(N) gauge theories

Consider the gauge action with a 6 term
S[9%,0] = gz [ d*aTeFu F* + 5o [ diaet” PP TrFy, Fyo
Now
—— [d*zetPTTYF,, Fpo = Q = integer = E(0) = E(0 +2m) VN

But for a smooth N — oo limit, we need to factor N from S so that the couplings
to keep fixed are 1/g°N, 0/N, ... i.e.
E(0) = N2h(6/N)

—— E(Q) 1S a multi-branched function E. Witten hep-th/9807109
E,(6) = N2h (H%’f) . E() = ming Ex(0)

so that: E(0) = E(0 + 27) while each E}(0) is periodic in 27N



e.g. SU(10):

E(6)

0/2m

domain wall tension between different ‘k-vacua’ is O(IN) so as N — oo these will
all become stable ...



topology : continuum — lattice

Let U,y (z) be the plaquette at « in the uv plane. On smooth fields
U,LLI/(:I;) — 1 _l_ CL2FMV(I) —l_ ceee
so on smooth fields:
QL (@) = 3 €urpo To{U (@)Upo (2)} = a2 Q(x) + O(ad)
However Q, () is not a topological quantity and is not protected from local UV
fluctuations that are O(1/33) and these will swamp the O(a*) physical piece on

rough Monte Carlo fields, particularly since
SU

QL) = ZB)Q@) < Q@) 3 Zi_toop ~ 1—5.45/8+0(1/52)

Practical strategy: smoothen the lattice gauge field so that )7 ~ @) e.g. cooling,
gradient flow, ... — here I shall use ‘cooling’ i.e. a few sweeps where heat bath is

replaced by action minimisation/reduction ...



an instanton on the lattice

e continuum SU(2) instanton of size p:
2 o xol+ix;o;
ALG) = 2z @)0ug(e) 5 olw) = 12

e corresponding lattice field:

Ui(a:) =P {exp fxx+aﬂ Aﬁ(x)dw}
divide link in sections, exponentiate at centre of each section, then multiply
matrices in order recalling exp{ifn o} = [ cos(0) + ingoy sin(0);
perform the gauge transformation g'(x) so that U i(x) ~ | at boundary;
perform a few cooling/smoothening sweeps to iron out any remaining ‘bumps’ at

boundary

e for an SU(N) instanton:
e.g. take the N x N unit matrix and replace the top left hand 2 x 2 submatrix by
the SU(2) instanton U,f ()



profile Qr(t) = > _Qr(t,%) of a p = 8a instanton on a 40" lattice
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For the original lattice field, e, and after 20 cooling sweeps, o.



calculating topology of a ‘rough’ lattice gauge field
e.g.

e cooling — smoothening by a few sweeps where heat bath is replaced by action
minimisation/reduction ...

e gradient flow — an ‘RG invariant’ smoothening

e zero modes of (Neuberger) overlap Dirac operator — or ‘near’ zero modes with
other lattice Dirac operators

cooling and gradient flow lead to ~same results : Bonati,D’Elia 1401.2441,
Alexandrou, Athenodorou,Jansen et al 1509.04259

cooling and Dirac spectral methods lead to ~same results : Alexandrou et al,
1708.00696, Cundy et al, hep-lat/0203030



Cooling: SU(8) lattice fields on a 20330 lattice with a/o ~ 0.133:
Q1 after 2 (o) and 20 (e) cooling sweeps.
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SU(8) lattice fields on a 20330 lattice with a/o ~ 0.133:
Q1 after 2 cooling sweeps for fields with Qr = 0,1,2 (o, B, [J) after 20 cooling

sweeps.
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Cooling: SU(5) 20324 lattice at 8 = 18.04 with a/o ~ 0.156:

Q1 after 2 (o) and 20 (e) cooling sweeps.
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1/4
topological susceptibility: SU(3) X\/{j = 0.4246(36) + 0.09(8)a*c

(AA,MT: 2106.00364v2,2007.06422)
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using 7"0\/0' = 1160(6) and rg = O472(5)fm (Sommer: 1401.3270)
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1/4
topological susceptibility: SU(N) X\//U = 0.368(3) + 0'?\[72(2) (AA,MT: 2106.00364)
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Qnrot = Z(B)Q on 26338 lattices at 3 = 6.5 in SU(3)
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Qrot = Z(8)Q versus [ in SU(3)
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interpolating fits for Z(8) in SU(N) for ranges of 3 = 2N/g? shown:

ZE" =1—29°N — z1(g>N)?

N 20 21 b e X /g
2 [ 0.190(30) | 0.023(9) || [2.452.80 | 1.17
3 | 0.162(10) | 0.0425(31) || [5.69,6.70] | 0.62
4 | 0.156(20) | 0.047(7) | [10.70,11.60] | 1.32
5 | 0.203(21) 0.035(7) [16.98,18.37] 2.76
6 | 0.205(30) | 0.036(11) || [24.67,26.71] | 1.37
8 | 0.187(24) | 0.043(9) || [44.10,47.75] | 1.71
10 | 0.141(44) | 0.060(16) | [69.20,73.35] | 1.0
12 | 0.182(24) | 0.071(22) || [99.86,105.95] | 2.22

can be useful for 6 # 0 calculations where  exp{i0Q} ~ exp{if0Z(B) ' Qnot }
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‘freezing’ of topology as a — 0 and/or N — oc

basic idea: @ — @ — 1 involves an instanton shrinking from p ~ O(1)fm to p ~ a
and then disappearing within a hypercube, so upper bound is probability of

finding very small I with p ~ a X few:

1 1 872 N—oco 1 872 N pra 1IN _ g
D(p) x — exp {— } X — {exp {— }} x (aA) 3 77,
o 9%(p) p° 9*(p)N

so let: 7o = average number sweepsfor(Q — @ £ 1
—

7 —» oo for a — 0 at fixed N or for N — oo at fixed a
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topological freezing at fixed a and large N:
two sequences of SU(8) lattice fields on a 20330 lattice with a+/o ~ 0.133:
Q1 after 2 (o,[0J) and 20 (e, M) cooling sweeps.
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topological freezing at fixed N = 3 and decreasing a, 8 € [5.99, 6.50]:

correlation length &g : (Q(is)Q(is + £0g))/(Q?) = e~}

£

Solid line is £g o 1/(a+/0)°; dashed line is £g o exp{c/a\/o}.
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TQ vs N with fits 7g = bexp{c/N} :
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ay/o ~ 0.15 (e) and ay/o ~ 0.33 (o).
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T7Q vs a with fits Tg = b{1/a /0 }° :
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SU(3) (e), SU(4) (o), SU(5) (M), SU(6) (O), SU(8) (#) on volume = (3/+/c)%.
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does the freezing matter here?

2
e not for large N: <é€(§§§§,}Q2>> ~ 1+ O(1/N?) (Witten’s interlaced 6-vacua)

e for N < 5 and most N = 6 no freezing issue in our calculations

e for N > 8 freezing, but explicit check = no visible effect

e improvement: multiple parallel sequences starting with different ) with a

‘reasonable’ distribution

BUT: cannot calculate ()-dependent properties, e.g. susceptibility, for
N > 8 (or even 6)
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dealing better with freezing:

e very large (physical) volumes : computationally expensive!

e open (non-periodic) boundary : only partial success

e introduce a suitable defect (M. Hasenbusch 1706.04443, C. Bonanno et al
2205.06190) : computationally expensive

Of course changes in () are a lattice artifact, albeit a useful one!
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Some further methods for lattice topology MT 2202.02528

eWe have many mutually consistent methods for calculating the total topological
charge ) of a lattice field

eBut calculating the charge density Q(x) is more tricky: alterred by any

smoothing

eProblem: given a lattice field {U;}o, how to calculate its physical density Q(z)?

—>Some extra methods: ‘repetition’, blocking, smearing
MT Phys.Lett. B232 (1989) 227 — see also DeGrand,Hasenfratz,Kovacs
hep-lat /9711032
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‘Repetition’ - relatively simple and unambiguous if (computationally) expensive
{Urto — {U;}4, with 4p heat bath sweeps at same 3

repeat with different random numbers — generate an ensemble of n, such fields

{Ul};zh;j =1,...,n, each just ¢;, heat bath sweeps from {U; }o

calculate the average density:

_ . . :

Qi (@) = =X Q) (@)

for 7;, very small, e.g. 7;, = 3, this will average the most UV fluctuations but not

those on physical length scales

expensive : good for calibrating other faster methods
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Q averaged over 10% repetitions of 3 heat bath sweeps starting from five separate

starting fields with Q = —1,0,1, 2, 3, generated at 8 = 6.235 on a 18326 lattice:

Q

_ O = N W
[

—04 -0.2 0 02 04 06 0.8

Diagonal line is Q; = Z(B)Q with correct Z(3 = 6.235) = 0.1808
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Profile of Q; (e) from 10* fields each 3 heat bath sweeps from a single Q = —1
SU(3) lattice field generated at 8 = 6.235.(Normalised)
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Profile in ¢ of Q; (e) from 10000 fields each 3 heat bath sweeps from a single
Q = —1 SU(3) lattice field generated at 8 = 6.235, compared to profile of original
@ = —1 field after 2 cooling sweeps (0).(Normalised to same @Q.)
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Profile in ¢ of Q; (e) from 10000 fields each 3 heat bath sweeps from a single
Q = —1 SU(3) lattice field generated at 8 = 6.235, compared to profile of original
@ = —1 field after 2 cooling sweeps (0).(Normalised to same @Q.)
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Smearing: profile in ¢ of Q 7 (®) from 10000 fields each 3 heat bath sweeps from a
single @ = —1 SU(3) lattice field generated at 8 = 6.50, compared to profile of

original Q = —1 field after 6 smearing sweeps (0).(Normalised to same Q.)
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Blocking: QQr on a sequence of doubly blocked SU(3) gauge fields generated at
B = 6.70. Histograms of fields with Q@ =3 (0), Q@ =1 (e), Q@ = —1 (1J),Q = —3 (M),

where the value of @) is obtained after 20 cooling sweeps of the unblocked fields
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Final remarks
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