STR(2)NG

Topology in $\mathrm{SU}(\mathrm{N})$ gauge theories
Michael Teper (Oxford) - ECT 2022 - NEDM Workshop
A.Athenodorou,MT 2106.00364v2,v3, 2007.06422; MT 2202.02528

- continuum topology : a brief sketch
- topology : continuum \longrightarrow lattice
- calculating topology on the lattice
- 'freezing' of topology as $a \rightarrow 0$ and/or $N \rightarrow \infty$
- some further methods for lattice topology

continuum topology : a brief sketch

In a finite volume with periodic boundary conditions, the gauge field possesses a topological charge

$$
Q=\int d^{4} x Q(x)=\text { integer }
$$

where

$$
Q(x)=\frac{1}{32 \pi^{2}} \epsilon_{\mu \nu \rho \sigma} \operatorname{Tr}\left\{F_{\mu \nu}(x) F_{\rho \sigma}(x)\right\} .
$$

The minimum action $Q=1$ field in $S U(2)$ is the 'instanton':

$$
A_{\mu}^{I}(x)=\frac{x^{2}}{x^{2}+\rho^{2}} g^{-1}(x) \partial_{\mu} g(x) \quad ; \quad g(x)=\frac{x_{0} I+i x_{j} \sigma_{j}}{\left(x_{\mu} x_{\mu}\right)^{1 / 2}}
$$

where $g(x)$ covers the $S U(2)$ group once as x_{μ} covers the surface at $x_{\mu} x_{\mu}=\infty$. To obtain an instanton in a periodic finite but large volume make the singular gauge transformation $g^{\dagger}(x)$ (or equivalent).

The instanton action is $\quad S_{I}=8 \pi^{2} / g^{2}$ and $\quad S_{I}(x), Q(x) \neq 0 \quad$ for $x^{2} \leq O(\rho)$

One obtains an $S U(N)$ instanton by embedding $S U(2)$ in $S U(N)$
density of instantons - classical:

$$
D(\rho) \frac{d \rho}{\rho} \propto \frac{d \rho}{\rho} \frac{1}{\rho^{4}} \frac{v(N)}{g^{4 N}} \exp \left\{-\frac{8 \pi^{2}}{g^{2}}\right\}
$$

density of instantons - quantum (1 loop):

$$
D(\rho) \propto \frac{1}{\rho^{4}} \frac{v(N)}{g^{4 N}} \exp \left\{-\frac{8 \pi^{2}}{g^{2}(\rho)}\right\}
$$

$\xrightarrow{N \rightarrow \infty}$

$$
D(\rho) \propto \frac{1}{\rho^{4}}\left\{\frac{\text { const }}{\lambda^{2}} \exp \left\{-8 \pi^{2} / \lambda(\rho)\right\}\right\}^{N} \quad ; \quad \lambda=g^{2} N
$$

small instantons disappear exponentially with N : larger instantons? plausibly not ...

Interlaced θ-vacua in $\mathrm{SU}(\mathrm{N})$ gauge theories

Consider the gauge action with a θ term

$$
S\left[g^{2}, \theta\right]=\frac{1}{4 g^{2}} \int d^{4} x \operatorname{Tr} F_{\mu \nu} F^{\mu \nu}+\frac{i \theta}{16 \pi^{2}} \int d^{4} x \epsilon^{\mu \nu \rho \sigma} \operatorname{Tr} F_{\mu \nu} F_{\rho \sigma}
$$

Now

$$
\frac{1}{16 \pi^{2}} \int d^{4} x \epsilon^{\mu \nu \rho \sigma} \operatorname{Tr} F_{\mu \nu} F_{\rho \sigma}=Q=\text { integer } \quad \Longrightarrow \quad E(\theta)=E(\theta+2 \pi) \forall N
$$

But for a smooth $N \rightarrow \infty$ limit, we need to factor N from S so that the couplings to keep fixed are $1 / g^{2} N, \theta / N, \ldots$ i.e.

$$
E(\theta)=N^{2} h(\theta / N)
$$

$\Longrightarrow \mathrm{E}(\theta)$ is a multi-branched function E .Witten hep-th/9807109

$$
E_{k}(\theta)=N^{2} h\left(\frac{\theta+2 \pi k}{N}\right) \quad ; \quad E(\theta)=\min _{k} E_{k}(\theta)
$$

so that: $E(\theta)=E(\theta+2 \pi)$ while each $E_{k}(\theta)$ is periodic in $2 \pi N$
e.g. $S U(10)$:

domain wall tension between different ' k-vacua' is $O(N)$ so as $N \rightarrow \infty$ these will all become stable ... Witten: AdS/CFT ; Shifman: $\mathcal{N}=1$ SUSY

$$
\text { topology : continuum } \longrightarrow \text { lattice }
$$

Let $U_{\mu \nu}(x)$ be the plaquette at x in the $\mu \nu$ plane. On smooth fields

$$
U_{\mu \nu}(x)=1+a^{2} F_{\mu \nu}(x)+\ldots
$$

so on smooth fields:

$$
Q_{L}(x) \equiv \frac{1}{32 \pi^{2}} \epsilon_{\mu \nu \rho \sigma} \operatorname{Tr}\left\{U_{\mu \nu}(x) U_{\rho \sigma}(x)\right\}=a^{4} Q(x)+O\left(a^{6}\right)
$$

However $Q_{L}(x)$ is not a topological quantity and is not protected from local UV fluctuations that are $O\left(1 / \beta^{3}\right)$ and these will swamp the $O\left(a^{4}\right)$ physical piece on rough Monte Carlo fields, particularly since

$$
\left\langle Q_{L}(x)\right\rangle_{Q}=Z(\beta) Q(x) \ll Q(x) \quad ; \quad Z_{1-\text { loop }} \stackrel{S U 3}{\simeq} 1-5.45 / \beta+O\left(1 / \beta^{2}\right)
$$

Practical strategy: smoothen the lattice gauge field so that $Q_{L} \simeq Q$ e.g. cooling, gradient flow, ... - here I shall use 'cooling' i.e. a few sweeps where heat bath is replaced by action minimisation/reduction ...

an instanton on the lattice

- continuum $S U(2)$ instanton of size ρ :

$$
A_{\mu}^{I}(x)=\frac{x^{2}}{x^{2}+\rho^{2}} g^{-1}(x) \partial_{\mu} g(x) \quad ; \quad g(x)=\frac{x_{0} I+i x_{j} \sigma_{j}}{\left(x_{\mu} x_{\mu}\right)^{1 / 2}}
$$

- corresponding lattice field:

$$
U_{\mu}^{I}(x)=\mathcal{P}\left\{\exp \int_{x}^{x+a \hat{\mu}} A_{\mu}^{I}(x) d x\right\}
$$

divide link in sections, exponentiate at centre of each section, then multiply matrices in order recalling $\exp \left\{i \theta n_{k} \sigma_{k}\right\}=I \cos (\theta)+i n_{k} \sigma_{k} \sin (\theta)$; perform the gauge transformation $g^{\dagger}(x)$ so that $U_{\mu}^{I}(x) \simeq I$ at boundary; perform a few cooling/smoothening sweeps to iron out any remaining 'bumps' at boundary

- for an $S U(N)$ instanton:
e.g. take the $N \times N$ unit matrix and replace the top left hand 2×2 submatrix by the $S U(2)$ instanton $U_{\mu}^{I}(x)$
profile $Q_{L}(t)=\sum_{\bar{x}} Q_{L}(t, \bar{x})$ of a $\rho=8 a$ instanton on a 40^{4} lattice

For the original lattice field, \bullet, and after 20 cooling sweeps, ○.

calculating topology of a 'rough' lattice gauge field

e.g.

- cooling - smoothening by a few sweeps where heat bath is replaced by action minimisation/reduction ...
- gradient flow - an 'RG invariant' smoothening
- zero modes of (Neuberger) overlap Dirac operator - or 'near' zero modes with other lattice Dirac operators
... $\quad \Longrightarrow$
cooling and gradient flow lead to \sim same results : Bonati,D'Elia 1401.2441, Alexandrou, Athenodorou,Jansen et al 1509.04259
cooling and Dirac spectral methods lead to \sim same results : Alexandrou et al, 1708.00696, Cundy et al, hep-lat/0203030

Cooling: $S U(8)$ lattice fields on a $20^{3} 30$ lattice with $a \sqrt{ } \sigma \simeq 0.133$:
Q_{L} after $2(\circ)$ and $20(\bullet)$ cooling sweeps.

$S U(8)$ lattice fields on a $20^{3} 30$ lattice with $a \sqrt{ } \sigma \simeq 0.133$:
Q_{L} after 2 cooling sweeps for fields with $Q_{L}=0,1,2(\circ, \square, \square)$ after 20 cooling sweeps.

Cooling: $\operatorname{SU}(5) 20^{3} 24$ lattice at $\beta=18.04$ with $a \sqrt{ } \sigma \simeq 0.156$:
Q_{L} after $2(\circ)$ and $20(\bullet)$ cooling sweeps.

topological susceptibility: $S U(3) \frac{\chi^{1 / 4}}{\sqrt{ } \sigma}=0.4246(36)+0.09(8) a^{2} \sigma$
(AA,MT: 2106.00364v2,2007.06422)

$$
\frac{\chi^{1 / 4}}{\sqrt{ } \sigma}
$$

$\frac{\chi^{1 / 4}}{\sqrt{ } \sigma}=\left.0.4246(36)\right|_{s u 3} \longrightarrow \chi^{1 / 4}=206(4) \mathrm{MeV}$
using $r_{0} \sqrt{ } \sigma=1.160(6)$ and $r_{0}=0.472(5) \mathrm{fm}$ (Sommer: 1401.3270)
topological susceptibility: $S U(N) \frac{\chi^{1 / 4}}{\sqrt{ } \sigma}=0.368(3)+\frac{0.47(2)}{N^{2}}$ (AA,MT: 2106.00364)

Q integer (•), Q raw (O) (AA,MT: 2106.00364)

$$
Q_{h o t}=Z(\beta) Q \text { on } 26^{3} 38 \text { lattices at } \beta=6.5 \text { in } S U(3)
$$

Average topological charge on lattice fields which have a charge Q after 20 cools

$$
Q_{h o t}=Z(\beta) Q \text { versus } \beta \text { in } S U(3)
$$

$Z(\beta)$ interpolating fit (solid line) and one-loop perturbative result (dashed line)
interpolating fits for $Z(\beta)$ in $S U(N)$ for ranges of $\beta=2 N / g^{2}$ shown:

$Z_{Q}^{\text {int }}=1-z_{0} g^{2} N-z_{1}\left(g^{2} N\right)^{2}$				
N	z_{0}	z_{1}	$\beta \in$	$\chi^{2} / n_{d f}$
2	$0.190(30)$	$0.023(9)$	$[2.45,2.80]$	1.17
3	$0.162(10)$	$0.0425(31)$	$[5.69,6.70]$	0.62
4	$0.156(20)$	$0.047(7)$	$[10.70,11.60]$	1.32
5	$0.203(21)$	$0.035(7)$	$[16.98,18.37]$	2.76
6	$0.205(30)$	$0.036(11)$	$[24.67,26.71]$	1.37
8	$0.187(24)$	$0.043(9)$	$[44.10,47.75]$	1.71
10	$0.141(44)$	$0.060(16)$	$[69.20,73.35]$	1.05
12	$0.182(24)$	$0.071(22)$	$[99.86,105.95]$	2.22

can be useful for $\theta \neq 0$ calculations where $\quad \exp \{i \theta Q\} \simeq \exp \left\{i \theta Z(\beta)^{-1} Q_{\text {hot }}\right\}$

$$
\text { 'freezing' of topology as } a \rightarrow 0 \text { and/or } N \rightarrow \infty
$$

basic idea: $Q \rightarrow Q-1$ involves an instanton shrinking from $\rho \sim O(1) \mathrm{fm}$ to $\rho \sim a$ and then disappearing within a hypercube, so upper bound is probability of finding very small I with $\rho \sim a \times f e w$:

$$
D(\rho) \propto \frac{1}{\rho^{5}} \frac{1}{g^{4 N}} \exp \left\{-\frac{8 \pi^{2}}{g^{2}(\rho)}\right\}^{N \rightarrow \infty} \frac{1}{\rho^{5}}\left\{\exp \left\{-\frac{8 \pi^{2}}{g^{2}(\rho) N}\right\}\right\}^{N} \stackrel{\rho \sim a}{\propto}(a \Lambda)^{\frac{11 N}{3}-5}
$$

so let: $\quad \tau_{Q}=$ average number sweeps for $Q \rightarrow Q \pm 1$
\Longrightarrow
$\tau_{Q} \rightarrow \infty$ for $a \rightarrow 0$ at fixed N or for $N \rightarrow \infty$ at fixed a
topological freezing at fixed a and large N :
two sequences of $S U(8)$ lattice fields on a $20^{3} 30$ lattice with $a \sqrt{ } \sigma \simeq 0.133$:
Q_{L} after $2(\circ, \square)$ and $20(\bullet, \square)$ cooling sweeps.

topological freezing at fixed $N=3$ and decreasing $a, \beta \in[5.99,6.50]$: correlation length $\xi_{Q}:\left\langle Q(i s) Q\left(i s+\xi_{Q}\right)\right\rangle /\left\langle Q^{2}\right\rangle=e^{-1}$

Solid line is $\xi_{Q} \propto 1 /(a \sqrt{ } \sigma)^{6} ;$ dashed line is $\xi_{Q} \propto \exp \{c / a \sqrt{ } \sigma\}$.
τ_{Q} vs N with fits $\tau_{Q}=b \exp \{c N\}:$

$a \sqrt{ } \sigma \sim 0.15(\bullet)$ and $a \sqrt{ } \sigma \sim 0.33(\circ)$.
τ_{Q} vs a with fits $\tau_{Q}=b\{1 / a \sqrt{ } \sigma\}^{c}:$

does the freezing matter here?

- not for large $N: \quad \frac{\left\langle C(t) Q^{2}\right\rangle}{\langle C(t)\rangle\left\langle Q^{2}\right\rangle} \sim 1+O\left(1 / N^{2}\right) \quad$ (Witten's interlaced θ-vacua)
- for $N \leq 5$ and most $N=6$ no freezing issue in our calculations
- for $N \geq 8$ freezing, but explicit check \Rightarrow no visible effect
- improvement: multiple parallel sequences starting with different Q with a 'reasonable' distribution

BUT: cannot calculate Q-dependent properties, e.g. susceptibility, for $N \geq 8($ or even 6$)$
dealing better with freezing:

- very large (physical) volumes : computationally expensive!
- open (non-periodic) boundary : only partial success
- introduce a suitable defect (M. Hasenbusch 1706.04443, C. Bonanno et al 2205.06190) : computationally expensive

Of course changes in Q are a lattice artifact, albeit a useful one!

Some further methods for lattice topology MT 2202.02528
-We have many mutually consistent methods for calculating the total topological charge Q of a lattice field

- But calculating the charge density $Q(x)$ is more tricky: alterred by any smoothing
-Problem: given a lattice field $\left\{U_{l}\right\}_{0}$, how to calculate its physical density $Q(x)$?
\Longrightarrow Some extra methods: 'repetition', blocking, smearing
MT Phys.Lett. B232 (1989) 227 - see also DeGrand,Hasenfratz,Kovacs
hep-lat/9711032
'Repetition' - relatively simple and unambiguous if (computationally) expensive
$\left\{U_{l}\right\}_{0} \rightarrow\left\{U_{l}\right\}_{i_{h}}$ with i_{h} heat bath sweeps at same β
repeat with different random numbers \rightarrow generate an ensemble of n_{r} such fields $\left\{U_{l}\right\}_{i_{h}}^{j} ; j=1, \ldots, n_{r}$ each just i_{h} heat bath sweeps from $\left\{U_{l}\right\}_{0}$
calculate the average density:
$\bar{Q}_{i_{h}}(x)=\frac{1}{n_{r}} \sum_{j=1}^{n_{r}} Q_{i_{h}}^{j}(x)$
for i_{h} very small, e.g. $i_{h}=3$, this will average the most UV fluctuations but not those on physical length scales
expensive : good for calibrating other faster methods
Q averaged over 10^{4} repetitions of 3 heat bath sweeps starting from five separate starting fields with $Q=-1,0,1,2,3$, generated at $\beta=6.235$ on a $18^{3} 26$ lattice:

Diagonal line is $\bar{Q}_{L}=Z(\beta) Q$ with correct $Z(\beta=6.235)=0.1808$

Profile of $\bar{Q}_{L}(\bullet)$ from 10^{4} fields each 3 heat bath sweeps from a single $Q=-1$ $S U(3)$ lattice field generated at $\beta=6.235$.(Normalised)

Profile in t of $\bar{Q}_{L}(\bullet)$ from 10000 fields each 3 heat bath sweeps from a single $Q=-1 S U(3)$ lattice field generated at $\beta=6.235$, compared to profile of original $Q=-1$ field after 2 cooling sweeps (o).(Normalised to same Q.)

Profile in t of $\bar{Q}_{L}(\bullet)$ from 10000 fields each 3 heat bath sweeps from a single $Q=-1 S U(3)$ lattice field generated at $\beta=6.235$, compared to profile of original $Q=-1$ field after 2 cooling sweeps (o).(Normalised to same Q.)

Smearing: profile in t of $\bar{Q}_{L}(\bullet)$ from 10000 fields each 3 heat bath sweeps from a single $Q=-1 S U(3)$ lattice field generated at $\beta=6.50$, compared to profile of original $Q=-1$ field after 6 smearing sweeps (o).(Normalised to same Q.)

Blocking: Q_{L} on a sequence of doubly blocked $S U(3)$ gauge fields generated at $\beta=6.70$. Histograms of fields with $Q=3$ (o), $Q=1$ (•), $Q=-1$ (\square), $Q=-3$ where the value of Q is obtained after 20 cooling sweeps of the unblocked fields

Final remarks

