FONDAZIONE BRUNO KESSLER

Accurate analysis method to detect rare events in VIP-2

Alessio Porcelli

21 September 2022

TRENTO

X-Rays

K_{β} x-ray emitted

Shells
(orbits)
M-shell electron fills vacancy

Searching for PEP violation

Why Fermi-Dirac and Bose-Einstein are distinct?

* Green's general quantum field: paronic particles
* Order 1: fermionic/bosonic fields
* Order>1: parafermionic/parabosonic fileds

4essiah-Greenberg Super-Selection: no fermion/boson decays into parafermion/ paraboson (and vice-versa)
Paronic: a mixture of fermionic/bosonic and parefermionic/parabosonic states

* Non-Commutative Quantum Gravity
*-Poincaré: distortion of Lorentz symmetry (visible in a two identical particles system)
Both break the anti-/symmetric commutativity with an amplitude β.
In a system of two fermions (i.e., two electrons),
PEP is violated with a probability of $\boldsymbol{\beta}^{\mathbf{2}} / \mathbf{2}$
[See Fabrizio's Talk for more details]

VIP-2 GOAL
 searching VIolation of Pauli Exclusion Principle

Searching for PEP violation

Why Fermi-Dirac and Bose-Einstein are distinct?

* Green's general quantum field: paronic particles
* Order 1: fermionic/bosonic fields
* Order>1: parafermionic/parabosonic fileds

4essiah-Greenberg Super-Selection: no fermion/boson decays into parafermion/ paraboson (and vice-versa)
Paronic: a mixture of fermionic/bosonic and parefermionic/parabosonic states

* Non-Commutative Quantum Gravity
*-Poincaré: distortion of Lorentz symmetry (visible in a two identical particles system)
Both break the anti-/symmetric commutativity with an amplitude β.
In a system of two fermions (i.e., two elpctrons),
PEP is violated with a probability of $\beta^{2} / 2$ [See Fabrizio's Talk for more d etails]

VIP-2 GOAL

VIP-2

Target: Copper strips
WITHOUT CURRENT configuration: regime case (stable states: background)
4 WITH CURRENT configuration (180 A): dynamic case (PEP violation through electron capture)

- SDD: 32 detectors by SDDs, stably kept @
$-170_{-0}^{+1}{ }^{\circ} \mathrm{C}$ even with the current in Cu
(@LNGS Underground (beneath Gran Sasso Mountain - IT): ~1400 m of rock shielding

Data model

Data model

$$
\mathscr{F} \operatorname{Voc}^{\operatorname{Wa}}(\theta, y)=y_{1} \times \operatorname{Ni}\left(\theta_{1}, \theta_{2}\right)+y_{2} \times C u\left(\theta_{3}, \theta_{4}\right)+y_{3} \times \operatorname{pol}_{1}\left(\theta_{5}\right)
$$

Data model

$$
\mathscr{F}{ }^{w c}(\theta, y, \mathcal{S})=y_{1} \times N i\left(\theta_{1}, \theta_{2}\right)+y_{2} \times \operatorname{Cu}\left(\theta_{3}, \theta_{4}\right)+y_{3} \times \operatorname{pol}_{1}\left(\theta_{5}\right)+\mathcal{\delta} \times \operatorname{PEPV}\left(\theta_{4}\right)
$$

Data Likelihood

$$
\mathscr{L}\left(\mathscr{D}^{w c}, \mathscr{D}^{w o c} \mid \boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S}\right)=\operatorname{Poiss}\left(\mathscr{D}^{w c} \mid \mathscr{F}^{w c}(\boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S})\right) \times \operatorname{Poiss}\left(\mathscr{D}^{W O C} \mid \mathscr{F}^{W o c}(\boldsymbol{\theta}, \boldsymbol{y} \times \mathscr{R})\right)
$$

[mind: $\operatorname{Poiss}(\mathscr{D} \mid \mathscr{F})=\frac{\mathscr{F}^{\mathscr{D}}}{\mathscr{D}!} e^{-\mathscr{F}}, \mathscr{D}$ are data, \mathscr{F} is the model]

Ratio of data acquisition time

Bayesian approach

$$
p\left(\boldsymbol{\theta}, \boldsymbol{y}, \delta \mid \mathscr{D}^{w c}, \mathscr{D}^{w o c}\right)=\frac{\mathscr{L}\left(\mathscr{D}^{w c}, \mathscr{D}^{w o c} \mid \boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S}\right) p(\boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S})}{\int d \boldsymbol{\theta} d \boldsymbol{y} \mathscr{L}\left(\mathscr{D}^{w c}, \mathscr{D}^{w o c} \mid \boldsymbol{\theta}, \boldsymbol{y}, \mathcal{\delta}\right) p(\boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S})}
$$

Bayesian approach

Posterior

Priors of $\boldsymbol{\theta}$ and \boldsymbol{y} are Gaussians: statistical fluctuations around known values
Prior of \mathcal{S} is flat, limited from previous experiments

- Systematic uncertainties included

Bayesian result

(marginalized Posterior)

$$
p\left(\mathcal{S} \mid \mathscr{D}^{w c}, \mathscr{D}^{w o c}\right)=\int p\left(\boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S} \mid \mathscr{D}^{w c}, \mathscr{D}^{w o c}\right) d \boldsymbol{\theta} d \boldsymbol{y}
$$

Integrals with Markov Chain Monte Carlo method

Modified frequentist $C_{\text {s }}$

 one-sided test statistic$$
t_{\mathcal{S}}=-2 \ln \Lambda(\mathcal{S})=-2 \ln \frac{\mathscr{L}(\hat{\boldsymbol{\theta}}, \hat{\hat{\mathbf{y}}}, \mathcal{S})}{\mathscr{L}(\hat{\boldsymbol{\theta}}, \hat{\mathbf{y}}, \delta)}
$$

Modified frequentist CLs

 one-sided test statistic
\mathscr{L} now includes multiplicative penalties given by experimental uncertainties: i.e., the priors in the Bayesian
$\mathscr{L}(\boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S})=\mathscr{L}\left(\mathscr{D}^{w c}, \mathscr{D}^{w o c} \mid \boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S}\right) p(\boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S})$

Modified frequentist CL_{s}

one-sided test statistic

\mathscr{L} now includes multiplicative penalties given by experimental uncertainties: i.e., the priors in the Bayesian
$\mathscr{L}(\boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S})=\mathscr{L}\left(\mathscr{D}^{w c}, \mathscr{D}^{w o c} \mid \boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S}\right) p(\boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S})$
$\hat{\boldsymbol{\theta}}, \hat{\boldsymbol{y}}, \hat{\delta}$ are the values that maximize the Likelihood;
i.e., the denominator is the standard maximum Likelihood

Modified frequentist CLs

one-sided test statistic

Profile Likelihood;
\mathscr{L} now includes multiplicative penalties given by experimental uncertainties: i.e., the priors in the Bayesian
$\mathscr{L}(\boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S})=\mathscr{L}\left(\mathscr{D}^{w c}, \mathscr{D}^{w o c} \mid \boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S}\right) p(\boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S})$ $\hat{\boldsymbol{\theta}}, \hat{\boldsymbol{y}}, \hat{\mathcal{S}}$ are the values that
maximize the Likelihood;
$\hat{\hat{\boldsymbol{\theta}}}, \hat{\hat{\boldsymbol{y}}}$ are the values that
maximize the Likelihood with a given \mathcal{S};
i.e., a set of parameters for each test-value \mathcal{S}

Modified frequentist CLs

 one-sided test statistic the priors in the Bayesian

$$
\mathscr{L}(\boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S})=\mathscr{L}\left(\mathscr{D}^{w c}, \mathscr{D}^{w o c} \mid \boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S}\right) p(\boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S})
$$

$\hat{\hat{\boldsymbol{\theta}}}, \hat{\hat{y}}$ are the values that maximize the Likelihood with a given \mathcal{S}; i.e., a set of parameters for each test-value \mathcal{S}
$t_{\mathcal{S}}$ distribution, given \mathcal{S}

$$
p_{\delta}=\int_{t_{\text {obs }}}^{\infty} f\left(t_{\delta} \mid \delta\right) d t_{\delta}
$$

$t_{\mathcal{S}}$ of observed \mathcal{S}
$\mathrm{CL}_{\mathrm{s}}=\frac{p_{\mathcal{\delta}}}{1-p_{0}}<1-$ C.L. \quad (i.e., 90% C.L. $\Rightarrow \mathrm{CL}_{\text {s }}<0.1$) 17

CLs result

$$
\left.p_{\mathcal{S}}=\int_{t_{\text {obs }}}^{\infty} f\left(t_{\mathcal{S}} \mid \delta\right) d t_{\mathcal{S}} \quad \mathrm{CL}_{\mathrm{s}}=\frac{p_{\mathcal{S}}}{1-p_{0}}<1-\text { C.L. } \quad \text { (i.e., } 90 \% \text { C.L. } \Rightarrow \mathrm{CL}_{\mathrm{s}}<0.1\right)
$$

Computation with RooFit

$C L_{s}$ expected with
 measured \mathcal{S}

CLs expected in
case of $\mathcal{S}=0$
\int but measured δ

CLs result

$$
\left.p_{\mathcal{S}}=\int_{t_{\text {obs }}}^{\infty} f\left(t_{\mathcal{S}} \mid \delta\right) d t_{\mathcal{S}} \quad \mathrm{CL}_{\mathrm{s}}=\frac{p_{\mathcal{S}}}{1-p_{0}}<1-\text { C.L. } \quad \text { (i.e., } 90 \% \text { C.L. } \Rightarrow \mathrm{CL}_{\mathrm{s}}<0.1\right)
$$

Computation with RooFit

$C L_{s}$ expected with
 (generated ideal dataset most likely representing the model) line of p-value $=0.1$

From \mathcal{S} to $\beta^{2} / 2$

$$
N_{x} \simeq \frac{\beta^{2}}{2} \cdot N_{\text {new }} \cdot \frac{N_{\text {int }}}{10} \cdot 7.25 \times 10^{-2}
$$

From \mathcal{S} to $\beta^{2} / 2$

This is our δ !

$$
\bigwedge_{N_{x}} \simeq \frac{\beta^{2}}{2} \cdot N_{\text {new }} \cdot \frac{N_{\text {int }}}{10} \cdot 7.25 \times 10^{-2}
$$

From \mathcal{S} to $\beta^{2} / 2$

This is our δ !

Newly injected electrons!
$\sum_{i}^{\text {runs }} I_{i} \Delta t_{i} / e(=I \Delta t / e$ for simplicity $)$

From \mathcal{S} to $\beta^{2} / 2$

This is our \mathcal{S} !

$$
>_{N_{x}} \simeq \frac{\beta^{2}}{2} \cdot N_{\text {new }} \cdot \frac{N_{\text {int }}}{10} \cdot 7.25 \times 10^{-2}
$$

Number of interactions;
every ~ 10 interactions, 1 cascade
Newly injected electrons!
$\sum_{i}^{\text {runs }} I_{i} \Delta t_{i} / e(=I \Delta t / e$ for simplicity $)$

From \mathcal{S} to $\beta^{2} / 2$

This is our $\delta!$

$$
{N_{x}} \simeq \frac{\beta^{2}}{2} \cdot N_{\text {new }} \cdot \frac{N_{\text {int }}}{10} \cdot 7.25 \times 10^{-2}
$$ efficiency simulated:

considered X-ray
absorption + geometry acceptance + SDDs efficiency
Number of interactions;
every ~ 10 interactions, 1 cascade
Newly injected electrons!

$$
\sum_{i}^{\text {runs }} I_{i} \Delta t_{i} / e(=I \Delta t / e \text { for simplicity })
$$

From \mathcal{S} to $\beta^{2} / 2$

This is our \mathcal{S} !

$$
>_{N_{x}} \simeq \frac{\beta^{2}}{2} \cdot N_{\text {new }} \cdot \frac{N_{\text {int }}}{10} \cdot 7.25 \times 10^{-2}
$$ efficiency simulated:

considered X-ray
absorption + geometry acceptance + SDDs efficiency
Number of interactions;
every ~ 10 interactions, 1 cascade
Newly injected electrons!

$$
\begin{gathered}
\sum_{i}^{\text {runs }} I_{i} \Delta t_{i} / e(=I \Delta t / e \text { for simplicity }) \\
\Downarrow \\
\frac{\beta^{2}}{2} \simeq \delta \cdot \frac{10}{N_{\mathrm{int}}} \cdot \frac{e}{I \Delta t} \cdot \frac{1}{7.25 \times 10^{-2}}
\end{gathered}
$$

From \mathcal{S} to $\beta^{2} / 2$

This is our $\mathcal{S}!$
$>N_{x} \simeq \frac{\beta^{2}}{2} \cdot N_{\text {new }} \cdot \frac{N_{\text {int }}}{10} \cdot 7.25 \times 10^{-2}$

\uparrow4 efficiency simulated: considered X-ray absorption + geometry acceptance + SDDs efficiency
Number of interactions; every ~ 10 interactions, 1 cascade
Newly injected electrons!

$$
\begin{array}{r}
\sum_{i}^{\text {runs }} I_{i} \Delta t_{i} / e(=I \Delta t / e \text { for simplicity }) \\
\Downarrow \\
\frac{\beta^{2}}{2} \simeq \delta \cdot \frac{10}{N_{\text {int }}} \cdot \frac{e}{I \Delta t} \cdot \frac{1}{7.25 \times 10^{-2}}
\end{array}
$$

$N_{\text {int }}$ is the normalization that decides the order of magnitude of $\beta^{2} / 2$
Let's discuss e-atoms interaction Models!

$N_{\text {int }}$ by Linear Scattering

Through Copper Resistance, we know the average interaction length μ

$$
\begin{aligned}
N_{\text {int }} & =D / \mu \simeq 1.95 \times 10^{6} \\
& \Rightarrow \frac{\beta^{2}}{2} \lesssim 10^{-31}
\end{aligned}
$$

$N_{\text {int }}$ by Close Encounters

Through Diffusion-Transport theory and Copper atomic density, we know:

- the average time τ_{E} on atomic encounter for a diffused electron
- the average time T of target crossing by an electron

$$
\begin{aligned}
N_{\text {int }} & =T / \tau_{E} \simeq 4.29 \times 10^{17} \\
& \Rightarrow \frac{\beta^{2}}{2} \lesssim 10^{-43}
\end{aligned}
$$

Outlook

Bayesian

Well established: excellent for low statistical signals
Systematic uncertainty is the combination of different priors for the various factors

CLs

Models with little or no sensitivity to the null hypothesis, e.g., if the data fluctuate very low relative to the expectation of the background-only hypothesis: the lower/upper limit might be anomalously low; more robust compared to the classic p-value
Sensible to small parameter fluctuations

$N_{\text {int }}$

Linear Scattering: due to phonons and lattice irregularities
Safest hypothesis
I Largely underestimation of how many interactions an electron does

- Close Encounters: a more realistic model of e-atom encounters, but still approximated - 12 order of magnitudes larger than Linear Scattering!

This is the key element to improve the measurement!

Outlook

Bayesian

Well established: excellent for low statistical signals
Systematic uncertainty is the combination of different priors for the various factors

CLs

Models with little or no sensitivity to the null hypothesis, e.g., if the data fluctuate very low relative to the expectation of the background-only hypothesis: the lower/upper limit might be anomalously low; more robust compared to the classic p-value
Sensible to small parameter fluctuations

$N_{\text {int }}$

Linear Scattering: due to phonons and lattice irregularities
Safest hypothesis
Largely underestimation of how many interactions an electron does

* Close Encounters: a more realistic model of e-atom encounters, but still approximated - 12 order of magnitudes larger than Linear Scattering!

This is the key element to improve the measurement!

THANK YOU

BACKUPS

TO DO: a quantum $N_{\text {int }} ?$

How many interactions between Cu atomic and electron fields occur?

