Decoherence and discrete symmetries from Planck-scale deformed relativistic kinematics

Michele Arzano
Università di Napoli Federico II and
INFN Napoli

September 23, 2022
ECT - Nuclear and Atomic transitions as laboratories for high precision tests of Quantum Gravity inspired models

Where it all started from...

1983: pre-history of QG phenomenology

SEARCH FOR VIOLATIONS OF QUANTUM MECHANICS*

John Ellis and John S. Hagelin
Stanford Linear Accelerator Center
Stanford University, Stanford, California 94305
and
D. V. Nanopoulos and M. Srednicki ${ }^{\dagger}$ CERN, CH-1211 Geneva 23 Switzerland

Where it all started from...

1983: pre-history of QG phenomenology

SEARCH FOR VIOLATIONS OF QUANTUM MECHANICS*

John Ellis and John S. Hagelin
Stanford Lincar Accelerator Center
Stanford University, Stanford, California 94305
and
D. V. Nanopoulos and M. SREDNICKI ${ }^{\dagger}$
CERN, CH-1211 Geneva 23
Switzerland
tests of fundamental decoherence using neutral kaons and neutron interferometry

Where it all started from...

1983: pre-history of QG phenomenology

SEARCH FOR VIOLATIONS OF QUANTUM MECHANICS*

John Ellis and John S. Hagelin
Stanford Linear Accelerator Center
Stanford University, Stanford, California 94305
and
D. V. Nanopoulos and M. Srednicki ${ }^{\dagger}$ CERN, CH-1211 Geneva 23
Switzerland

tests of fundamental decoherence using neutral kaons and neutron interferometry, main motivation given by:

```
PHYSICAL REVIEW D

Breakdown of predictability in gravitational collapse*

\section*{S. W. Hawking \({ }^{\dagger}\)}

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England and California Institute of Technology, Pasadena, California 91125
(Received 25 August 1975)
suggested fundamental loss of information in black hole evaporation

\section*{Fundamental decoherence in quantum gravity?}

\section*{Fundamental decoherence in quantum gravity?}
- Ordinary quantum evolution is unitary: \(\rho_{\text {fin }}=S \rho_{i n} S^{\dagger}\) with \(S S^{\dagger}=1\)

\section*{Fundamental decoherence in quantum gravity?}
- Ordinary quantum evolution is unitary: \(\rho_{\text {fin }}=S \rho_{\text {in }} S^{\dagger}\) with \(S S^{\dagger}=1\)
- Unitary \(S \Longrightarrow\) if \(\operatorname{Tr} \rho_{i n}^{2}=1\) then \(\operatorname{Tr} \rho_{f i n}^{2}=1\) i.e. purity is eternal

\section*{Fundamental decoherence in quantum gravity?}
- Ordinary quantum evolution is unitary: \(\rho_{\text {fin }}=S \rho_{i n} S^{\dagger}\) with \(S S^{\dagger}=1\)
- Unitary \(S \Longrightarrow\) if \(\operatorname{Tr} \rho_{i n}^{2}=1\) then \(\operatorname{Tr} \rho_{f i n}^{2}=1\) i.e. purity is eternal
- BH quantum radiance suggests the possibility that \(\rho_{\text {in }}(\) pure \() \rightarrow \rho_{\text {fin }}(\) mixed \()\)

\section*{Fundamental decoherence in quantum gravity?}
- Ordinary quantum evolution is unitary: \(\rho_{\text {fin }}=S \rho_{i n} S^{\dagger}\) with \(S S^{\dagger}=1\)
- Unitary \(S \Longrightarrow\) if \(\operatorname{Tr} \rho_{i n}^{2}=1\) then \(\operatorname{Tr} \rho_{f i n}^{2}=1\) i.e. purity is eternal
- BH quantum radiance suggests the possibility that \(\rho_{\text {in }}(\) pure \() \rightarrow \rho_{\text {fin }}(\) mixed \()\)
- Hawking proposed that in quantum gravity (QG) \(S\) is replaced by a "superscattering" operator \$
\[
\rho_{\text {fin }}=\$ \rho_{i n} \neq S \rho_{i n} S^{\dagger}
\]
so that \(\operatorname{Tr} \rho_{\text {fin }}^{2} \leq 1\)
The idea of Ellis et al. was to explore the phenomenology of such non-unitary evolution as determined by a differential evolution equation for \(\rho\)
\[
\dot{\rho}=H \rho \rho \neq-i[H, \rho]
\]

\section*{Lindblad evolution in quantum gravity?}

Banks, Peskin and Susskind (Nucl. Phys. B 244, 125 (1984)) looked for a general form for \(\not{H} \rho \rho\).

\section*{Lindblad evolution in quantum gravity?}

Banks, Peskin and Susskind (Nucl. Phys. B 244, 125 (1984)) looked for a general form for \(H^{\prime} \rho\).
Assuming that
- \(\rho=\rho^{\dagger}\)
- \(\operatorname{Tr} \rho=1\)
are preserved by time evolution

\section*{Lindblad evolution in quantum gravity?}

Banks, Peskin and Susskind (Nucl. Phys. B 244, 125 (1984)) looked for a general form for \(H\).

Assuming that
- \(\rho=\rho^{\dagger}\)
- \(\operatorname{Tr} \rho=1\)
are preserved by time evolution they (re)-discovered the Lindblad equation
\[
\dot{\rho}=-i[H, \rho]-\frac{1}{2} h_{\alpha \beta}\left(Q^{\alpha} Q^{\beta} \rho+\rho Q^{\beta} Q^{\alpha}-2 Q^{\alpha} \rho Q^{\beta}\right)
\]
\(h_{\alpha \beta}\) hermitian matrix of constants and \(\left\{Q^{\alpha}\right\}\) basis of hermitian matrices

\section*{Lindblad evolution in quantum gravity?}

Banks, Peskin and Susskind (Nucl. Phys. B 244, 125 (1984)) looked for a general form for \(\not{H} \rho \rho\).

Assuming that
- \(\rho=\rho^{\dagger}\)
- \(\operatorname{Tr} \rho=1\)
are preserved by time evolution they (re)-discovered the Lindblad equation
\[
\dot{\rho}=-i[H, \rho]-\frac{1}{2} h_{\alpha \beta}\left(Q^{\alpha} Q^{\beta} \rho+\rho Q^{\beta} Q^{\alpha}-2 Q^{\alpha} \rho Q^{\beta}\right)
\]
\(h_{\alpha \beta}\) hermitian matrix of constants and \(\left\{Q^{\alpha}\right\}\) basis of hermitian matrices

Can such modification of fundamental quantum evolution be obtained from a model incorporating quantum gravity effects?

\section*{Linking fundamental decoherence and deformed symmetries}

There exists Planck-scale modifications of relativistic kinematics in which such generalized quantum evolution can be realized.

\section*{Linking fundamental decoherence and deformed symmetries}

There exists Planck-scale modifications of relativistic kinematics in which such generalized quantum evolution can be realized.
- Main ingredient: momenta living on a non-abelian Lie group (curvature of the group manifold set by a UV energy scale " \(\kappa\) ")

\section*{Linking fundamental decoherence and deformed symmetries}

There exists Planck-scale modifications of relativistic kinematics in which such generalized quantum evolution can be realized.
- Main ingredient: momenta living on a non-abelian Lie group (curvature of the group manifold set by a UV energy scale " \(\kappa\) ")
- At algebraic level: "deformation" of the action of translation and Lorentz generators on states and observables of a relativistic system

\section*{Linking fundamental decoherence and deformed symmetries}

\section*{There exists Planck-scale modifications of relativistic kinematics in which such generalized quantum evolution can be realized.}
- Main ingredient: momenta living on a non-abelian Lie group (curvature of the group manifold set by a UV energy scale " \(\kappa\) ")
- At algebraic level: "deformation" of the action of translation and Lorentz generators on states and observables of a relativistic system
- Such deformation affects basic notions in quantum theory leading to
- potential fundamental decoherence
- deformed discrete symmetries and CPT

MA, Phys. Rev. D 90, 024016 (2014) arXiv:1403.6457
MA and J. Kowalski-Glikman, Phys. Lett. B 760, 69 (2016) arXiv:1605.01181
MA, J. Kowalski-Glikman, W. Wislicki, Phys. Lett. B 794, 41 (2019) arXiv:1904.06754
MA, V. D'Esposito and G. Gubitosi, [arXiv:2208.14119 [gr-qc]]

\section*{A "flat space-time limit" of QG?}

\section*{A "flat space-time limit" of QG?}

THE IDEA: there exists a "flat space-time limit" of quantum gravity
\[
\hbar, G \rightarrow 0 \quad \text { with } \quad \sqrt{\frac{\hbar}{G}}=\kappa=\text { const }
\]

\section*{A "flat space-time limit" of QG?}

THE IDEA: there exists a "flat space-time limit" of quantum gravity
\[
\hbar, G \rightarrow 0 \quad \text { with } \quad \sqrt{\frac{\hbar}{G}}=\kappa=\text { const }
\]

The Planckian quantity \(\kappa\), introduces a fundamental (observer independent) UV energy scale in the the algebraic structure of relativistic symmetries

\section*{A "flat space-time limit" of QG?}

THE IDEA: there exists a "flat space-time limit" of quantum gravity
\[
\hbar, G \rightarrow 0 \quad \text { with } \quad \sqrt{\frac{\hbar}{G}}=\kappa=\text { const }
\]

The Planckian quantity \(\kappa\), introduces a fundamental (observer independent) UV energy scale in the the algebraic structure of relativistic symmetries
- "Quantum Minkowski space-time" described by a non-commutative algebra of functions of coordinates belonging to a Lie algebra which becomes abelian in the \(\kappa \rightarrow \infty\) limit

\section*{A "flat space-time limit" of QG?}

THE IDEA: there exists a "flat space-time limit" of quantum gravity
\[
\hbar, G \rightarrow 0 \quad \text { with } \quad \sqrt{\frac{\hbar}{G}}=\kappa=\text { const }
\]

The Planckian quantity \(\kappa\), introduces a fundamental (observer independent) UV energy scale in the the algebraic structure of relativistic symmetries
- "Quantum Minkowski space-time" described by a non-commutative algebra of functions of coordinates belonging to a Lie algebra which becomes abelian in the \(\kappa \rightarrow \infty\) limit
- The four-momenta describing the particle kinematics become coordinates on a non-abelian Lie group

\section*{Group-valued momenta from \(2+1\)-dimensional gravity}

This scenario is realized for QG in \(2+1\) space-time dimensions!

\section*{Group-valued momenta from \(2+1\)-dimensional gravity}

This scenario is realized for QG in \(2+1\) space-time dimensions!
- When \(\Lambda=0\) all solutions to the Einstein's equation are locally flat!

\section*{Group-valued momenta from \(2+1\)-dimensional gravity}

This scenario is realized for QG in \(2+1\) space-time dimensions!
- When \(\Lambda=0\) all solutions to the Einstein's equation are locally flat!
- The theory is topological: it admits no local degrees of freedom

\section*{Group-valued momenta from \(2+1\)-dimensional gravity}

This scenario is realized for QG in \(2+1\) space-time dimensions!
- When \(\Lambda=0\) all solutions to the Einstein's equation are locally flat!
- The theory is topological: it admits no local degrees of freedom
- Point particles are described by conical defects; their momenta are elements of the Lie group \(S L(2, \mathbb{R})\) (Matschull and Welling, Class. Quant. Grav. 15, 2981-3030 (1998))

\section*{Group-valued momenta from \(2+1\)-dimensional gravity}

This scenario is realized for QG in \(2+1\) space-time dimensions!
- When \(\Lambda=0\) all solutions to the Einstein's equation are locally flat!
- The theory is topological: it admits no local degrees of freedom
- Point particles are described by conical defects; their momenta are elements of the Lie group \(S L(2, \mathbb{R})\) (Matschull and Welling, Class. Quant. Grav. 15, 2981-3030 (1998))
- Upon quantization relativistic particles are described by a non-commutative field theory with \(\mathfrak{s l}(2, \mathbb{R})\) coordinates (Freidel and Livine, Phys.Rev.Lett. 96 (2006))
\[
\begin{gathered}
{\left[X_{\mu}, X_{\nu}\right]=\frac{i}{\kappa} \epsilon_{\mu \nu \lambda} X_{\lambda}} \\
\text { (see also 't Hooft, Class. Quant. Grav. 13, 1023-1040 (1996)) }
\end{gathered}
\]

\section*{Group-valued momenta in \(3+1\) dimensions?}

\section*{Group-valued momenta in \(3+1\) dimensions?}

GR in \(3+1\) dimensions certainly is not a topological theory...

\section*{Group-valued momenta in \(3+1\) dimensions?}

GR in \(3+1\) dimensions certainly is not a topological theory...
- It has been speculated that a UV completion of QG might be a topological theory (K. Krasnov, Proc. Roy. Soc. Lond. A 468, 2129-2173 (2012))

\section*{Group-valued momenta in \(3+1\) dimensions?}

GR in \(3+1\) dimensions certainly is not a topological theory...
- It has been speculated that a UV completion of QG might be a topological theory (K. Krasnov, Proc. Roy. Soc. Lond. A 468, 2129-2173 (2012))
- particles coupled to gravity described by a topological BF theory can exhibit a deformation of kinematics similar to the \(2+1\)-dimensional case (Kowalski-Glikman and Starodubtsev, Phys. Rev. D 78, 084039 (2008))

\section*{Group-valued momenta in \(3+1\) dimensions?}

GR in \(3+1\) dimensions certainly is not a topological theory...
- It has been speculated that a UV completion of QG might be a topological theory (K. Krasnov, Proc. Roy. Soc. Lond. A 468, 2129-2173 (2012))
- particles coupled to gravity described by a topological BF theory can exhibit a deformation of kinematics similar to the \(2+1\)-dimensional case (Kowalski-Glikman and Starodubtsev, Phys. Rev. D 78, 084039 (2008))

A rigorous link between deformed kinematics and QG is far from being established...

\section*{Group-valued momenta in \(3+1\) dimensions?}

GR in \(3+1\) dimensions certainly is not a topological theory...
- It has been speculated that a UV completion of QG might be a topological theory (K. Krasnov, Proc. Roy. Soc. Lond. A 468, 2129-2173 (2012))
- particles coupled to gravity described by a topological BF theory can exhibit a deformation of kinematics similar to the \(2+1\)-dimensional case (Kowalski-Glikman and Starodubtsev, Phys. Rev. D 78, 084039 (2008))

A rigorous link between deformed kinematics and QG is far from being established...
\(\Rightarrow\) focusing on deformed kinematics is important in order to develop effective models of Planck-scale physics useful to extract phenomenological predictions

\section*{Group-valued momenta in \(3+1\) dimensions?}

GR in \(3+1\) dimensions certainly is not a topological theory...
- It has been speculated that a UV completion of QG might be a topological theory (K. Krasnov, Proc. Roy. Soc. Lond. A 468, 2129-2173 (2012))
- particles coupled to gravity described by a topological BF theory can exhibit a deformation of kinematics similar to the \(2+1\)-dimensional case (Kowalski-Glikman and Starodubtsev, Phys. Rev. D 78, 084039 (2008))

A rigorous link between deformed kinematics and QG is far from being established...
\(\Rightarrow\) focusing on deformed kinematics is important in order to develop effective models of Planck-scale physics useful to extract phenomenological predictions

THE MODEL: \(\kappa\)-Poincaré algebra:

\section*{Group-valued momenta in \(3+1\) dimensions?}

GR in \(3+1\) dimensions certainly is not a topological theory...
- It has been speculated that a UV completion of QG might be a topological theory (K. Krasnov, Proc. Roy. Soc. Lond. A 468, 2129-2173 (2012))
- particles coupled to gravity described by a topological BF theory can exhibit a deformation of kinematics similar to the \(2+1\)-dimensional case (Kowalski-Glikman and Starodubtsev, Phys. Rev. D 78, 084039 (2008))

A rigorous link between deformed kinematics and QG is far from being established...
\(\Rightarrow\) focusing on deformed kinematics is important in order to develop effective models of Planck-scale physics useful to extract phenomenological predictions

THE MODEL: \(\kappa\)-Poincaré algebra:it was introduced almost 30 years ago (Lukierski, Nowicki and Ruegg, Phys. Lett. B 293, 344 (1992))

\section*{Group-valued momenta in \(3+1\) dimensions?}

GR in \(3+1\) dimensions certainly is not a topological theory...
- It has been speculated that a UV completion of QG might be a topological theory (K. Krasnov, Proc. Roy. Soc. Lond. A 468, 2129-2173 (2012))
- particles coupled to gravity described by a topological BF theory can exhibit a deformation of kinematics similar to the \(2+1\)-dimensional case (Kowalski-Glikman and Starodubtsev, Phys. Rev. D 78, 084039 (2008))

A rigorous link between deformed kinematics and QG is far from being established...
\(\Rightarrow\) focusing on deformed kinematics is important in order to develop effective models of Planck-scale physics useful to extract phenomenological predictions

THE MODEL: \(\kappa\)-Poincaré algebra:it was introduced almost 30 years ago (Lukierski, Nowicki and Ruegg, Phys. Lett. B 293, 344 (1992))
\(\Rightarrow\) use quantum groups tools to deform symmetries introducing a UV energy-scale \(\kappa\)

\section*{\(\kappa\)-deformation}

\section*{\(\kappa\)-deformation}
- Basic geometric picture:

\section*{\(\kappa\)-deformation}
- Basic geometric picture:
\(\kappa\)-four-momenta: coordinates on Lie group \(A N(3)\) obtained form the Iwasawa decomposition of \(S O(4,1) \simeq S O(3,1) A N(3)\), sub-manifold of \(d S_{4}\)
embedding coordinates
\[
-p_{0}^{2}+\vec{p}^{2}+p_{-1}^{2}=\kappa^{2}, \quad p_{0}+p_{-1}>0
\]

(see e.g. Kowalski-Glikman and Nowak, hep-th/0411154)

\section*{\(\kappa\)-deformation}
- Basic geometric picture:
\(\kappa\)-four-momenta: coordinates on Lie group \(A N(3)\) obtained form the Iwasawa decomposition of \(S O(4,1) \simeq S O(3,1) A N(3)\), sub-manifold of \(d S_{4}\)
embedding coordinates
\[
-p_{0}^{2}+\vec{p}^{2}+p_{-1}^{2}=\kappa^{2}, \quad p_{0}+p_{-1}>0
\]

(see e.g. Kowalski-Glikman and Nowak, hep-th/0411154)
- \(\mathfrak{a n}(3)\) Lie algebra: \(\kappa\)-Minkowski "non-commutative space-time"
\[
\left[X_{0}, X_{a}\right]=\frac{i}{\kappa} X_{a},\left[X_{a}, X_{b}\right]=0
\]

\section*{Basic quantum theory}

Elementary one-particle Hilbert space \(\mathcal{H}\) : irreps of Poincaré group

\section*{Basic quantum theory}

Elementary one-particle Hilbert space \(\mathcal{H}\) : irreps of Poincaré group
- basis of \(\mathcal{H}\) given by eigenstates of the translation generators
\[
P_{\mu}|k\rangle=k_{\mu}|k\rangle
\]

\section*{Basic quantum theory}

Elementary one-particle Hilbert space \(\mathcal{H}\) : irreps of Poincaré group
- basis of \(\mathcal{H}\) given by eigenstates of the translation generators
\[
P_{\mu}|k\rangle=k_{\mu}|k\rangle
\]
- action on \(\langle k| \in \mathcal{H}^{*}\), dual space: \(\quad P_{\mu}\langle k|=-k_{\mu}\langle k|\)

\section*{Basic quantum theory}

Elementary one-particle Hilbert space \(\mathcal{H}\) : irreps of Poincaré group
- basis of \(\mathcal{H}\) given by eigenstates of the translation generators
\[
P_{\mu}|k\rangle=k_{\mu}|k\rangle
\]
- action on \(\langle k| \in \mathcal{H}^{*}\), dual space: \(\quad P_{\mu}\langle k|=-k_{\mu}\langle k|=\langle k|\left(-k_{\mu}\right)\)

\section*{Basic quantum theory}

Elementary one-particle Hilbert space \(\mathcal{H}\) : irreps of Poincaré group
- basis of \(\mathcal{H}\) given by eigenstates of the translation generators
\[
P_{\mu}|k\rangle=k_{\mu}|k\rangle
\]
- action on \(\langle k| \in \mathcal{H}^{*}\), dual space: \(P_{\mu}\langle k|=-k_{\mu}\langle k|=\langle k|\left(-k_{\mu}\right) \equiv\langle k| S\left(P_{\mu}\right)\)

\section*{Basic quantum theory}

Elementary one-particle Hilbert space \(\mathcal{H}\) : irreps of Poincaré group
- basis of \(\mathcal{H}\) given by eigenstates of the translation generators
\[
P_{\mu}|k\rangle=k_{\mu}|k\rangle
\]
- action on \(\langle k| \in \mathcal{H}^{*}\), dual space: \(P_{\mu}\langle k|=-k_{\mu}\langle k|=\langle k|\left(-k_{\mu}\right) \equiv\langle k| S\left(P_{\mu}\right)\)
- action on composite system \(\mathcal{H} \otimes \mathcal{H}\) :
\[
P_{\mu}\left(\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle\right)=P_{\mu}\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle+\left|k_{1}\right\rangle \otimes P_{\mu}\left|k_{2}\right\rangle
\]

\section*{Basic quantum theory}

Elementary one-particle Hilbert space \(\mathcal{H}\) : irreps of Poincaré group
- basis of \(\mathcal{H}\) given by eigenstates of the translation generators
\[
P_{\mu}|k\rangle=k_{\mu}|k\rangle
\]
- action on \(\langle k| \in \mathcal{H}^{*}\), dual space: \(P_{\mu}\langle k|=-k_{\mu}\langle k|=\langle k|\left(-k_{\mu}\right) \equiv\langle k| S\left(P_{\mu}\right)\)
- action on composite system \(\mathcal{H} \otimes \mathcal{H}\) :
\[
P_{\mu}\left(\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle\right)=P_{\mu}\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle+\left|k_{1}\right\rangle \otimes P_{\mu}\left|k_{2}\right\rangle \equiv \Delta P_{\mu}\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle
\]

\section*{Basic quantum theory}

Elementary one-particle Hilbert space \(\mathcal{H}\) : irreps of Poincaré group
- basis of \(\mathcal{H}\) given by eigenstates of the translation generators
\[
P_{\mu}|k\rangle=k_{\mu}|k\rangle
\]
- action on \(\langle k| \in \mathcal{H}^{*}\), dual space: \(P_{\mu}\langle k|=-k_{\mu}\langle k|=\langle k|\left(-k_{\mu}\right) \equiv\langle k| S\left(P_{\mu}\right)\)
- action on composite system \(\mathcal{H} \otimes \mathcal{H}\) :
\[
P_{\mu}\left(\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle\right)=P_{\mu}\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle+\left|k_{1}\right\rangle \otimes P_{\mu}\left|k_{2}\right\rangle \equiv \Delta P_{\mu}\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle
\]
"Antipode": \(S\left(P_{\mu}\right)=-P_{\mu}\), "Co-product": \(\Delta P_{\mu}=P_{\mu} \otimes \mathbb{1}+\mathbb{1} \otimes P_{\mu}\)

\section*{Basic quantum theory}

Elementary one-particle Hilbert space \(\mathcal{H}\) : irreps of Poincaré group
- basis of \(\mathcal{H}\) given by eigenstates of the translation generators
\[
P_{\mu}|k\rangle=k_{\mu}|k\rangle
\]
- action on \(\langle k| \in \mathcal{H}^{*}\), dual space: \(P_{\mu}\langle k|=-k_{\mu}\langle k|=\langle k|\left(-k_{\mu}\right) \equiv\langle k| S\left(P_{\mu}\right)\)
- action on composite system \(\mathcal{H} \otimes \mathcal{H}\) :
\[
P_{\mu}\left(\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle\right)=P_{\mu}\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle+\left|k_{1}\right\rangle \otimes P_{\mu}\left|k_{2}\right\rangle \equiv \Delta P_{\mu}\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle
\]
"Antipode": \(S\left(P_{\mu}\right)=-P_{\mu}\), "Co-product": \(\Delta P_{\mu}=P_{\mu} \otimes \mathbb{1}+\mathbb{1} \otimes P_{\mu}\) Hopf algebra notions "built in" in everyday quantum theory..

\section*{Basic quantum theory}

Elementary one-particle Hilbert space \(\mathcal{H}\) : irreps of Poincaré group
- basis of \(\mathcal{H}\) given by eigenstates of the translation generators
\[
P_{\mu}|k\rangle=k_{\mu}|k\rangle
\]
- action on \(\langle k| \in \mathcal{H}^{*}\), dual space: \(P_{\mu}\langle k|=-k_{\mu}\langle k|=\langle k|\left(-k_{\mu}\right) \equiv\langle k| S\left(P_{\mu}\right)\)
- action on composite system \(\mathcal{H} \otimes \mathcal{H}\) :
\[
P_{\mu}\left(\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle\right)=P_{\mu}\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle+\left|k_{1}\right\rangle \otimes P_{\mu}\left|k_{2}\right\rangle \equiv \Delta P_{\mu}\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle
\]
"Antipode": \(S\left(P_{\mu}\right)=-P_{\mu}\), "Co-product": \(\Delta P_{\mu}=P_{\mu} \otimes \mathbb{1}+\mathbb{1} \otimes P_{\mu}\) Hopf algebra notions "built in" in everyday quantum theory..
- these notions suffice to derive action of \(P_{\mu}\) on operators...take e.g. \(\pi_{k}=|k\rangle\langle k|\)

\section*{Basic quantum theory}

Elementary one-particle Hilbert space \(\mathcal{H}\) : irreps of Poincaré group
- basis of \(\mathcal{H}\) given by eigenstates of the translation generators
\[
P_{\mu}|k\rangle=k_{\mu}|k\rangle
\]
- action on \(\langle k| \in \mathcal{H}^{*}\), dual space: \(P_{\mu}\langle k|=-k_{\mu}\langle k|=\langle k|\left(-k_{\mu}\right) \equiv\langle k| S\left(P_{\mu}\right)\)
- action on composite system \(\mathcal{H} \otimes \mathcal{H}\) :
\[
P_{\mu}\left(\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle\right)=P_{\mu}\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle+\left|k_{1}\right\rangle \otimes P_{\mu}\left|k_{2}\right\rangle \equiv \Delta P_{\mu}\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle
\]
"Antipode": \(S\left(P_{\mu}\right)=-P_{\mu}\), "Co-product": \(\Delta P_{\mu}=P_{\mu} \otimes \mathbb{1}+\mathbb{1} \otimes P_{\mu}\) Hopf algebra notions "built in" in everyday quantum theory..
- these notions suffice to derive action of \(P_{\mu}\) on operators...take e.g. \(\pi_{k}=|k\rangle\langle k|\)
\[
\begin{aligned}
& P_{\mu}\left(\pi_{k}\right)=P_{\mu}(|k\rangle\langle k|)= \\
& \quad=P_{\mu}(|k\rangle)\langle k|+|k\rangle P_{\mu}(\langle k|)=P_{\mu}|k\rangle\langle k|-|k\rangle\langle k| P_{\mu}=\left[P_{\mu}, \pi_{k}\right]
\end{aligned}
\]

\section*{Basic quantum theory}

Elementary one-particle Hilbert space \(\mathcal{H}\) : irreps of Poincaré group
- basis of \(\mathcal{H}\) given by eigenstates of the translation generators
\[
P_{\mu}|k\rangle=k_{\mu}|k\rangle
\]
- action on \(\langle k| \in \mathcal{H}^{*}\), dual space: \(P_{\mu}\langle k|=-k_{\mu}\langle k|=\langle k|\left(-k_{\mu}\right) \equiv\langle k| S\left(P_{\mu}\right)\)
- action on composite system \(\mathcal{H} \otimes \mathcal{H}\) :
\[
P_{\mu}\left(\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle\right)=P_{\mu}\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle+\left|k_{1}\right\rangle \otimes P_{\mu}\left|k_{2}\right\rangle \equiv \Delta P_{\mu}\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle
\]
"Antipode": \(S\left(P_{\mu}\right)=-P_{\mu}\), "Co-product": \(\Delta P_{\mu}=P_{\mu} \otimes \mathbb{1}+\mathbb{1} \otimes P_{\mu}\)
Hopf algebra notions "built in" in everyday quantum theory..
- these notions suffice to derive action of \(P_{\mu}\) on operators...take e.g. \(\pi_{k}=|k\rangle\langle k|\)
\[
\begin{aligned}
& P_{\mu}\left(\pi_{k}\right)=P_{\mu}(|k\rangle\langle k|)= \\
& \quad=P_{\mu}(|k\rangle)\langle k|+|k\rangle P_{\mu}(\langle k|)=P_{\mu}|k\rangle\langle k|-|k\rangle\langle k| P_{\mu}=\left[P_{\mu}, \pi_{k}\right]
\end{aligned}
\]
i.e. just the familiar adjoint action \(\operatorname{ad}_{P_{\mu}} \pi_{k}=\left[P_{\mu}, \pi_{k}\right]\)

\section*{Deformed quantum theory}

\section*{Deformation of symmetry generators provide a generalization of these basic notions}

\section*{Deformed quantum theory}

Deformation of symmetry generators provide a generalization of these basic notions
- kets \(|\pi\rangle\) labelled by elements of a non-abelian Lie group \(\pi \in G\)
\[
P_{\mu}|\pi\rangle=\mathcal{P}_{\mu}(\pi)|\pi\rangle
\]
\(\mathcal{P}_{\mu}\) coordinate functions on the group manifold

\section*{Deformed quantum theory}

Deformation of symmetry generators provide a generalization of these basic notions
- kets \(|\pi\rangle\) labelled by elements of a non-abelian Lie group \(\pi \in G\)
\[
P_{\mu}|\pi\rangle=\mathcal{P}_{\mu}(\pi)|\pi\rangle
\]
\(\mathcal{P}_{\mu}\) coordinate functions on the group manifold
- for the action on bras the non-trivial properties of momenta come into play
\[
P_{\mu}\langle\pi|=\mathcal{P}_{\mu}\left(\pi^{-1}\right)\langle\pi| \equiv\langle\pi| S\left(P_{\mu}\right)
\]

\section*{Deformed quantum theory}

Deformation of symmetry generators provide a generalization of these basic notions
- kets \(|\pi\rangle\) labelled by elements of a non-abelian Lie group \(\pi \in G\)
\[
P_{\mu}|\pi\rangle=\mathcal{P}_{\mu}(\pi)|\pi\rangle
\]
\(\mathcal{P}_{\mu}\) coordinate functions on the group manifold
- for the action on bras the non-trivial properties of momenta come into play
\[
P_{\mu}\langle\pi|=\mathcal{P}_{\mu}\left(\pi^{-1}\right)\langle\pi| \equiv\langle\pi| S\left(P_{\mu}\right)
\]
- action on multi-particle states also non-trivial
\[
P_{\mu}\left(\left|\pi_{1}\right\rangle \otimes\left|\pi_{2}\right\rangle\right)=\mathcal{P}_{\mu}\left(\pi_{1} \cdot \pi_{2}\right)\left|\pi_{1}\right\rangle \otimes\left|\pi_{2}\right\rangle \equiv \Delta P_{\mu}\left|\pi_{1}\right\rangle \otimes\left|\pi_{2}\right\rangle
\]

\section*{Deformed quantum theory}

Deformation of symmetry generators provide a generalization of these basic notions
- kets \(|\pi\rangle\) labelled by elements of a non-abelian Lie group \(\pi \in G\)
\[
P_{\mu}|\pi\rangle=\mathcal{P}_{\mu}(\pi)|\pi\rangle
\]
\(\mathcal{P}_{\mu}\) coordinate functions on the group manifold
- for the action on bras the non-trivial properties of momenta come into play
\[
P_{\mu}\langle\pi|=\mathcal{P}_{\mu}\left(\pi^{-1}\right)\langle\pi| \equiv\langle\pi| S\left(P_{\mu}\right)
\]
- action on multi-particle states also non-trivial
\[
P_{\mu}\left(\left|\pi_{1}\right\rangle \otimes\left|\pi_{2}\right\rangle\right)=\mathcal{P}_{\mu}\left(\pi_{1} \cdot \pi_{2}\right)\left|\pi_{1}\right\rangle \otimes\left|\pi_{2}\right\rangle \equiv \Delta P_{\mu}\left|\pi_{1}\right\rangle \otimes\left|\pi_{2}\right\rangle
\]
- composition rule of momentum eigenvalues is deformed
\[
\mathcal{P}_{\mu}\left(\pi_{1} \cdot \pi_{2}\right) \equiv \mathcal{P}_{\mu}\left(\pi_{1}\right) \oplus \mathcal{P}_{\mu}\left(\pi_{2}\right) \neq \mathcal{P}_{\mu}\left(\pi_{2} \cdot \pi_{1}\right)
\]

\section*{Deformed quantum theory}

Deformation of symmetry generators provide a generalization of these basic notions
- kets \(|\pi\rangle\) labelled by elements of a non-abelian Lie group \(\pi \in G\)
\[
P_{\mu}|\pi\rangle=\mathcal{P}_{\mu}(\pi)|\pi\rangle
\]
\(\mathcal{P}_{\mu}\) coordinate functions on the group manifold
- for the action on bras the non-trivial properties of momenta come into play
\[
P_{\mu}\langle\pi|=\mathcal{P}_{\mu}\left(\pi^{-1}\right)\langle\pi| \equiv\langle\pi| S\left(P_{\mu}\right)
\]
- action on multi-particle states also non-trivial
\[
P_{\mu}\left(\left|\pi_{1}\right\rangle \otimes\left|\pi_{2}\right\rangle\right)=\mathcal{P}_{\mu}\left(\pi_{1} \cdot \pi_{2}\right)\left|\pi_{1}\right\rangle \otimes\left|\pi_{2}\right\rangle \equiv \Delta P_{\mu}\left|\pi_{1}\right\rangle \otimes\left|\pi_{2}\right\rangle
\]
- composition rule of momentum eigenvalues is deformed
\[
\mathcal{P}_{\mu}\left(\pi_{1} \cdot \pi_{2}\right) \equiv \mathcal{P}_{\mu}\left(\pi_{1}\right) \oplus \mathcal{P}_{\mu}\left(\pi_{2}\right) \neq \mathcal{P}_{\mu}\left(\pi_{2} \cdot \pi_{1}\right), \quad \mathcal{P}_{\mu}(\pi) \oplus \mathcal{P}_{\mu}\left(\pi^{-1}\right)=\mathcal{P}_{\mu}(\mathbb{1})=0
\]

\section*{Deformed quantum theory}

Deformation of symmetry generators provide a generalization of these basic notions
- kets \(|\pi\rangle\) labelled by elements of a non-abelian Lie group \(\pi \in G\)
\[
P_{\mu}|\pi\rangle=\mathcal{P}_{\mu}(\pi)|\pi\rangle
\]
\(\mathcal{P}_{\mu}\) coordinate functions on the group manifold
- for the action on bras the non-trivial properties of momenta come into play
\[
P_{\mu}\langle\pi|=\mathcal{P}_{\mu}\left(\pi^{-1}\right)\langle\pi| \equiv\langle\pi| S\left(P_{\mu}\right)
\]
- action on multi-particle states also non-trivial
\[
P_{\mu}\left(\left|\pi_{1}\right\rangle \otimes\left|\pi_{2}\right\rangle\right)=\mathcal{P}_{\mu}\left(\pi_{1} \cdot \pi_{2}\right)\left|\pi_{1}\right\rangle \otimes\left|\pi_{2}\right\rangle \equiv \Delta P_{\mu}\left|\pi_{1}\right\rangle \otimes\left|\pi_{2}\right\rangle
\]
- composition rule of momentum eigenvalues is deformed
\[
\mathcal{P}_{\mu}\left(\pi_{1} \cdot \pi_{2}\right) \equiv \mathcal{P}_{\mu}\left(\pi_{1}\right) \oplus \mathcal{P}_{\mu}\left(\pi_{2}\right) \neq \mathcal{P}_{\mu}\left(\pi_{2} \cdot \pi_{1}\right), \quad \mathcal{P}_{\mu}(\pi) \oplus \mathcal{P}_{\mu}\left(\pi^{-1}\right)=\mathcal{P}_{\mu}(\mathbb{1})=0
\]

In Hopf algebraic lingo: non-trivial co-product \(\Delta P_{\mu}\) and antipode of \(S\left(P_{\mu}\right)\)

\section*{Deformed quantum theory}

Deformation of symmetry generators provide a generalization of these basic notions
- kets \(|\pi\rangle\) labelled by elements of a non-abelian Lie group \(\pi \in G\)
\[
P_{\mu}|\pi\rangle=\mathcal{P}_{\mu}(\pi)|\pi\rangle
\]
\(\mathcal{P}_{\mu}\) coordinate functions on the group manifold
- for the action on bras the non-trivial properties of momenta come into play
\[
P_{\mu}\langle\pi|=\mathcal{P}_{\mu}\left(\pi^{-1}\right)\langle\pi| \equiv\langle\pi| S\left(P_{\mu}\right)
\]
- action on multi-particle states also non-trivial
\[
P_{\mu}\left(\left|\pi_{1}\right\rangle \otimes\left|\pi_{2}\right\rangle\right)=\mathcal{P}_{\mu}\left(\pi_{1} \cdot \pi_{2}\right)\left|\pi_{1}\right\rangle \otimes\left|\pi_{2}\right\rangle \equiv \Delta P_{\mu}\left|\pi_{1}\right\rangle \otimes\left|\pi_{2}\right\rangle
\]
- composition rule of momentum eigenvalues is deformed
\[
\mathcal{P}_{\mu}\left(\pi_{1} \cdot \pi_{2}\right) \equiv \mathcal{P}_{\mu}\left(\pi_{1}\right) \oplus \mathcal{P}_{\mu}\left(\pi_{2}\right) \neq \mathcal{P}_{\mu}\left(\pi_{2} \cdot \pi_{1}\right), \quad \mathcal{P}_{\mu}(\pi) \oplus \mathcal{P}_{\mu}\left(\pi^{-1}\right)=\mathcal{P}_{\mu}(\mathbb{1})=0
\]

In Hopf algebraic lingo: non-trivial co-product \(\Delta P_{\mu}\) and antipode of \(S\left(P_{\mu}\right)\)
Key point: the action on operators will be deformed accordingly

\section*{Deformed translations from \(A N(3)\) momentum space}

Consider translation generators \(P_{\mu}\) associated to embedding coordinates \(p_{\mu}\) on \(d S_{4}\)

\section*{Deformed translations from \(A N(3)\) momentum space}

Consider translation generators \(P_{\mu}\) associated to embedding coordinates \(p_{\mu}\) on \(d S_{4}\) Their co-products and antipodes at leading order in \(\kappa\)
\[
\begin{aligned}
\Delta\left(P_{0}\right) & =P_{0} \otimes \mathbb{1}+\mathbb{1} \otimes P_{0}+\frac{1}{\kappa} P_{m} \otimes P_{m}, \\
\Delta\left(P_{i}\right) & =P_{i} \otimes \mathbb{1}+\mathbb{1} \otimes P_{i}+\frac{1}{\kappa} P_{i} \otimes P_{0}, \\
S\left(P_{0}\right) & =-P_{0}+\frac{1}{\kappa} \vec{P}^{2}, \\
S\left(P_{i}\right) & =-P_{i}+\frac{1}{\kappa} P_{i} P_{0},
\end{aligned}
\]

\section*{Deformed translations from \(A N(3)\) momentum space}

Consider translation generators \(P_{\mu}\) associated to embedding coordinates \(p_{\mu}\) on \(d S_{4}\) Their co-products and antipodes at leading order in \(\kappa\)
\[
\begin{aligned}
\Delta\left(P_{0}\right) & =P_{0} \otimes \mathbb{1}+\mathbb{1} \otimes P_{0}+\frac{1}{\kappa} P_{m} \otimes P_{m}, \\
\Delta\left(P_{i}\right) & =P_{i} \otimes \mathbb{1}+\mathbb{1} \otimes P_{i}+\frac{1}{\kappa} P_{i} \otimes P_{0}, \\
S\left(P_{0}\right) & =-P_{0}+\frac{1}{\kappa} \vec{P}^{2}, \\
S\left(P_{i}\right) & =-P_{i}+\frac{1}{\kappa} P_{i} P_{0},
\end{aligned}
\]
this choice of translation generators of the \(\kappa\)-Poincaré is called "classical" because
- action of Lorentz sector on \(P_{\mu}\) in undeformed;

\section*{Deformed translations from \(A N(3)\) momentum space}

Consider translation generators \(P_{\mu}\) associated to embedding coordinates \(p_{\mu}\) on \(d S_{4}\) Their co-products and antipodes at leading order in \(\kappa\)
\[
\begin{aligned}
\Delta\left(P_{0}\right) & =P_{0} \otimes \mathbb{1}+\mathbb{1} \otimes P_{0}+\frac{1}{\kappa} P_{m} \otimes P_{m}, \\
\Delta\left(P_{i}\right) & =P_{i} \otimes \mathbb{1}+\mathbb{1} \otimes P_{i}+\frac{1}{\kappa} P_{i} \otimes P_{0}, \\
S\left(P_{0}\right) & =-P_{0}+\frac{1}{\kappa} \vec{P}^{2}, \\
S\left(P_{i}\right) & =-P_{i}+\frac{1}{\kappa} P_{i} P_{0},
\end{aligned}
\]
this choice of translation generators of the \(\kappa\)-Poincaré is called "classical" because
- action of Lorentz sector on \(P_{\mu}\) in undeformed;
- mass-shell condition undeformed \(P_{0}^{2}-\vec{P}^{2}=\) const

\section*{Deformed translations from \(A N(3)\) momentum space}

Consider translation generators \(P_{\mu}\) associated to embedding coordinates \(p_{\mu}\) on \(d S_{4}\) Their co-products and antipodes at leading order in \(\kappa\)
\[
\begin{aligned}
\Delta\left(P_{0}\right) & =P_{0} \otimes \mathbb{1}+\mathbb{1} \otimes P_{0}+\frac{1}{\kappa} P_{m} \otimes P_{m}, \\
\Delta\left(P_{i}\right) & =P_{i} \otimes \mathbb{1}+\mathbb{1} \otimes P_{i}+\frac{1}{\kappa} P_{i} \otimes P_{0}, \\
S\left(P_{0}\right) & =-P_{0}+\frac{1}{\kappa} \vec{P}^{2}, \\
S\left(P_{i}\right) & =-P_{i}+\frac{1}{\kappa} P_{i} P_{0},
\end{aligned}
\]
this choice of translation generators of the \(\kappa\)-Poincaré is called "classical" because
- action of Lorentz sector on \(P_{\mu}\) in undeformed;
- mass-shell condition undeformed \(P_{0}^{2}-\vec{P}^{2}=\) const

In embedding coordinates we have ordinary relativistic kinematics at the one-particle level...all non-trivial structures confined to "co-algebra" sector

\section*{Lindblad evolution from \(\kappa\)-translations}

Evolution of the density operator \(\rho=\) adjoint action of \(H\) generator of time translations
\[
i \partial_{t} \rho=[H, \rho]=\operatorname{ad}_{H} \rho
\]

\section*{Lindblad evolution from \(\kappa\)-translations}

Evolution of the density operator \(\rho=\) adjoint action of \(H\) generator of time translations
\[
i \partial_{t} \rho=[H, \rho]=\operatorname{ad}_{H} \rho
\]
adjoint action can be written in terms of coproduct and antipode
for undeformed coproduct and andtipode
\[
\operatorname{ad}_{G} O=(i d \otimes S) \Delta G \diamond O \quad(=(G \otimes \mathbb{1}-\mathbb{1} \otimes G) \diamond O=[G, O])
\]
with \((a \otimes b) \diamond O \equiv a O b\)

\section*{Lindblad evolution from \(\kappa\)-translations}

Evolution of the density operator \(\rho=\) adjoint action of \(H\) generator of time translations
\[
i \partial_{t} \rho=[H, \rho]=\operatorname{ad}_{H} \rho
\]
adjoint action can be written in terms of coproduct and antipode for undeformed coproduct and andtipode
\[
\operatorname{ad}_{G} O=(i d \otimes S) \Delta G \diamond O \quad(=(G \otimes \mathbb{1}-\mathbb{1} \otimes G) \diamond O=[G, O])
\]
with \((a \otimes b) \diamond O \equiv a O b\)
For a free particle time evolution is determined by the time translation generator \(P_{0}\)
\[
i \partial_{t} \rho \equiv \frac{1}{2} \operatorname{ad}_{P_{0}}(\rho)-\left[\operatorname{ad}_{P_{0}}(\rho)\right]^{\dagger}
\]

\section*{Lindblad evolution from \(\kappa\)-translations}

Evolution of the density operator \(\rho=\) adjoint action of \(H\) generator of time translations
\[
i \partial_{t} \rho=[H, \rho]=\operatorname{ad}_{H} \rho
\]
adjoint action can be written in terms of coproduct and antipode
for undeformed coproduct and andtipode
\[
\operatorname{ad}_{G} O=(i d \otimes S) \Delta G \diamond O \quad(=(G \otimes \mathbb{1}-\mathbb{1} \otimes G) \diamond O=[G, O])
\]
with \((a \otimes b) \diamond O \equiv a O b\)
For a free particle time evolution is determined by the time translation generator \(P_{0}\)
\[
i \partial_{t} \rho \equiv \frac{1}{2} \operatorname{ad}_{p_{0}}(\rho)-\left[\operatorname{ad}_{P_{0}}(\rho)\right]^{\dagger}
\]
plugging the \(\kappa\)-deformed coproduct and antipode one obtains
\[
\partial_{t} \rho=-i\left[P_{0}, \rho\right]-\frac{1}{2 \kappa}\left(\mathbf{P}^{2} \rho+\rho \mathbf{P}^{2}-2 P_{i} \rho P^{i}\right)
\]
a momentum-dependent Lindblad equation

\section*{Purity is not eternal in quantum space-time}

\section*{Purity of quantum states is not eternal!}

\section*{Purity is not eternal in quantum space-time}

\section*{Purity of quantum states is not eternal!}
- Look at evolution of the linear entropy
\[
S(t)=1-\operatorname{Tr}\left(\rho^{2}\right)
\]
one has
\[
\frac{d}{d t} S=\frac{1}{2 \kappa} \operatorname{Tr}\left(\rho\left(\boldsymbol{P}^{2} \rho+\rho \mathbf{P}^{2}-2 P_{i} \rho P^{i}\right)\right)
\]

Free particle in the limit \(t \rightarrow \infty\)
\[
S(t) \sim 1-\left(\frac{\pi \kappa}{t}\right)^{\frac{3}{2}}[1-S(0)]
\]
i.e. for long enough time any state becomes a maximally mixed one!

\section*{Testing deformations via precision measurements of neutral kaons}

Phenomenology of \(\kappa\)-Lindblad evolution? (Ellis et al. "Search for Violations of Quantum Mechanics," Nucl. Phys. B 241, 381 (1984)); bounds on \(\kappa\) using precision measurements of neutral kaon systems (KLOE and KLOE-2 experiment)?

\section*{Testing deformations via precision measurements of neutral kaons}

Phenomenology of \(\kappa\)-Lindblad evolution? (Ellis et al. "Search for Violations of Quantum Mechanics," Nucl. Phys. B 241, 381 (1984)); bounds on \(\kappa\) using precision measurements of neutral kaon systems (KLOE and KLOE-2 experiment)?
- On the agenda: input from \(\kappa\)-Lindblad to derive deformed evolution based on effective Hamiltonian for \(K^{0}-\bar{K}^{0} \ldots\)

\section*{Testing deformations via precision measurements of neutral kaons}

Phenomenology of \(\kappa\)-Lindblad evolution? (Ellis et al. "Search for Violations of Quantum Mechanics," Nucl. Phys. B 241, 381 (1984)); bounds on \(\kappa\) using precision measurements of neutral kaon systems (KLOE and KLOE-2 experiment)?
- On the agenda: input from \(\kappa\)-Lindblad to derive deformed evolution based on effective Hamiltonian for \(K^{0}-\bar{K}^{0} \ldots\)

Other experimental windows?

Maybe neutrino oscillations?

\section*{Decoherence vs. discrete symmetries}

Natural question: do the new structures introduced so far affect discrete symmetries ?

\section*{Decoherence vs. discrete symmetries}

Natural question: do the new structures introduced so far affect discrete symmetries ?

> Wald (Phys. Rev. D 21, 2742 (1980)) pointed out that quantum-gravity-induced fundamental decoherence would clash with the assumptions of CPT leading to CPT violation

\section*{Decoherence vs. discrete symmetries}

Natural question: do the new structures introduced so far affect discrete symmetries ?

Wald (Phys. Rev. D 21, 2742 (1980)) pointed out that quantum-gravity-induced fundamental decoherence would clash with the assumptions of CPT leading to CPT violation

There's a long and venerable literature on searchers of fundamental decoherence AND violations of CPT using \(K^{0}-\bar{K}^{0}\)
(see e.g. Mavromatos, J. Phys. Conf. Ser. 171, 012007 (2009) [arXiv:0904.0606 [hep-ph]])

\section*{Decoherence vs. discrete symmetries}

Natural question: do the new structures introduced so far affect discrete symmetries ?

Wald (Phys. Rev. D 21, 2742 (1980)) pointed out that quantum-gravity-induced fundamental decoherence would clash with the assumptions of CPT leading to CPT violation

There's a long and venerable literature on searchers of fundamental decoherence AND violations of CPT using \(K^{0}-\bar{K}^{0}\)
(see e.g. Mavromatos, J. Phys. Conf. Ser. 171, 012007 (2009) [arXiv:0904.0606 [hep-ph]])

As shown in (MA and J Kowalski-Glikman, Phys. Lett. B 760, 69 (2016)) the non-trivial antipode for \(\kappa\)-Poincaré generators plays a prominent role in defining discrete symmetries ultimately leading to a deformed notion of CPT transformation

Idea: use basic physical requirements and algebraic consistency to define the action of P, T and C....

\section*{\(\kappa\)-deformed P and T}
- PARITY

\section*{\(\kappa\)-deformed P and T}
- PARITY
- "physical" requirement: total linear momentum of particle + parity image system must vanish \(\Rightarrow \mathbb{P}: P_{i} \rightarrow S(P)_{i}\)

\section*{\(\kappa\)-deformed P and T}
- PARITY
- "physical" requirement: total linear momentum of particle + parity image system must vanish \(\Rightarrow \mathbb{P}: P_{i} \rightarrow S(P)_{i}\)
- algebraic consistency:
(1) if use antipode for \(P_{i}\) must use it for all symmetry generators;

\section*{\(\kappa\)-deformed P and T}
- PARITY
- "physical" requirement: total linear momentum of particle + parity image system must vanish \(\Rightarrow \mathbb{P}: P_{i} \rightarrow S(P)_{i}\)
- algebraic consistency:
(1) if use antipode for \(P_{i}\) must use it for all symmetry generators;
(2) "correspondence principle": in the limit \(\kappa \rightarrow \infty\) recover ordinary \(\mathbb{P}\).

\section*{\(\kappa\)-deformed P and T}
- PARITY
- "physical" requirement: total linear momentum of particle + parity image system must vanish \(\Rightarrow \mathbb{P}: P_{i} \rightarrow S(P)_{i}\)
- algebraic consistency:
(1) if use antipode for \(P_{i}\) must use it for all symmetry generators;
(2) "correspondence principle": in the limit \(\kappa \rightarrow \infty\) recover ordinary \(\mathbb{P}\).
\[
\begin{array}{r}
\mathbb{P}\left(P_{i}\right)=S(P)_{i}=-P_{i}+\frac{P_{0} P_{i}}{\kappa}+O\left(\frac{1}{\kappa^{2}}\right) ; \quad \mathbb{P}\left(P_{0}\right)=-S(P)_{0}=P_{0}-\frac{\mathbf{P}^{2}}{\kappa}+O\left(\frac{1}{\kappa^{2}}\right) \\
\mathbb{P}\left(M_{i}\right)=-S(M)_{i}=M_{i} ; \quad \mathbb{P}\left(N_{i}\right)=S(N)_{i}=-N_{i}+\frac{1}{\kappa}\left(-P_{0} N_{i}+\epsilon_{i j k} P_{j} M_{k}\right)+O\left(\frac{1}{\kappa^{2}}\right)
\end{array}
\]

\section*{\(\kappa\)-deformed P and T}
- PARITY
- "physical" requirement: total linear momentum of particle + parity image system must vanish \(\Rightarrow \mathbb{P}: P_{i} \rightarrow S(P)_{i}\)
- algebraic consistency:
(1) if use antipode for \(P_{i}\) must use it for all symmetry generators;
(2) "correspondence principle": in the limit \(\kappa \rightarrow \infty\) recover ordinary \(\mathbb{P}\).
\[
\begin{aligned}
& \mathbb{P}\left(P_{i}\right)=S(P)_{i}=-P_{i}+\frac{P_{0} P_{i}}{\kappa}+O\left(\frac{1}{\kappa^{2}}\right) ; \quad \mathbb{P}\left(P_{0}\right)=-S(P)_{0}=P_{0}-\frac{\mathbf{P}^{2}}{\kappa}+O\left(\frac{1}{\kappa^{2}}\right) \\
& \mathbb{P}\left(M_{i}\right)=-S(M)_{i}=M_{i} ; \quad \mathbb{P}\left(N_{i}\right)=S(N)_{i}=-N_{i}+\frac{1}{\kappa}\left(-P_{0} N_{i}+\epsilon_{i j k} P_{j} M_{k}\right)+O\left(\frac{1}{\kappa^{2}}\right)
\end{aligned}
\]
- TIME REVERSAL: require that in the limit \(\kappa \rightarrow \infty, \mathbb{T}\) flips sign of \(M_{i}\)
\[
\begin{gathered}
\mathbb{T}\left(P_{i}\right)=S(P)_{i}, \quad \mathbb{T}\left(P_{0}\right)=-S(P)_{0} \\
\mathbb{T}\left(M_{i}\right)=S(M)_{i}, \quad \mathbb{T}\left(N_{i}\right)=-S(N)_{i}
\end{gathered}
\]

\section*{\(\kappa\)-deformation of discrete symmetries II}
- CHARGE CONJUGATION (a bit more subtle than \(\mathbb{P}\) and \(\mathbb{T}\) )

\section*{\(\kappa\)-deformation of discrete symmetries II}
- CHARGE CONJUGATION (a bit more subtle than \(\mathbb{P}\) and \(\mathbb{T}\) )
- For a complex scalar field: \(\mathcal{H}\) one-particle Hilbert space;

\section*{\(\kappa\)-deformation of discrete symmetries II}
- CHARGE CONJUGATION (a bit more subtle than \(\mathbb{P}\) and \(\mathbb{T}\) )
- For a complex scalar field: \(\mathcal{H}\) one-particle Hilbert space;
- The complex conjugate space \(\overline{\mathcal{H}} \equiv\) one-antiparticle space: ordinary charge conjugation: \(\mathbb{C}: \phi(k) \in \mathcal{H} \rightarrow \bar{\phi}(-k) \in \overline{\mathcal{H}}\)

\section*{\(\kappa\)-deformation of discrete symmetries II}
- CHARGE CONJUGATION (a bit more subtle than \(\mathbb{P}\) and \(\mathbb{T}\) )
- For a complex scalar field: \(\mathcal{H}\) one-particle Hilbert space;
- The complex conjugate space \(\overline{\mathcal{H}} \equiv\) one-antiparticle space: ordinary charge conjugation: \(\mathbb{C}: \phi(k) \in \mathcal{H} \rightarrow \bar{\phi}(-k) \in \overline{\mathcal{H}}\)
- \(\overline{\mathcal{H}}\) is isomorphic to the dual Hilbert space \(\mathcal{H}^{*}\) : symmetry generators act via antipode

\section*{\(\kappa\)-deformation of discrete symmetries II}
- CHARGE CONJUGATION (a bit more subtle than \(\mathbb{P}\) and \(\mathbb{T}\) )
- For a complex scalar field: \(\mathcal{H}\) one-particle Hilbert space;
- The complex conjugate space \(\overline{\mathcal{H}} \equiv\) one-antiparticle space: ordinary charge conjugation: \(\mathbb{C}: \phi(k) \in \mathcal{H} \rightarrow \bar{\phi}(-k) \in \overline{\mathcal{H}}\)
- \(\overline{\mathcal{H}}\) is isomorphic to the dual Hilbert space \(\mathcal{H}^{*}\) : symmetry generators act via antipode
- imposing that in the \(\kappa \rightarrow \infty\) one recovers usual ordinary \(\mathbb{C}\) we obtain
\[
\begin{array}{rr}
\mathbb{C}\left(P_{i}\right)=-S(P)_{i}, & \mathbb{C}\left(P_{0}\right)=-S(P)_{0} \\
\mathbb{C}\left(M_{i}\right)=-S(M)_{i}, & \mathbb{C}\left(N_{i}\right)=-S(N)_{i} .
\end{array}
\]

\section*{\(\kappa\)-deformed \(\mathbb{C P T}\)}

\section*{Putting all together we obtain the action of the \(\kappa\)-deformed \(\mathbb{C P T}\) operator}

\section*{\(\kappa\)-deformed \(\mathbb{C P T}\)}

Putting all together we obtain the action of the \(\kappa\)-deformed \(\mathbb{C P T}\) operator
\[
\begin{aligned}
& \mathbb{C P T}\left(P_{i}\right)=P_{i}-\frac{P_{0} P_{i}}{\kappa}+O\left(\frac{1}{\kappa^{2}}\right), \quad \mathbb{C P T}\left(P_{0}\right)=-S(P)_{0}=P_{0}-\frac{\mathbf{P}^{2}}{\kappa}+O\left(\frac{1}{\kappa^{2}}\right) \\
& \mathbb{C P T}\left(M_{i}\right)=-M_{i}, \quad \mathbb{C P T}\left(N_{i}\right)=-N_{i}+\frac{1}{\kappa}\left(-P_{0} N_{i}+3 P_{i}+\epsilon_{i j k} P_{j} M_{k}\right)+O\left(\frac{1}{\kappa^{2}}\right) .
\end{aligned}
\]

\section*{\(\kappa\)-deformed \(\mathbb{C P T}\)}

Putting all together we obtain the action of the \(\kappa\)-deformed \(\mathbb{C P T}\) operator
\[
\begin{aligned}
& \mathbb{C P T}\left(P_{i}\right)=P_{i}-\frac{P_{0} P_{i}}{\kappa}+O\left(\frac{1}{\kappa^{2}}\right), \quad \mathbb{C P T}\left(P_{0}\right)=-S(P)_{0}=P_{0}-\frac{\mathbf{P}^{2}}{\kappa}+O\left(\frac{1}{\kappa^{2}}\right) \\
& \mathbb{C P T}\left(M_{i}\right)=-M_{i}, \quad \mathbb{C P T}\left(N_{i}\right)=-N_{i}+\frac{1}{\kappa}\left(-P_{0} N_{i}+3 P_{i}+\epsilon_{i j k} P_{j} M_{k}\right)+O\left(\frac{1}{\kappa^{2}}\right) .
\end{aligned}
\]

MAIN MESSAGE: non-trivial antipode \(\Rightarrow\) the action of the \(\mathbb{C P T}\) operator is deformed (NOTE: this differs from the usual violation of \(\mathbb{C P T}\) expected in presence of decoherence (Wald, 1980))

\section*{A bound on \(\kappa\) from muon lifetime}

The deformed \(\mathbb{C P T}\) map leads to different lifetimes between particles and anti-particles
MA, Kowalski-Glikman and Wislicki, Phys. Lett. B 794, 41 (2019) [arXiv:1904.06754 [hep-ph]].

\section*{A bound on \(\kappa\) from muon lifetime}

The deformed \(\mathbb{C P T}\) map leads to different lifetimes between particles and anti-particles MA, Kowalski-Glikman and Wislicki, Phys. Lett. B 794, 41 (2019) [arXiv:1904.06754 [hep-ph]].

At rest \(\mathcal{P}_{\text {part }}=\Gamma e^{-\Gamma t}=\mathcal{P}_{\text {apart }}\) where \(\Gamma\) is the inverse particle's lifetime

\section*{A bound on \(\kappa\) from muon lifetime}

The deformed \(\mathbb{C P T}\) map leads to different lifetimes between particles and anti-particles MA, Kowalski-Glikman and Wislicki, Phys. Lett. B 794, 41 (2019) [arXiv:1904.06754 [hep-ph]].

At rest \(\mathcal{P}_{\text {part }}=\Gamma e^{-\Gamma t}=\mathcal{P}_{\text {apart }}\) where \(\Gamma\) is the inverse particle's lifetime

The \(\gamma\) factor responsible for time dilation is \(E / m\) for the particle and \(-S(E) / m=\frac{E}{m}-\frac{\mathrm{p}^{2}}{\kappa m}\) for the antiparticle

\section*{A bound on \(\kappa\) from muon lifetime}

The deformed \(\mathbb{C P T}\) map leads to different lifetimes between particles and anti-particles MA, Kowalski-Glikman and Wislicki, Phys. Lett. B 794, 41 (2019) [arXiv:1904.06754 [hep-ph]].

At rest \(\mathcal{P}_{\text {part }}=\Gamma e^{-\Gamma t}=\mathcal{P}_{\text {apart }}\) where \(\Gamma\) is the inverse particle's lifetime

The \(\gamma\) factor responsible for time dilation is \(E / m\) for the particle and
\[
-S(E) / m=\frac{E}{m}-\frac{\mathrm{p}^{2}}{\kappa m} \text { for the antiparticle }
\]

The decay probabilities are thus
\[
\mathcal{P}_{\text {part }}=\frac{\Gamma E}{m} \exp \left(-\Gamma t \frac{E}{m}\right), \quad \mathcal{P}_{\text {apart }}=\Gamma\left(\frac{E}{m}-\frac{\mathbf{p}^{2}}{\kappa m}\right) e^{-\left\lceil t\left(\frac{E}{m}-\frac{\mathbf{p}^{2}}{\kappa m}\right)\right.}
\]

\section*{A bound on \(\kappa\) from muon lifetime}

The deformed \(\mathbb{C P T}\) map leads to different lifetimes between particles and anti-particles MA, Kowalski-Glikman and Wislicki, Phys. Lett. B 794, 41 (2019) [arXiv:1904.06754 [hep-ph]].

At rest \(\mathcal{P}_{\text {part }}=\Gamma e^{-\Gamma t}=\mathcal{P}_{\text {apart }}\) where \(\Gamma\) is the inverse particle's lifetime

The \(\gamma\) factor responsible for time dilation is \(E / m\) for the particle and
\[
-S(E) / m=\frac{E}{m}-\frac{\mathbf{p}^{2}}{\kappa m} \text { for the antiparticle }
\]

The decay probabilities are thus
\[
\mathcal{P}_{\text {part }}=\frac{\Gamma E}{m} \exp \left(-\Gamma t \frac{E}{m}\right), \quad \mathcal{P}_{\text {apart }}=\Gamma\left(\frac{E}{m}-\frac{\mathbf{p}^{2}}{\kappa m}\right) e^{-\Gamma t\left(\frac{E}{m}-\frac{\mathbf{p}^{2}}{\kappa m}\right)}
\]
from experimental uncertainty on \(\mu\)-lifetime ([PDG], PRD 98, no. 3, 030001 (2018))
\[
\kappa \gtrsim 4 \times 10^{14} \mathrm{GeV}(\mathbf{p}=6.5 \mathrm{TeV}(\mathrm{LHC}))
\]

\section*{A bound on \(\kappa\) from muon lifetime}

The deformed \(\mathbb{C P T}\) map leads to different lifetimes between particles and anti-particles MA, Kowalski-Glikman and Wislicki, Phys. Lett. B 794, 41 (2019) [arXiv:1904.06754 [hep-ph]].

At rest \(\mathcal{P}_{\text {part }}=\Gamma e^{-\Gamma t}=\mathcal{P}_{\text {apart }}\) where \(\Gamma\) is the inverse particle's lifetime

The \(\gamma\) factor responsible for time dilation is \(E / m\) for the particle and
\[
-S(E) / m=\frac{E}{m}-\frac{\mathrm{p}^{2}}{\kappa m} \text { for the antiparticle }
\]

The decay probabilities are thus
\[
\mathcal{P}_{\text {part }}=\frac{\Gamma E}{m} \exp \left(-\Gamma t \frac{E}{m}\right), \quad \mathcal{P}_{\text {apart }}=\Gamma\left(\frac{E}{m}-\frac{\mathbf{p}^{2}}{\kappa m}\right) e^{-\Gamma t\left(\frac{E}{m}-\frac{\mathrm{p}^{2}}{\kappa m}\right)}
\]
from experimental uncertainty on \(\mu\)-lifetime ([PDG], PRD 98, no. 3, 030001 (2018))
\[
\kappa \gtrsim 4 \times 10^{14} \mathrm{GeV}(\mathbf{p}=6.5 \mathrm{TeV}(\mathrm{LHC})) \quad \kappa \gtrsim 2 \times 10^{16} \mathrm{GeV}(\mathbf{p}=50 \mathrm{TeV}(\mathrm{FCC}))
\]

\section*{Summary}

In this talk I showed that there exist models of Planck-scale kinematics which predict
* fundamental decoherence

\section*{Summary}

In this talk I showed that there exist models of Planck-scale kinematics which predict
* fundamental decoherence
* deviations from ordinary CPT invariance

\section*{Summary}

In this talk I showed that there exist models of Planck-scale kinematics which predict
* fundamental decoherence
* deviations from ordinary CPT invariance

Phenomenology associated to these effects is largely unexplored!

\section*{Summary}

In this talk I showed that there exist models of Planck-scale kinematics which predict
* fundamental decoherence
* deviations from ordinary CPT invariance

> Phenomenology associated to these effects is largely unexplored!

> We need the input of experimentalists to take advantage of these possible new windows on the QG world...

\section*{Appendix: BH quantum radiance in a nutshell}

Essence of Hawking effect: vacuum state for a free falling observer \(|0\rangle\) is a thermal state at temperature \(T_{H}=\frac{1}{2 \pi G M}\) for a static observer outside the BH

\section*{Appendix: BH quantum radiance in a nutshell}

Essence of Hawking effect: vacuum state for a free falling observer \(|0\rangle\) is a thermal state at temperature \(T_{H}=\frac{1}{2 \pi G M}\) for a static observer outside the BH

The static observer does not have access to the region inside the horizon... she associates to \(|0\rangle\) a mixed state given by
\[
\rho=\operatorname{Tr}_{i n}(|0\rangle\langle 0|)
\]
however the "full" state \(\rho_{0}=|0\rangle\langle 0|\) is pure.

\section*{Appendix: BH quantum radiance in a nutshell}

Essence of Hawking effect: vacuum state for a free falling observer \(|0\rangle\) is a thermal state at temperature \(T_{H}=\frac{1}{2 \pi G M}\) for a static observer outside the BH

The static observer does not have access to the region inside the horizon... she associates to \(|0\rangle\) a mixed state given by
\[
\rho=\operatorname{Tr}_{i n}(|0\rangle\langle 0|)
\]
however the "full" state \(\rho_{0}=|0\rangle\langle 0|\) is pure.
- Back-reaction: Black hole radiates thermally at temp. \(T_{H} \Longrightarrow\) mass decreases
- Black hole completely evaporates \(\equiv\) no horizon, no "inside" region
- The mixed state \(\rho\) cannot be a partial trace of a pure state since there's no inside degrees of freedom to trace out left!

\section*{Appendix: BH quantum radiance in a nutshell}

Essence of Hawking effect: vacuum state for a free falling observer \(|0\rangle\) is a thermal state at temperature \(T_{H}=\frac{1}{2 \pi G M}\) for a static observer outside the BH

The static observer does not have access to the region inside the horizon... she associates to \(|0\rangle\) a mixed state given by
\[
\rho=\operatorname{Tr}_{i n}(|0\rangle\langle 0|)
\]
however the "full" state \(\rho_{0}=|0\rangle\langle 0|\) is pure.
- Back-reaction: Black hole radiates thermally at temp. \(T_{H} \Longrightarrow\) mass decreases
- Black hole completely evaporates \(\equiv\) no horizon, no "inside" region
- The mixed state \(\rho\) cannot be a partial trace of a pure state since there's no inside degrees of freedom to trace out left!

Started from the pure state \(\rho_{0} \longrightarrow \mathrm{BH}\) evaporation left us with a mixed state```

