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‘, ABSTRACT 

- 
The treatment of quantum effects in gravitational fields indicates that pure states 

may evolve into mixed states, and Hawking has proposed modifications of the axioms of 
field theory which incorporate the corresponding violation of quantum mechanics. In 
this paper we propose a modified Hamiltonian equation of motion for density matrices 
and use it to interpret upper bounds on the violation of quantum mechanics in different 

. . . phenomenological situations. We apply our formalism to the K” - K” system and to 
long baseline neutron interferometry experiments.-In both cases we find upper bounds 
of about 2 x 10s21 GeV on contributions to the single particle “Hamiltonian” which 
violate quantum mechanical coherence. We discuss how these limits might be improved 

- .” . . in the future, and consider the relative significance of other successful tests of quantum 
mechanics. An Appendix contains model estimates of the magnitude of effects violating 
quantum mechanics. 
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tests of fundamental decoherence using neutral kaons and neutron
interferometry, main motivation given by:

PHYSICAL REVIE% 0 VOLUME 14, NUMBER 10 15 NOVEMBER 1976

Breakdown of predictability in gravitational collapse~

S. W. Ha,'wking~
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England

and Cahfornia Institute of Technology, Pasadena, California 91125
(Received 25 August 1975)

The principle of equivalence, which says that gravity couples to the energy-momentum tensor of matter, and
the quantum-mechanical requirement that energy should be positive imply that gravity is always attractive.
This leads to singularities in any reasonable theory of gravitation. A singularity is a place where the classical
concepts of space and time break down as do all the known laws of physics because they are all formulated on
a classical space-time background. In this paper it is claimed that this breakdown is not merely a result of our
ignorance of the correct theory but that it represents a fundamental limitation to our ability to predict the
future, a limitation that is analogous but additional to the limitation imposed by the normal quantum-
mechanical uncertainty principle. The new limitation arises because general relativity allows the causal
structure of space-time to be very different from that of Minkowski space. The interaction region can be
bounded not only by an initial surface on which data are given and a final surface on which measurements are
made but also a "hidden surface" about which the observer has only limited information such as the mass,
angular momentum, and charge. Concerning this hidden surface one has a "principle of ignorance": The
surface emits with equal probability all configurations of particles- compatible with the observers limited
knowledge. It is shown that the ignorance principle holds for the quantum-mechanical evaporation of black
holes: The black hole creates particles in pairs, with one particle always falling into the hole and the other
possibly escaping to infinity. Because part of the information about the state of the system is lost down the
hole, the final situation is represented by a density matrix rather than a pure quantum state. This means there
is no S matrix for the process of black-hole formation and evaporation. Instead one has to introduce a new
operator, called the superscattering operator, which maps density matrices describing the initial situation to
density matrices describing the final situation.

I. INTRODUCTION

Gravity is by far the weakest interaction known
to physics: The ratio of the gravitational to elec-
trical forces between two electrons is about one
part in 104'. In fact, gravity is so weak that it
would not be obsexvable at all were it not distin-
guished from all other interactions by having the
property known as the principle of universality or
equivalence: Gravity affects the trajectories of all
freely moving particles in the same way. This has
been verified experimentally to an accuracy of
about 10 "by RoQ, Krotkov, and Dicker and by
Braginsky and Panov. ' Mathematically, the princi-
ple of equivalence is expressed as saying that
gravity couples to the energy-momentum tensor
of matter. This result and the usual requirement
from quantum theory that the local energy density
should be positive imply that gravity is always at-
tractive. The gravitational fields of all the parti-
cles in large concentrations of matter therefore
add up and can dominate over all other forces. As
predicted by general relativity and verified experi-
mentally, the universality of gravity extends to
light. A sufficiently high concentration of mass can
therefore produce such a strong gravitational field
that no light can escape. By the principle of spe-
cial relativity, nothing else can escape either since
nothing can travel faster than. light. One thus has

a situation in which a certain amount of matter is
trapped in a region whose boundary shrinks to
zero in a finite time. Something obviously goes
badly wrong. In fact, as was shown in a series of
papers by Penrose and this author, ' ' a space-time
singularity is inevitable in such circumstances
provided that general relativity is correct and that
the energy-momentum tensor of matter satisfies
a certain positive-definite inequality.
Singularities are predicted to occur in two areas.

The first is in the past at the beginning of the pres-
ent expansion of the universe. This is thought to be
the "big bang" and is generally regarded as the
beginning of the universe. The second area in
which singularities are predicted is the collapse
of isolated regions of high-mass concentration such
as burnt-out stars.
A singularity can be regarded as a place where

there is a breakdown of the classical concept of
space-time as a manifold with a pseudo-Reiman-
nian metric. Because all known laws of physics
are formulated on a classical space-time back-
ground, they will all break down at a singularity.
This is a great crisis for physics because it means
that one cannot predict the future: One does not
know what will come out of a singularity.
Many physicists are very unwilling to believe

that physics breaks down at singularities. The
following attempts were therefore made in order

14 2460

suggested fundamental loss of information in black hole evaporation
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Is purity eternal?

Fundamental decoherence in quantum gravity?

• Ordinary quantum evolution is unitary: ρfin = SρinS
† with SS† = 1

• Unitary S =⇒ if Trρ2
in = 1 then Trρ2

fin = 1 i.e. purity is eternal

• BH quantum radiance suggests the possibility that ρin(pure)→ ρfin(mixed)

• Hawking proposed that in quantum gravity (QG) S is replaced by a
“superscattering” operator $

ρfin = $ρin 6= SρinS
†

so that Trρ2
fin ≤ 1

The idea of Ellis et al. was to explore the phenomenology of such non-unitary
evolution as determined by a differential evolution equation for ρ

ρ̇ =�Hρ 6= −i [H, ρ]
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Lindblad evolution in quantum gravity?

Banks, Peskin and Susskind (Nucl. Phys. B 244, 125 (1984)) looked for a general form for�Hρ.

Assuming that

• ρ = ρ†

• Trρ = 1

are preserved by time evolution they (re)-discovered the Lindblad equation

ρ̇ = −i [H, ρ]− 1

2
hαβ

(
QαQβρ+ ρQβQα − 2QαρQβ

)

hαβ hermitian matrix of constants and {Qα} basis of hermitian matrices

Can such modification of fundamental quantum evolution
be obtained from a model incorporating quantum gravity effects?
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Linking fundamental decoherence and deformed symmetries

There exists Planck-scale modifications of relativistic kinematics
in which such generalized quantum evolution can be realized.

• Main ingredient: momenta living on a non-abelian Lie group
(curvature of the group manifold set by a UV energy scale “κ”)

• At algebraic level: “deformation” of the action of translation and Lorentz
generators on states and observables of a relativistic system

• Such deformation affects basic notions in quantum theory leading to

I potential fundamental decoherence
I deformed discrete symmetries and CPT

MA, Phys. Rev. D 90, 024016 (2014) arXiv:1403.6457

MA and J. Kowalski-Glikman, Phys. Lett. B 760, 69 (2016) arXiv:1605.01181

MA, J. Kowalski-Glikman, W. Wislicki, Phys. Lett. B 794, 41 (2019) arXiv:1904.06754

MA, V. D’Esposito and G. Gubitosi, [arXiv:2208.14119 [gr-qc]]
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A “flat space-time limit” of QG?

THE IDEA: there exists a “flat space-time limit” of quantum gravity

~ ,G → 0 with
√

~
G

= κ = const

The Planckian quantity κ, introduces a fundamental (observer independent)
UV energy scale in the the algebraic structure of relativistic symmetries

• “Quantum Minkowski space-time” described by a non-commutative algebra of
functions of coordinates belonging to a Lie algebra which becomes abelian in the
κ→∞ limit

• The four-momenta describing the particle kinematics become coordinates on a
non-abelian Lie group
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Group-valued momenta from 2 + 1-dimensional gravity

This scenario is realized for QG in 2 + 1 space-time dimensions!

• When Λ = 0 all solutions to the Einstein’s equation are locally flat!

• The theory is topological: it admits no local degrees of freedom

• Point particles are described by conical defects; their momenta are elements of
the Lie group SL(2,R) (Matschull and Welling, Class. Quant. Grav. 15, 2981-3030 (1998))

• Upon quantization relativistic particles are described by a non-commutative field
theory with sl(2,R) coordinates (Freidel and Livine, Phys.Rev.Lett. 96 (2006))

[Xµ,Xν ] = i
κ
εµνλXλ

(see also ’t Hooft, Class. Quant. Grav. 13, 1023-1040 (1996))
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Group-valued momenta in 3+1 dimensions?

GR in 3+1 dimensions certainly is not a topological theory...

• It has been speculated that a UV completion of QG might be a topological theory
(K. Krasnov, Proc. Roy. Soc. Lond. A 468, 2129-2173 (2012))

• particles coupled to gravity described by a topological BF theory can exhibit a
deformation of kinematics similar to the 2 + 1-dimensional case

(Kowalski-Glikman and Starodubtsev, Phys. Rev. D 78, 084039 (2008))

A rigorous link between deformed kinematics and QG is far from being established...

⇒ focusing on deformed kinematics is important in order to develop effective
models of Planck-scale physics useful to extract phenomenological predictions

THE MODEL: κ-Poincaré algebra:it was introduced almost 30 years ago
(Lukierski, Nowicki and Ruegg, Phys. Lett. B 293, 344 (1992))

⇒ use quantum groups tools to deform symmetries introducing a UV energy-scale κ
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κ-deformation

• Basic geometric picture:

κ-four-momenta: coordinates on Lie group AN(3) obtained form the
Iwasawa decomposition of SO(4, 1) ' SO(3, 1)AN(3), sub-manifold of dS4

−p2
0 + ~p 2 + p2

−1

embedding coordinates

= κ2 , p0+p−1 > 0

This just reflects the fact that the ANðnÞ group can be
obtained from the Iwasawa decomposition [24] of the
Lorentz group: SOðnþ 1; 1Þ ¼ ANðnÞSOðn; 1Þ∪ANðnÞ
N SOðn; 1Þ. Indeed the full nþ 1-dimensional de Sitter
space is equivalent to the quotient SOðnþ 1; 1Þ=SOðn; 1Þ.
Since our purpose is to study diffusion processes based

on momentum space Laplacians constructed out of coor-
dinates of the ANðnÞ manifold, we need a prescription to
obtain an Euclidean version of the group manifold. We
follow here a suggestion from [21] and map the group
ANðnÞ to an Euclidean manifold by acting with a group
element on the timelike vector ðκ; 0;…; 0Þ. We express
again the resulting group element as g⊳ðκ; 0;…; 0Þ ¼
ðp−1; fpag; p0Þ where now

p0 ¼ κ sinh
!
k0
κ

"
−

1

2κ
ek0=κkaka;

pa ¼ ek0=κka;

p−1 ¼ κ cosh
!
k0
κ

"
þ 1

2κ
ek0=κkaka: ð7Þ

As it is easily checked the coordinates now satisfy the
conditions p2

0 þ papa − p2
−1 ¼ −κ2 and p−1 > 0 as well as

p0 þ p−1 > 0, −p0 þ p−1 > 0 but the latter ones are
actually redundant. The first condition defines a ð1; nÞ-
hyperboloid i.e. Euclidean anti–de Sitter space, also known
as hyperbolic space, embedded in Minkowski space. The
second condition is again restricting us to one half of
the manifold. The subtle point here is that the roles of the
coordinates p0 and p−1 are now reversed compared to

the previous, Lorentzian, case. Indeed in the classical limit
κ → þ∞ we obtain p0 → k0, pa → ka but p−1 → þ∞,
which justifies our designation of the coordinates. This is
our “Euclidean realization” of the group ANðnÞ, given as a
manifold by half of Euclidean anti–de Sitter space
(cf. Fig. 2). The other half manifold can be obtained
in the same way as in the de Sitter case. This reflects
another Iwasawa decomposition of the Lorentz group
SOðn þ 1; 1Þ ¼ ANðnÞSOðn þ 1Þ∪ANðnÞN SOðn þ 1Þ.
The full nþ 1-dimensional Euclidean anti–de Sitter space
is equivalent to the quotient SOðnþ 1; 1Þ=SOðnþ 1Þ. To
make an analogy with more familiar structures one can
notice that the manifolds we described can be seen as
higher-dimensional analogues of the four-dimensional
mass-shells of tachyons, for the Lorentzian case and of
massive particles, for this latter Euclidean realization. A
direct connection with the Lorentzian realization can be
made by showing that the Euclidean manifold can be
obtained by a “Wick rotation” of the Lorentzian manifold.
One can observe this in two steps. First, taking κ↦iκ,
k0↦ik0 we obtain

p0 ¼ i
!
κ sinh

!
k0
κ

"
−

1

2κ
ek0=κkaka

"
;

pa ¼ ek0=κka;

p−1 ¼ i
!
κ cosh

!
k0
κ

"
þ 1

2κ
ek0=κkaka

"
; ð8Þ

satisfying −p2
0þpapaþp2

−1¼−κ2. Then, taking p0↦ip0,
p−1↦ip−1 we arrive at the “Euclidean realization”.

FIG. 1. Lorentzian de Sitter space of momenta (p2;…; pn
suppressed) and the p0 þ p−1 ¼ 0 surface.

FIG. 2. Euclidean anti–de Sitter space of momenta (p2;…; pn
suppressed) and the p−1 ¼ 0 surface.

DIFFUSION ON κ-MINKOWSKI SPACE PHYSICAL REVIEW D 89, 124024 (2014)

124024-3

(see e.g. Kowalski-Glikman and Nowak, hep-th/0411154)

• an(3) Lie algebra: κ-Minkowski “non-commutative space-time”

[X0,Xa] =
i

κ
Xa , [Xa,Xb] = 0
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Basic quantum theory

Elementary one-particle Hilbert space H: irreps of Poincaré group

• basis of H given by eigenstates of the translation generators

Pµ|k〉 = kµ|k〉

• action on 〈k| ∈ H∗, dual space: Pµ〈k| = −kµ〈k| = 〈k|(−kµ) ≡ 〈k|S(Pµ)

• action on composite system H⊗H:

Pµ(|k1〉 ⊗ |k2〉) = Pµ|k1〉 ⊗ |k2〉+ |k1〉 ⊗ Pµ|k2〉 ≡ ∆Pµ|k1〉 ⊗ |k2〉

“Antipode”: S(Pµ) = −Pµ , “Co-product”: ∆Pµ = Pµ ⊗ 1 + 1⊗ Pµ

Hopf algebra notions “built in” in everyday quantum theory..

• these notions suffice to derive action of Pµ on operators...take e.g. πk = |k〉〈k|

Pµ(πk ) = Pµ(|k〉〈k|) =

= Pµ(|k〉)〈k|+ |k〉Pµ(〈k|) = Pµ|k〉〈k| − |k〉〈k|Pµ = [Pµ, πk ]

i.e. just the familiar adjoint action adPµπk = [Pµ, πk ]
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Deformed quantum theory

Deformation of symmetry generators provide a generalization of these basic notions

• kets |π〉 labelled by elements of a non-abelian Lie group π ∈ G

Pµ|π〉 = Pµ(π)|π〉

Pµ coordinate functions on the group manifold

• for the action on bras the non-trivial properties of momenta come into play

Pµ〈π| = Pµ(π−1)〈π| ≡ 〈π|S(Pµ)

• action on multi-particle states also non-trivial

Pµ(|π1〉 ⊗ |π2〉) = Pµ(π1 · π2)|π1〉 ⊗ |π2〉 ≡ ∆Pµ|π1〉 ⊗ |π2〉

• composition rule of momentum eigenvalues is deformed

Pµ(π1 · π2) ≡ Pµ(π1)⊕ Pµ(π2) 6= Pµ(π2 · π1) , Pµ(π)⊕ Pµ(π−1) = Pµ(1) = 0

In Hopf algebraic lingo: non-trivial co-product ∆Pµ and antipode of S(Pµ)

Key point: the action on operators will be deformed accordingly
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Deformed translations from AN(3) momentum space

Consider translation generators Pµ associated to embedding coordinates pµ on dS4

Their co-products and antipodes at leading order in κ

∆(P0) = P0 ⊗ 1 + 1⊗ P0 +
1

κ
Pm ⊗ Pm ,

∆(Pi ) = Pi ⊗ 1 + 1⊗ Pi +
1

κ
Pi ⊗ P0 ,

S(P0) = −P0 +
1

κ
~P2 ,

S(Pi ) = −Pi +
1

κ
Pi P0 ,

this choice of translation generators of the κ-Poincaré is called “classical” because

• action of Lorentz sector on Pµ in undeformed;

• mass-shell condition undeformed P2
0 − ~P2 = const

In embedding coordinates we have ordinary relativistic kinematics at the
one-particle level...all non-trivial structures confined to “co-algebra” sector
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Lindblad evolution from κ-translations

Evolution of the density operator ρ = adjoint action of H generator of time translations

i ∂tρ = [H, ρ] = adH ρ

adjoint action can be written in terms of coproduct and antipode

adG O = (id ⊗ S) ∆G � O (= (G ⊗ 1− 1⊗ G) � O = [G ,O])

for undeformed coproduct and andtipode

with (a⊗ b) � O ≡ aO b

For a free particle time evolution is determined by the time translation generator P0

i ∂tρ ≡
1

2
adP0 (ρ)− [adP0 (ρ)]†

plugging the κ-deformed coproduct and antipode one obtains

∂tρ = −i [P0, ρ]− 1

2κ

(
P2ρ+ ρP2 − 2Pi ρP

i
)

a momentum-dependent Lindblad equation
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Purity is not eternal in quantum space-time

Purity of quantum states is not eternal!

• Look at evolution of the linear entropy

S(t) = 1− Tr(ρ2)

one has
d

dt
S =

1

2κ
Tr
(
ρ
(
PPP2ρ+ ρPPP2 − 2PiρP

i
))

Free particle in the limit t →∞

S(t) ∼ 1−
(π κ

t

) 3
2

[1− S(0)]

i.e. for long enough time any state becomes a maximally mixed one!
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Testing deformations via precision measurements of neutral kaons

Phenomenology of κ-Lindblad evolution? (Ellis et al.“Search for Violations of Quan-

tum Mechanics,” Nucl. Phys. B 241, 381 (1984)); bounds on κ using precision mea-
surements of neutral kaon systems (KLOE and KLOE-2 experiment)?

• On the agenda: input from κ-Lindblad to derive deformed evolution based on
effective Hamiltonian for K 0-K̄ 0...

Other experimental windows?

Maybe neutrino oscillations?
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Decoherence vs. discrete symmetries

Natural question: do the new structures introduced so far affect discrete symmetries ?

Wald (Phys. Rev. D 21, 2742 (1980)) pointed out that quantum-gravity-induced
fundamental decoherence would clash with the assumptions of CPT leading to

CPT violation

There’s a long and venerable literature on searchers of fundamental decoherence AND
violations of CPT using K 0-K̄ 0

(see e.g. Mavromatos, J. Phys. Conf. Ser. 171, 012007 (2009) [arXiv:0904.0606 [hep-ph]])

As shown in (MA and J Kowalski-Glikman, Phys. Lett. B 760, 69 (2016)) the non-trivial antipode for
κ-Poincaré generators plays a prominent role in defining discrete symmetries

ultimately leading to a
deformed notion of CPT transformation

Idea: use basic physical requirements and algebraic consistency to define the action of
P, T and C....
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κ-deformed P and T

• PARITY

I “physical” requirement: total linear momentum of particle + parity
image system must vanish ⇒ P : Pi → S(P)i

I algebraic consistency:

(1) if use antipode for Pi must use it for all symmetry generators;

(2) “correspondence principle”: in the limit κ→∞ recover ordinary P.

P(Pi ) = S(P)i = −Pi +
P0Pi

κ
+ O

(
1

κ2

)
; P(P0) = −S(P)0 = P0 −

P2

κ
+ O

(
1

κ2

)
P(Mi ) = −S(M)i = Mi ; P(Ni ) = S(N)i = −Ni +

1

κ
(−P0Ni + εijk PjMk ) + O

(
1

κ2

)
• TIME REVERSAL: require that in the limit κ→∞, T flips sign of Mi

T(Pi ) = S(P)i , T(P0) = −S(P)0

T(Mi ) = S(M)i , T(Ni ) = −S(N)i .
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κ-deformation of discrete symmetries II

• CHARGE CONJUGATION (a bit more subtle than P and T)

I For a complex scalar field: H one-particle Hilbert space;

I The complex conjugate space H̄ ≡ one-antiparticle space: ordinary
charge conjugation: C : φ(k) ∈ H → φ̄(−k) ∈ H̄

I H̄ is isomorphic to the dual Hilbert space H∗: symmetry generators act
via antipode

I imposing that in the κ→∞ one recovers usual ordinary C we obtain

C(Pi ) = −S(P)i , C(P0) = −S(P)0

C(Mi ) = −S(M)i , C(Ni ) = −S(N)i .
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I imposing that in the κ→∞ one recovers usual ordinary C we obtain

C(Pi ) = −S(P)i , C(P0) = −S(P)0

C(Mi ) = −S(M)i , C(Ni ) = −S(N)i .
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κ-deformed CPT

Putting all together we obtain the action of the κ-deformed CPT operator

CPT(Pi ) = Pi −
P0Pi

κ
+ O

(
1

κ2

)
, CPT(P0) = −S(P)0 = P0 −

P2

κ
+ O

(
1

κ2

)
CPT(Mi ) = −Mi , CPT(Ni ) = −Ni +

1

κ
(−P0Ni + 3Pi + εijk PjMk ) + O

(
1

κ2

)
.

MAIN MESSAGE: non-trivial antipode ⇒ the action of the CPT operator is deformed
(NOTE: this differs from the usual violation of CPT expected in presence of decoherence (Wald, 1980))
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A bound on κ from muon lifetime

The deformed CPT map leads to different lifetimes between particles and anti-particles
MA, Kowalski-Glikman and Wislicki, Phys. Lett. B 794, 41 (2019) [arXiv:1904.06754 [hep-ph]].

At rest Ppart = Γ e−Γt = Papart where Γ is the inverse particle’s lifetime

The γ factor responsible for time dilation is E/m for the particle and

−S(E)/m = E
m
− p2

κm
for the antiparticle

The decay probabilities are thus

Ppart =
ΓE

m
exp

(
−Γt

E

m

)
, Papart = Γ

(
E

m
− p2

κm

)
e
−Γt

(
E
m
− p2

κm

)

from experimental uncertainty on µ-lifetime ([PDG], PRD 98, no. 3, 030001 (2018))

κ & 4× 1014 GeV (p = 6.5 TeV (LHC)) κ & 2× 1016 GeV (p = 50 TeV (FCC))
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Summary

In this talk I showed that there exist models of Planck-scale kinematics which predict

* fundamental decoherence

* deviations from ordinary CPT invariance

Phenomenology associated to these effects is largely unexplored!

We need the input of experimentalists to take advantage of these possible new
windows on the QG world...
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Appendix: BH quantum radiance in a nutshell

Essence of Hawking effect: vacuum state for a free falling observer |0〉 is a
thermal state at temperature TH = 1

2πGM
for a static observer outside the BH

The static observer does not have access to the region inside the horizon... she
associates to |0〉 a mixed state given by

ρ = Trin(|0〉〈0|)

however the “full” state ρ0 = |0〉〈0| is pure.

• Back-reaction: Black hole radiates thermally at temp. TH =⇒ mass decreases

• Black hole completely evaporates ≡ no horizon, no “inside” region

• The mixed state ρ cannot be a partial trace of a pure state since there’s no inside
degrees of freedom to trace out left!

Started from the pure state ρ0 −→ BH evaporation left us with a mixed state
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