

The "Power" of underground experiments: Quantum Gravity Phenomenology "under the rocks"

Andrea Addazi, Sichuan University (Chengdu, China); INFN Rome 2 (Italy)

ECT* 2022 Trento

Based on a series of recent works

A. Addazi, P. Belli, R. Bernabei, A. Marciano, arXiv:1712.08082

A. Addazi, A. Marciano, arXiv:1811.06425

A. Addazi, R. Bernabei, MPLA 2019

A. Addazi, H. Shababi, arXiv: 2005.14000v1

A. Addazi, P. Belli, R. Bernabei, A. Marciano, H. Shababi, *Eur.Phys.J.C* 80 (2020) 8, 795

K. Pisticchia et al, arXiv:2209.00074

Few considerations as a "Warm up"

"Santo Graal" of Theoretical Physics Quantum Gravity!

UV completion of General Relativity

Top-Down

String theory, M-theory

Loop Quantum Gravity

Asymptotic Darkness/Classicalization

Asymptotic Safety

Causal Sets

Superrenormalizable non-local theories

Dynamical Triangulation

Gauge reformulations of gravity

. . .

Quantum gravity phenomenology is commonly considered as a sort of metaphysics chimera or even an oxymoron... common pessimistic approach

Some of the previous theories may be "dual" of having common hidden theoretical features

Bottom-up: quantum gravity phenomenology Effective theories and parametrization of our "ignorance" on UV completion

Quantum Field Theory in Non-commutative space-time; Theta- and kappa-Poincare'

Higher derivatives actions

Modified Gravity

Quantum Groups

Generalized Uncertainty Principle (GUPs)

Large Extra Dimensions

Modified Dispersion Relations (MDRs)

Lorentz Violations, CPT violations

Large Extra Dimensions

Extended Standard Model

Effective Theory N free parameters

Vs

Low (in Planck unit) energy physics
Observations

Direct probe of Planck scale impossible with our current and next future technology.

Nevertheless tiny residual quantum gravity effects can **survive** at "mesoscopic" scales, Lower energy physics. This is possible if a "**scale amplifier**" Cumulative overall "deviations"

Quantum gravity memory lost ... And regained

QG probes in Astrophysics and cosmology, multi-messenger physics GRBs, AGN, BH-BH mergings, NS-NS mergings. MDRs, Horizons, Love number etc

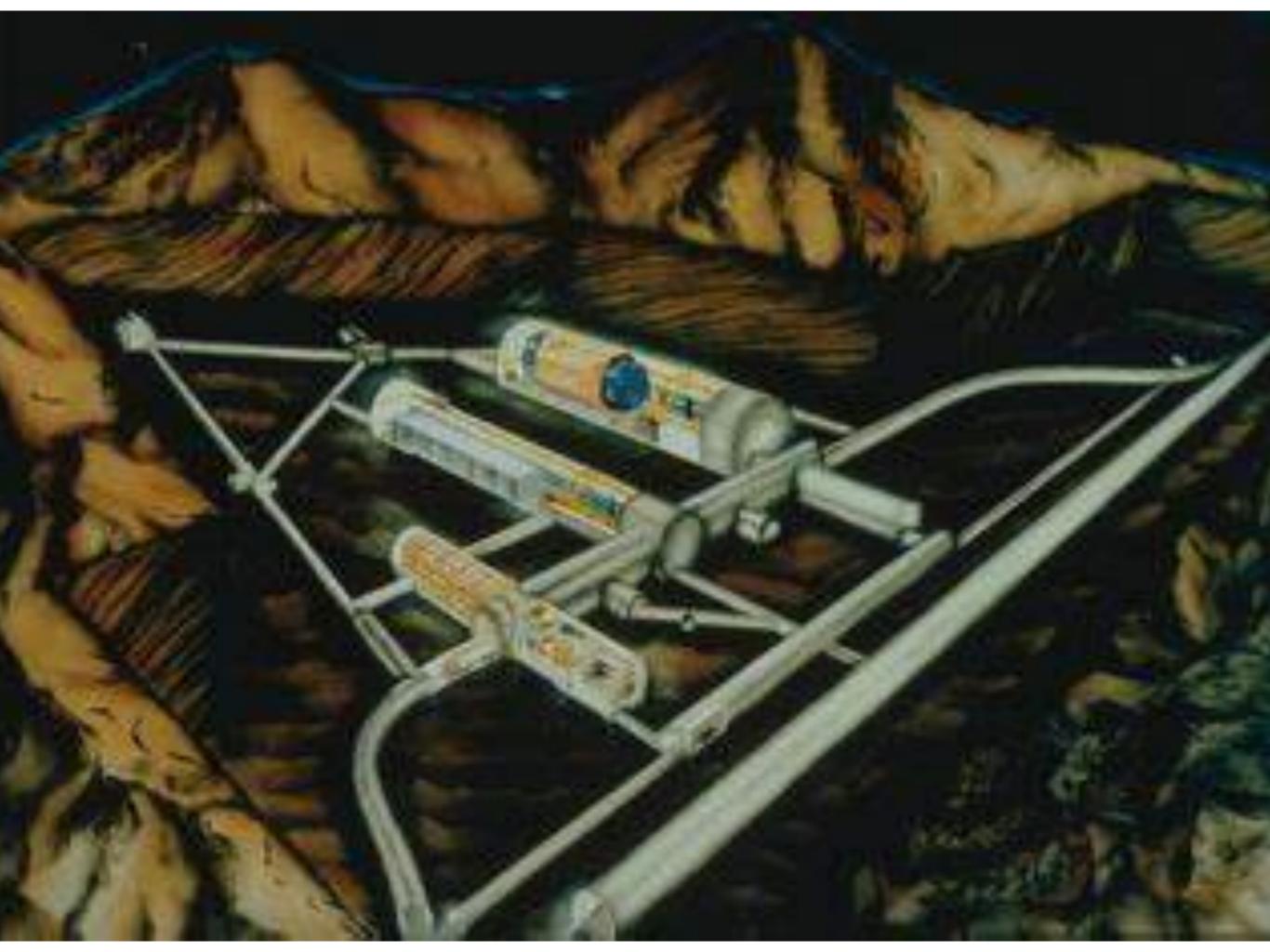
G. Amelino-Camelia and J. Ellis talks about gamma ray windows

A. Addazi, N. Yunes, A. Marciano PRL

Quantum gravity phenomenology at the dawn of the multi-messenger era — A review

A. Addazi^{a,b}, J. Alvarez-Muniz^c, R. Alves Batista^d, G. Amelino-Camelia^{e,f}, V. Antonelli^{g,h} M. Arzano^{e,f}, M. Asoreyⁱ, J.-L. Atteia^j, S. Bahamonde^{k,ef}, F. Bajardi^e, A. Ballesteros^l, B. Baret^m D.M. Barreirosⁿ, S. Basilakos^{o,p}, D. Benisty^{q,r}, O. Birnholtz^s, J.J. Blanco-Pillado^{t,u}, D. Blas^{v,w} J. Bolmont^x, D. Boncioli^{y,z}, P. Bosso^{aa}, G. Calcagni^{ab}, S. Capozziello^{e,ac,f}, J.M. Carmonaⁱ, S. Cerci^{ad} M. Chernyakova^{ae,af}, S. Clesse^{ag}, J.A.B. Coelho^m, S.M. Colak^w, J.L. Cortesⁱ, S. Das^{aa}, V. D'Esposito^e M. Demirci^{ah}, M.G. Di Luca^{ac,e,f}, A. di Matteo^{ai}, D. Dimitrijevic^{aj}, G. Djordjevic^{aj,ak} D. Dominis Prester^{al}, A. Eichhorn^{am}, J. Ellis^{an,av,aw}, C. Escamilla-Rivera^{ao}, G. Fabiano^{e,f} S.A. Franchino-Viñas^{ap}, A.M. Frassino^{aq}, D. Frattulillo^{e,f}, S. Funk^{ay}, A. Fuster^{ar}, J. Gamboa^{as} A. Gent^{at}, L.A. Gergely^{au}, M. Giammarchi^h, K. Giesel^{ax}, J.-F. Glicenstein^{az}, J. M. Gracia-Bondía^{i,ba} R. Gracia-Ruiz^{ay}, G. Gubitosi^{e,f}, E.I. Guendelman^{bb,bc,bd}, I. Gutierrez-Sagredo^{be}, L. Haegel^m S. Heefer^{ar}, A. Held^{bf,ec,cy}, F.J. Herranz¹, T. Hinderer^{bg}, J.I. Illana^{bh}, A. Ioannisian^{bi,bm}, P. Jetzer^{bj} F.R. Joaquimⁿ, K.-H. Kampert^{bk}, A. Karasu Uysal^{bl}, T. Katori^{an}, N. Kazarian^{bm}, D. Kerszberg^w J. Kowalski-Glikman^{bn,bo}, S. Kuroyanagi^{d,cl}, C. Lämmerzahl^{ex}, J. Levi Said^{bp,bq}, S. Liberati^{br,bs,bt} E. Liman, I.P. Lobobu, M. López-Moyabw, G.G. Lucianobx, M. Manganaroal, A. Marcianòee, b. P. Martín-Moruno^{bz}, Manel Martinez^w, Mario Martinez^{w,ca}, H. Martínez-Huerta^{cb} P. Martínez-Miravé^{cc}, M. Masip^{bh}, D. Mattingly^{cd}, N. Mavromatos^{ce,an}, A. Mazumdar^{cf}, F. Méndez^{as} F. Mercati¹, S. Micanovic^{al}, J. Mielczarek^{cg}, A.L. Miller^{ch}, M. Milosevic^{aj}, D. Minic^{ci}, L. Miramonti^{g,h} V.A. Mitsou^{cc}, P. Moniz^{cj,ck}, S. Mukherjee^{cm}, G. Nardini^{cn}, S. Navas^{bh}, M. Niechciol^{co}, A.B. Nielsen^{cn} N.A. Obers^{dr,cp}, F. Oikonomou^{cq}, D. Oriti^{cr}, C.F. Paganini^{cs,ct}, S. Palomares-Ruiz^{cc}, R. Pasechnik^{cu} V. Pasic^{cv}, C. Pérez de los Heros^{cw}, C. Pfeifer^{cx}, M. Pieroni^{cy}, T. Piran^{dz}, A. Platania^{cm}, S. Rastgoo^{cz} J.J. Relancio^{e,f,i}, M.A. Reyesⁱ, A. Ricciardone^{da,db}, M. Risse^{co}, M.D. Rodriguez Frias^{dc}, G. Rosati^{bn} D. Rubiera-Garcia^{bz}, H. Sahlmann^{ax}, M. Sakellariadou^{an}, F. Salamida^{y,z}, E.N. Saridakis^{p,dd} P. Satunin^{de}, M. Schiffer^{cm,df}, F. Schüssler^{az}, G. Sigl^{dg}, J. Sitarek^{dh,di}, J. Solà Peracaula^{aq}, C.F. Sopuerta^{ca,eb}, T.P. Sotiriou^{dj,dk}, M. Spurio^{dl}, D. Staicova^{dm}, N. Stergioulas^{dn}, S. Stoica^{do,dp} J. Strišković^{dq}, T. Stuttard^{dr}, D. Sunar Cerci^{ad}, Y. Tavakoli^{ds,dt}, C.A. Ternes^{ai}, T. Terzić^{al} T. Thiemann^{ax}, P. Tinyakov^{ag}, M.D.C. Torri^{e,g,h}, M. Tórtola^{cc}, C. Trimarelli^{y,z}, T. Trześniewski^{cg} A. Tureanu^{ed}, F.R. Urban^{du}, E.C. Vagenas^{dv}, D. Vernieri^{e,f}, V. Vitagliano^{dw,dx}, J.-C. Wallet^{dy} J.D. Zornozacc

COST action


The "power" of underground experiments

Large Statistics and Data taking

Low and Controllable Background

High precision atomic physics

A multitude of techniques:
Different nuclei and atoms,
Typical energy scales, temperature,
Crystals, liquid, double phases etc

Pauli Spin Statistics Theorem

Fermions: spin 1/2

Bosons: integer spin 0,1

The Theorem is connected to many deep issues: space-time symmetries, locality, causality

Examples of "Effective" Violations in Condensed Matter:

Topological Materials and Superconductors, Anyons

If I exchange double times two creation/annihilation operators the final quantum state must be unchanged.

Three possibility

$$|q|=1$$

$$a_i a_j^\dagger - q a_i^\dagger a_j = \delta_{ij}$$

Boson
$$\longrightarrow q=1$$

Fermions
$$q = -1$$

Generalized: Anyons
$$q = e^{i\delta}$$

In principle delta can be a function of energy and momentum

Anyons (Haldane-Wu statistics)

Haldane 91', Wu 94'

When we exchange two particles in presence of magnetic flux tubes, a relative phase related to the fluxes is obtained (from Aharanov-Bohm effect)

Coordinates start to be effectively non-commutative

$$\exp(i\theta_{12}) = \exp[-i(q_1\phi_2 + q_2\phi_1)].$$

$$[R_i^{\mu}, R_j^{\mu}] = il^2 \delta_{ij} q_i \epsilon^{\mu\nu}.$$

But it is not a violation for fundamental particles.

Can we introduce a PEP violating algebra in fundamental laws of Nature?

q-Algebra

Yu, Ignatiev, Kuzmin, 87'; Greenberg, Mohapatra, 87'

$$aa^{\dagger}-q_{\pm}a^{\dagger}a=1$$

$$q_{\pm} = \pm 1 + \frac{1}{2} \delta^2$$

$$\Gamma_i = \delta_i^2 \tilde{\Gamma}_i.$$

Observable: transition rates

Here: (i) δ_i^2 is the mixing probability of non-fermion statistics allowing for the transition to the occupied state i; (ii) $\tilde{\Gamma}_i$ is the width of the corresponding PEP-allowed transition whenever the final state (i) would be empty.

Difficulties:

To build a self-consistent quantum field theory with causality, locality, unitarity, Lorentz/Poincaré symmetry appears at the moment impossible.

On the other hand, From **Quantum Gravity** prospective

Searches of a self-consistent theory describing extreme gravity at microscopic scales. In particular in the Planckian energy and length scales

Direct tests elusive... Indirect tests

Basic idea: Statistical amplifier of indirect tiny tests

Where may Quantum Gravity and Spin Statistics meet?

Quantum Gravity

Space-Time structure

A "class" of Quantum gravity models predicts tiny violations of PEP

PEPV in Non-commutative space-time: Theta-Poincare, kappa-Poincare...

Addazi, Marciano *et al* in a series of works 2017-2022

Non-linear Generalized Uncertainty Principle

Addazi, Bernabei, Belli, Marciano, Shababi EPJC 2020

Underground experiments:

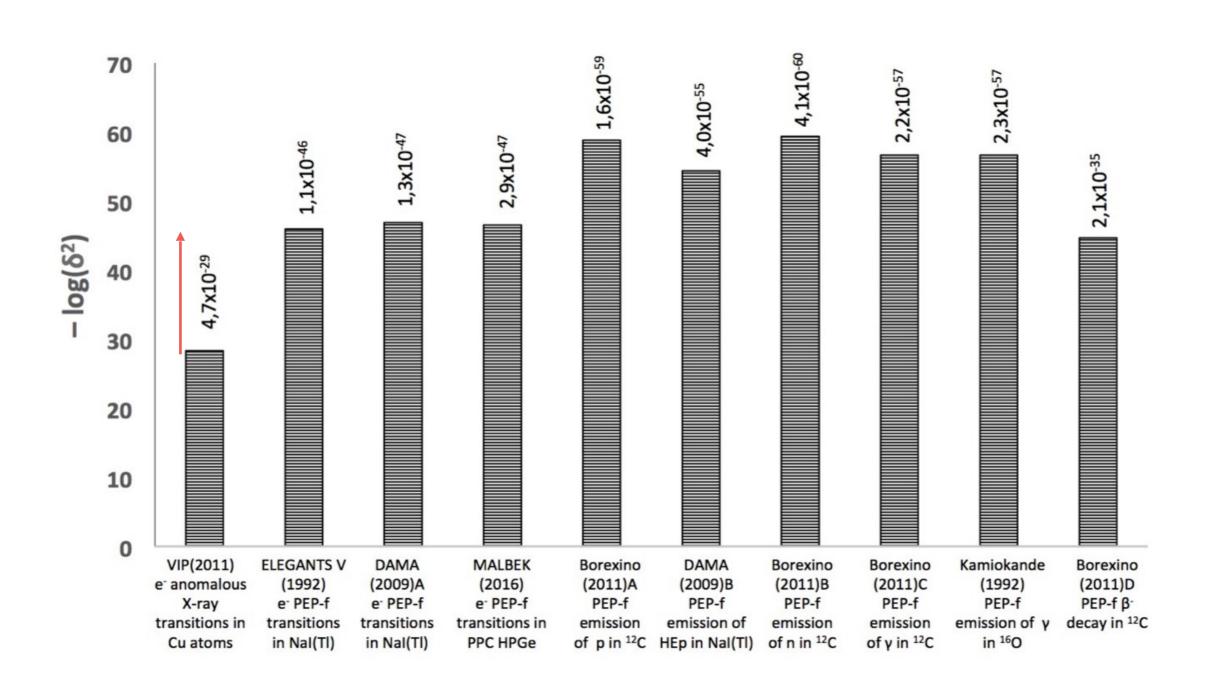
high statistics = amplifier

High controllability of the background nuclear and atomic processes.

High precision tests of transitions violating the PEP

Energy dependence of PEP violations Natural in the logic of effective theories, Beyond q-models

$$a_ia_j^\dagger-q(E)a_j^\dagger a_i=\delta_{ij}\,,$$
 Energy of the characteristic transition process $q(E)=-1+eta_j^2(E),$ $\delta^2(E)=eta^2(E)/2\,.$ $\delta^2(E)=c_krac{E^k}{\Lambda^k}+O(E^{k+1})$


All possible PEPV transition rates.

Nuclear or atomic transitions.

$$\Gamma_i = \delta_i^2 \tilde{\Gamma}_i$$
.

Here: (i) δ_i^2 is the mixing probability of non-fermion statistics allowing for the transition to the occupied state i; (ii) $\tilde{\Gamma}_i$ is the width of the corresponding PEP-allowed transition whenever the final state (i) would be empty.

COMPILATION

PEP and Non-commutative space-time

Non-commutative space-time is a "old" standing idea. Firstly quoted to *Heisenberg*

$$\theta^{\mu\nu} = -\theta^{\nu\mu} = \text{constant}.$$

$$\hat{x}^{\mu}(x) = x^{\mu}$$

$$(\hat{x}^{\mu} \star \hat{x}^{\nu} - \hat{x}^{\nu} \star \hat{x}^{\mu}) = [\hat{x}^{\mu}, \hat{x}^{\nu}]_{\star} = i\theta^{\mu\nu}.$$

Here we insert the effective non-commutative length

In other words we imagine that the non-commutativity of space-time coordinates emerges out at a critical length scale... having in mind the quantum gravity Planck scale...In the macroscopic limit the NC vanishes as consequence of the correspondence principle

Such a new quantum uncertainty can delocalize the General Relativity singularities beyond the Classical Penrose theorem

The we can think to formulate a Quantum field theory in the NC background

But there is a problem: NC is not compatible with local Lorentz invariance...

If we want a controllable new QFT we need new symmetries enlarging the Poincaré symmetry and compatible with NC

Theta-Poincarè :in the Groenwald-Moyal arena

$$f\star g=fe^{rac{i}{2}\overleftarrow{\partial}_{\mu} heta^{\mu
u}\overrightarrow{\partial}_{
u}}g,$$

$$\theta^{\mu\nu} = -\theta^{\nu\mu} = \text{constant}.$$

$$\hat{x}^{\mu}(x) = x^{\mu}$$

$$(\hat{x}^{\mu} \star \hat{x}^{\nu} - \hat{x}^{\nu} \star \hat{x}^{\mu}) = [\hat{x}^{\mu}, \hat{x}^{\nu}]_{\star} = i\theta^{\mu\nu}.$$

$$\Delta_{\theta}(g) = e^{\frac{i}{2}P_{\mu}\otimes\theta^{\mu\nu}P_{\nu}}(g\otimes g)e^{-\frac{i}{2}P_{\mu}\otimes\theta^{\mu\nu}P_{\nu}} = \hat{F}_{\theta}^{-1}(g\otimes g)\hat{F}_{\theta} ,$$

Groenwald-Mojal product deformation

GM: $\mathfrak{so}(3,1) \to \text{noncommutative dual "deformed" <math>\mathfrak{so}(3,1)$

GM: (creation/annihilation ops.) \rightarrow (GM - phase)(creation/annihilation ops.),

 $GM : (fields) \rightarrow (GM - phase)(fields)$,

 $GM : N - field interactions \rightarrow (GM - phase)^{N}(creation/annihilation ops.)^{N}$.

Quantum fields as Groenwald-Moyal representations

$$arphi = \int d\mu(p) \, ilde{arphi}(p) \, \mathbf{e}_p \qquad \qquad arphi = \int rac{d^d p}{2 p_0} \left(a(p) \, \mathbf{e}_p + a^\dagger(p) \mathbf{e}_{-p}
ight) \; ,$$

$$arphi \otimes \chi = \int d\mu(p) \, d\mu(q) \, \tilde{arphi}(p) \tilde{\chi}(q) \, \mathbf{e}_p \otimes \mathbf{e}_q$$

$$ho(\Lambda) \varphi = \int d\mu(p) \, \tilde{arphi}(p) \, \mathbf{e}_{\Lambda p} = \int d\mu(p) \, \tilde{arphi}(\Lambda^{-1}p) \, \mathbf{e}_p \; ,$$

$$ho\left(e^{iP\cdot a}\right) \varphi = \int d\mu(p) \, e^{ip\cdot a} \tilde{arphi}(p) \, \mathbf{e}_p \; .$$

$$\Delta_{\theta}(\Lambda)\left(\tilde{\varphi}\otimes\tilde{\chi}\right)(p,q)=\tilde{F}_{\theta}^{-1}\left(\Lambda^{-1}p,\Lambda^{-1}q\right)\tilde{F}_{\theta}\left(p,q\right)\tilde{\varphi}(\Lambda^{-1}p)\tilde{\chi}(\Lambda^{-1}q)\;.$$

$$F_{\theta} = e^{-\frac{i}{2}(-i\partial_{\mu})\theta^{\mu\nu}\otimes(-i\partial_{\nu})}$$

$$a(p)a^{\dagger}(q) = \tilde{\eta}'(p,q)\tilde{F}_{\theta}^{-2}(-q,p) a^{\dagger}(q)a(p) + 2p_0\delta^d(p-q)$$
.

Overlap probability different from zero: PEPV

$$\begin{aligned} |\alpha,\alpha\rangle &= \langle a^{\dagger},\alpha\rangle\langle a^{\dagger},\alpha\rangle|0\rangle \\ &= \int \frac{d^d p_1}{2p_{10}} \frac{d^d p_2}{2p_{20}} e^{-\frac{i}{2}p_{1\mu}\theta^{\mu\nu}p_{2\nu}} \alpha(p_1)\alpha(p_2)c^{\dagger}(p_1)c^{\dagger}(p_2)|0\rangle \ . \end{aligned}$$

$$|\beta, \gamma\rangle = \langle a^{\dagger}, \beta\rangle\langle a^{\dagger}, \gamma\rangle|0\rangle, \quad \beta \neq \gamma.$$

We have

$$\langle \beta, \gamma | \alpha, \alpha \rangle = \int \frac{d^d p_1}{2p_{10}} \frac{d^d p_2}{2p_{20}} (\bar{\beta}(p_1)\alpha(p_1))(\bar{\gamma}(p_2)\alpha(p_2))[1 - e^{-ip_{1\mu}\theta^{\mu\nu}p_{2\nu}}] \frac{1}{N(\alpha, \alpha)}.$$

CPT

$$\Delta_{\theta}(C) = \Delta_0(C) = C \otimes C$$
,

$$\Delta_0(P) = P \otimes P$$
,

$$\Delta_0(T) = T \otimes T$$
.

$$CPT : \phi_{\theta} = (CPT \ \phi_0 \ (CPT)^{-1}) e^{\frac{1}{2}\overleftarrow{\partial} \wedge P},$$

$$\Delta_{\theta}(CPT) = F_{\theta}^{-1}\Delta_{0}(CPT)F_{\theta}$$
.

CPT and S-matrix

$$S_{\theta} = T_{\star} \exp_{\star} \left[-i \int d^4x \mathcal{H}_{I,\theta}(x) \right],$$

$$\mathcal{H}^n \equiv \mathcal{H}_{1,\theta} \star \mathcal{H}_{2,\theta} \star ... \star \mathcal{H}_{n,\theta} = \mathcal{H}_{1,0} \mathcal{H}_{2,0} ... \mathcal{H}_{n,0} e^{\frac{\imath}{2} \overleftarrow{\partial} \wedge P} \equiv \mathcal{H}^{n\dagger},$$

Hermitian at tree-level (possible attacks from UV/IR mixings)

$$(\mathcal{CPT})\mathcal{H}^n(\mathcal{CPT})^{-1} = \Big(\mathrm{MOYAL}\Big)\mathcal{H}^n.$$

Non-trivial trasformation under CPT

Microcausality: Bogoliubov-Shirkov condition

$$[\mathcal{H}_{\star}(x), \mathcal{H}_{\star}(y)] \neq 0, (x-y)^2 < 0.$$

$$S[g] = 1 + \int dx_1 g(x_1) \star S_1(x_1) + \int dx_1 dx_2 g(x_1) \star g(x_2) \star S_2(x_1, x_2) + \dots$$

$$= 1 + \sum_{n \ge 1} \frac{1}{n!} \int S_n(x_1, \dots, x_n) \star g(x_1) \star \dots \star g(x_n) dx_1 \dots dx_n.$$

Then, the BS causality condition reads

$$\frac{\delta}{\delta g(x)} \left(\frac{\delta S(g)}{\delta g(y)} \star S^{\dagger}(g) \right) = 0, \qquad x < y,$$

You can show that BS is violated! proof in Addazi, Marciano IJMPA

UV/IR mixings Mentioned by Amelino-Camelia in his talk

$$\Lambda_{\text{eff}} = \Lambda_0 + C/(\theta^2 p^2)$$

Not fully understood and
In principle it may be cancelled by possible
Cerenkov emission
Comment in Addazi-Marciano IJMPA review

Generalized Uncertainty Principle (GUP)

First appearance in the first works of *Amati*, *Ciafaloni and Veneziano 87*' on gravitational scatterings in the "Arena" of string theory. From Perturbative corrections the Heisenberg uncertainty principle gets an effective correction as follow:

$$\Delta x \Delta p \ge \frac{\hbar}{2} \left(1 + \beta \Delta p^2 \right)$$

Reconsider as basic new principle by Kempf-Mangano-Mann 95'

Further non-perturbative quantum gravity effects motivate possible analysis of non-linear extensions!

Example: Non-linear GUPs with a UV pole

$$[X_i, P_j] = \frac{i\hbar \delta_{ij}}{(1 - (\beta P^2)^{m'})^k}, \quad [P_i, P_j] = 0,$$

$$[X_i, X_j] = \frac{2i\hbar \beta}{(1 - (\beta P^2)^{m'})^{2k}} (P_i X_j - P_j X_i),$$

$$[L_i, L_j] = \frac{i\hbar}{(1 - (\beta P^2)^{m'})^k} \left(X_i P_j - X_j P_i \right)$$
$$= \frac{i\hbar}{(1 - (\beta P^2)^{m'})^k} \epsilon_{ijk} L_k ,$$

$$L_i = \frac{1}{(1-(\beta P^2)^{m'})^k} \epsilon_{ijk} r_j p_k.$$

$$[X_i, X_j] = \frac{-2i\hbar\beta}{(1-(\beta P^2)^{m'})^k} L_{ij}.$$

Related to the idea of
Double special relativity:
Fundamental invariant short scale, MDRs
and astrophysical pheno
G. Amelino-Camelia and J. Ellis talks

Around the UV pole super-uncertainty

$$\lim_{P\to\Lambda} \Delta X \Delta P \to \infty$$

$$\lim_{P\to\Lambda}\Delta X_i\Delta X_j\to\infty$$

$$\Delta L_i \Delta L_i \rightarrow \infty$$

A 100% localization of an electron on a precise level is impossible. Example of a two level system

Quantum State of an almost first level electron:

$$|J', M'\rangle \simeq (1 - k(\beta P^2)^{m'})|j_1, m_1\rangle + k(\beta P^2)^{m'}|j_2, m_2\rangle,$$

Quantum State of an almost second level electron:

$$|J, M\rangle \simeq \left[k(\beta \tilde{P}^2)^{m'}|j_1, m_1\rangle + (1 - k(\beta \tilde{P}^2)^{m'})|j_2, m_2\rangle\right].$$

Non-zero overlap: PEP violating jumps

$$\langle J, M|J', M' \rangle|_{J,M \neq J',M'}$$

$$= [k(\beta \tilde{P}^2)^{m'} (1 - k(\beta P^2)^{m'}) \qquad \langle J, M|J', M' \rangle \simeq 2k(\beta P)^m$$

$$+ k(\beta P^2)^{m'} (1 - n(\beta \tilde{P}^2)^{m'})].$$

Results from DAMA/LIBRA

From exclusions of Na a I PEPV transitions

$$\Gamma_{PEPV} = n(\Lambda^{-1}P)^m \Gamma_{SM}$$
,
where $n = 4k^2$, $m = 4m'$.

$$n(\Lambda^{-2}P)^m < 4 \times 10^{-55}$$
 (90% C.L.).

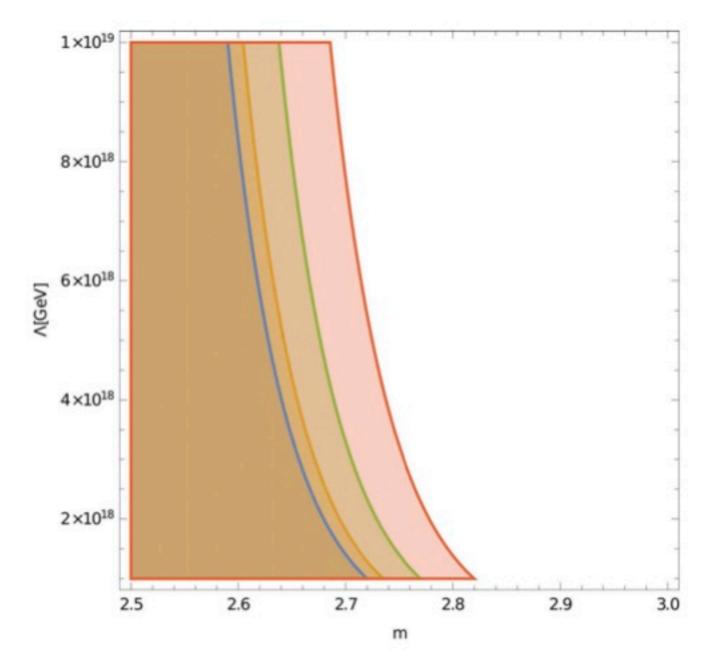


Fig. 1 Excluded parameter space (Λ, m) from DAMA experiment: the four contour limits correspond to fix n = 1, 2, 10, 100 respectively

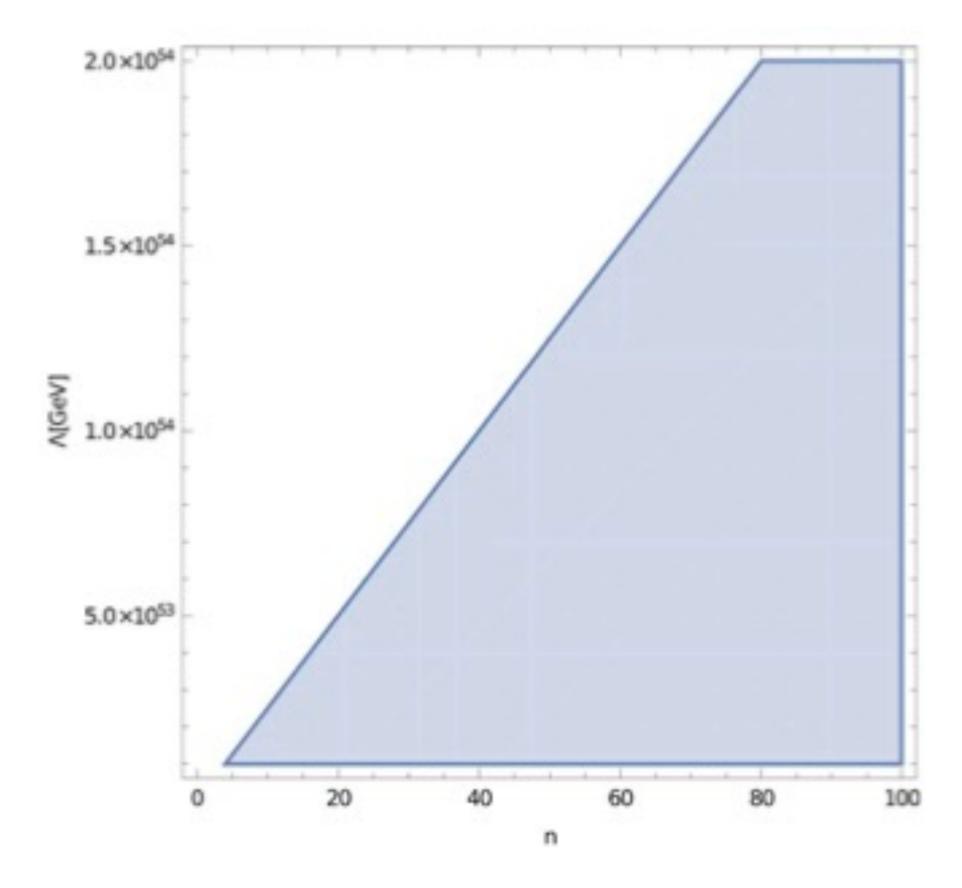
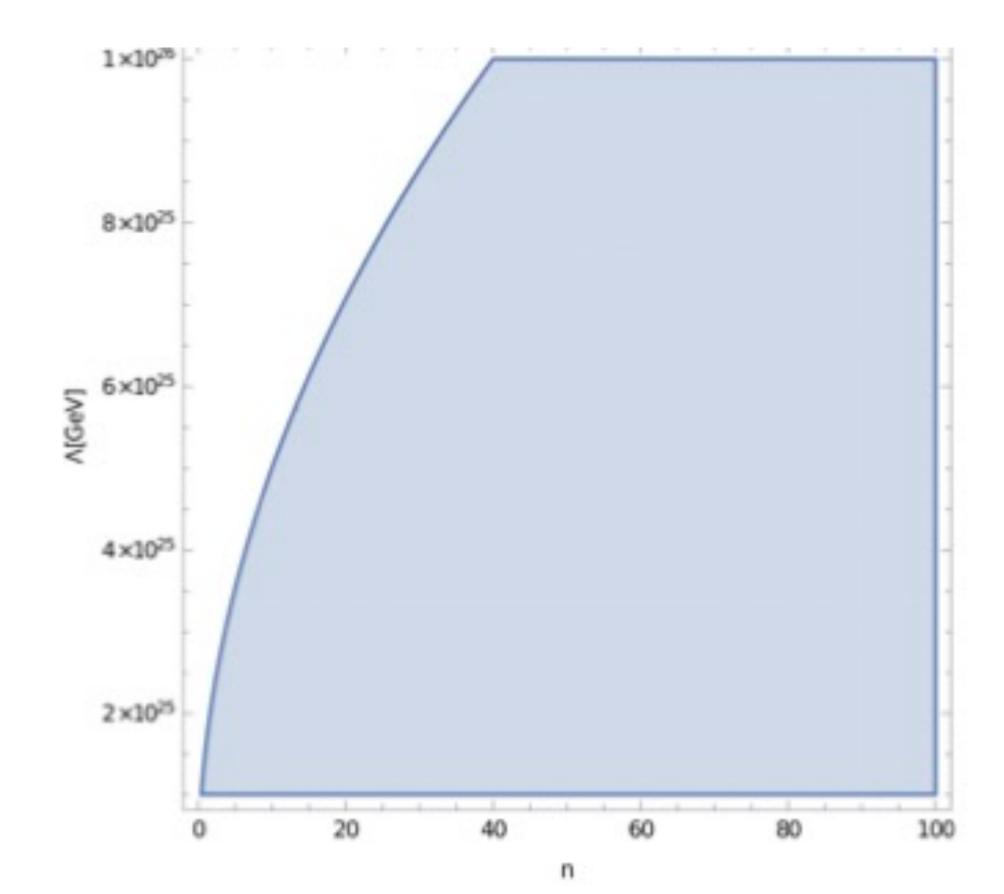
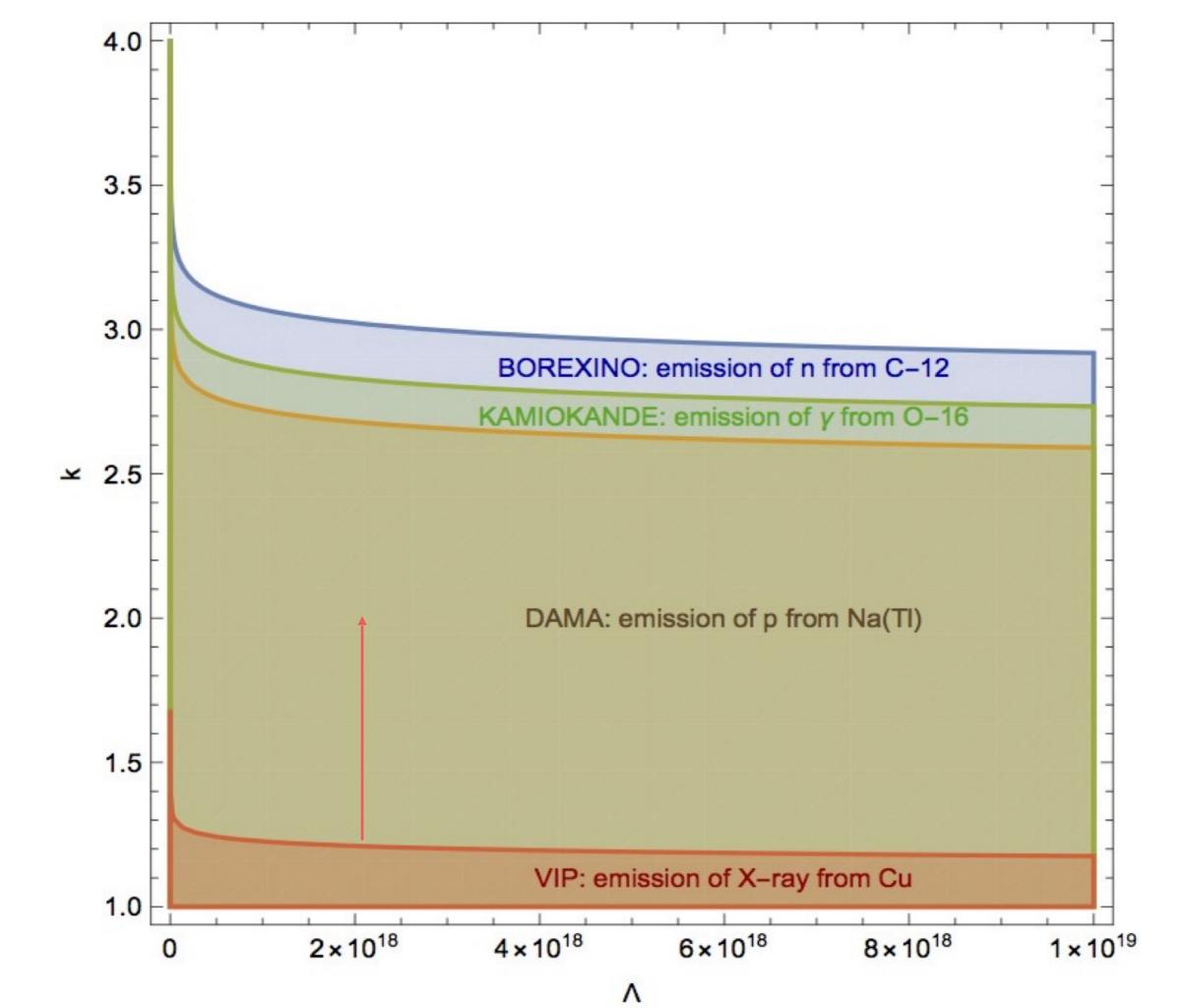
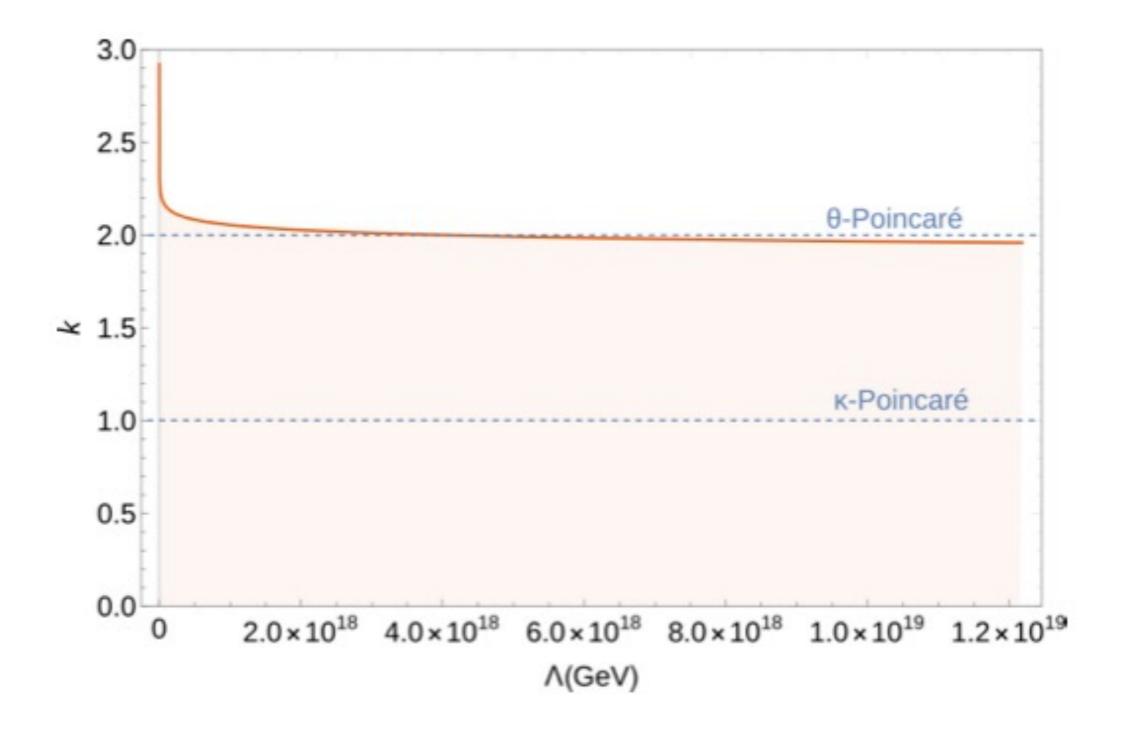
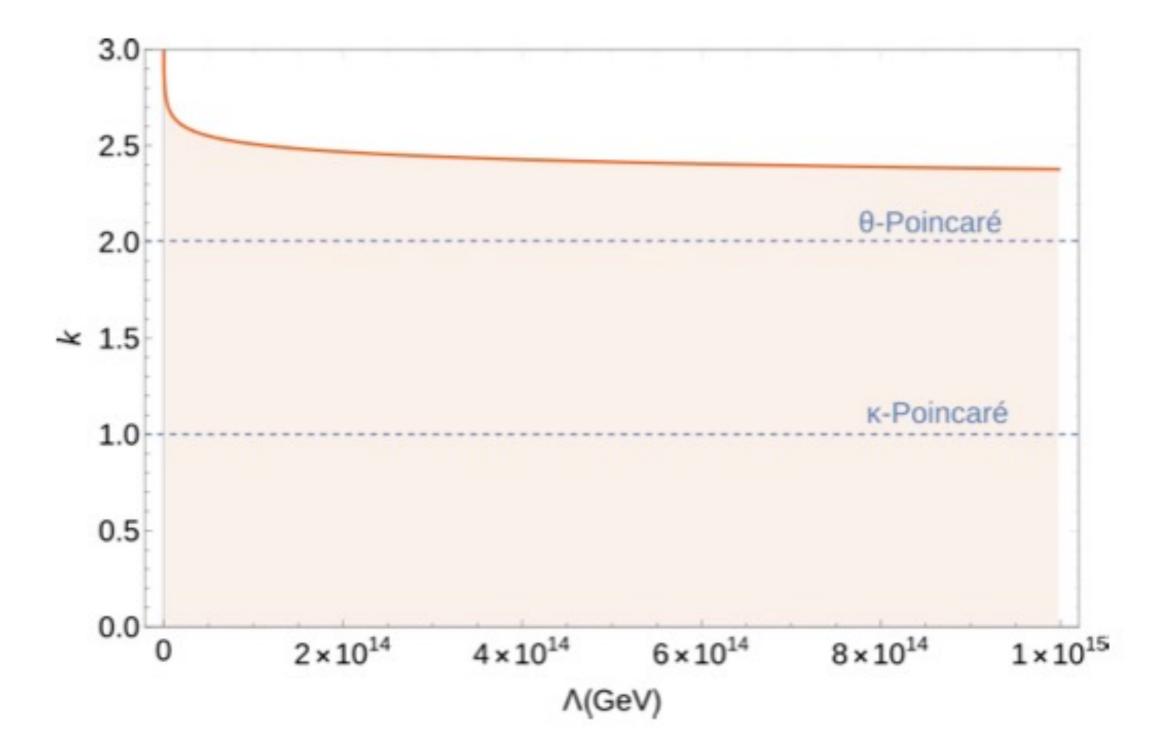
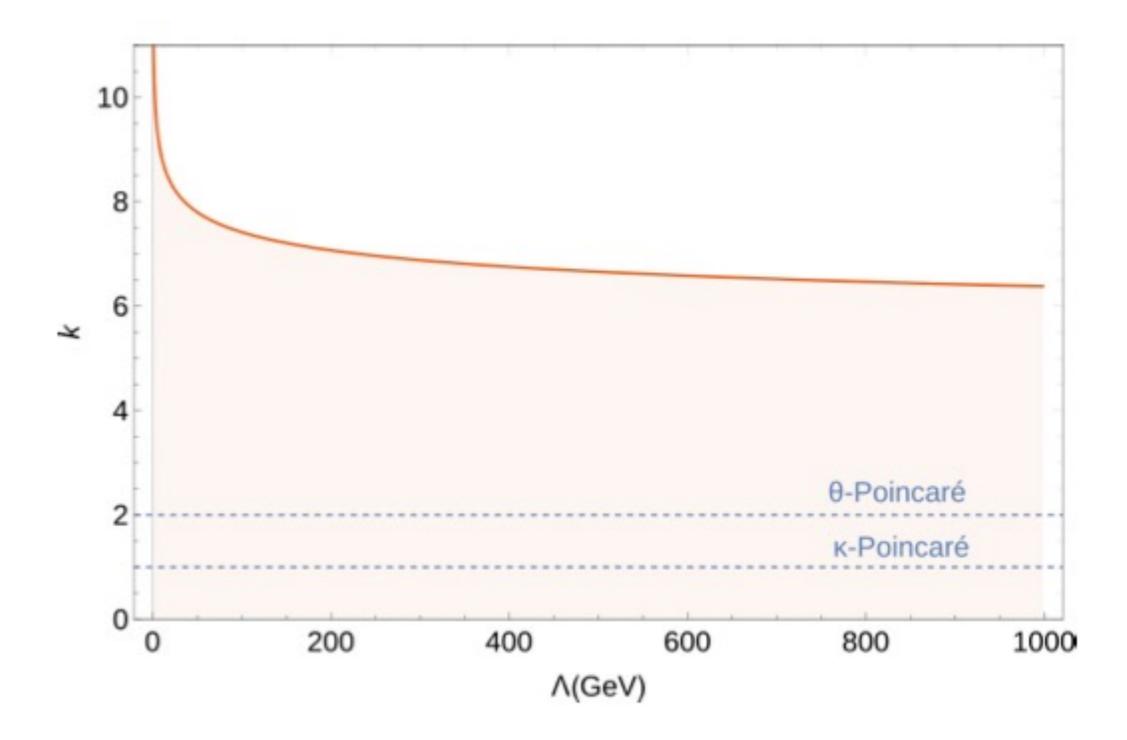



Fig. 2 Excluded parameter space (Λ, n) from DAMA experiment, fixing m = 1




Let's return to the model independent analysis well motivated by NC


$$a_ia_j^\dagger-q(E)a_j^\dagger a_i=\delta_{ij}\,,$$
 Energy of the characteristic transition process $q(E)=-1+eta^2(E),$ $\delta^2(E)=eta^2(E)/2\,.$ $\delta^2(E)=c_krac{E^k}{\Lambda^k}+O(E^{k+1})$


Results

A. Addazi, P. Belli, R. Bernabei, A. Marciano 2017-2019

Thus, surprise, many quantum gravity models appear to be excluded yet!

Importance of multi-channels: nuclear and atomic physics:

Vexata quaestio: Democratic or non-democratic PEP violations???

- Weak and Strong
 Equivalence Principle???
- B-form couplings with strings???

IT DESERVES A TEST IN ALL POSSIBLE CHANNELS!

< B > XX

Seidberg, Witten

"In principle its condensation may be highly non-trivial as a consequence of NS-NS or R-R string fluxes or exotic string instantons. B(x) with x space coordinate"

Addazi to Bernabei, private conversation 2017 Chengdu

In this prospective we follow with great interests new experiments based on atomic transitions

Two beautiful measurements in atomic transitions: DAMA and VIP

Belli's talks today And several about VIP in this meeting

47th digit of suppression from K-shell of lodine, Belli, Bernabei et al EPJC 2019

VIP-2 improvements

$$\phi_{PEPV} = \delta^2 \simeq \frac{D}{2} \frac{E_N}{\Lambda} \frac{\Delta E}{\Lambda}, \quad D = p_1^0 \theta_{0j} p_2^j + p_2^0 \theta_{0j} p_1^j,$$

$$E_N \simeq m_N \simeq$$

$$\phi_{PEPV} = \delta^2 \simeq \frac{C}{2} \frac{E_1}{\Lambda} \frac{E_2}{\Lambda}$$
,

$$\Delta E = E_2 - E_1$$

where $E_{1,2}$ are the energy levels occupied by the initial and the final electrons and $C = p_1^i \bar{\theta}_{ij} p_2^j$. The former

Theta-Poncare from VIP

•
$$\Lambda > 6.9 \cdot 10^{-2}$$
 Planck scales

for
$$\theta_{0i} = 0$$

•
$$\Lambda > 2.6 \cdot 10^2$$
 Planck scales

for
$$\theta_{0i} \neq 0$$

PRL result

Conclusions:

Probes of Pauli Exclusion Principle Violations can provide a strong indirect test of quantum gravity models with physics observables much below the Planck physics domain

Both Non-commutative and Non-linear GUP models can be constrained until the Planck Scale regime.

Not all of them but a considerable sub-group.

In particular the notorious Theta-Poincaré models seems already excluded in a "democratic scenario"

Consequences of energy dependent PEPV discovery for quantum gravity: a revolution of our picture of space-time, causality, locality, vacuum structure, ...

Grazie dell'attenzione