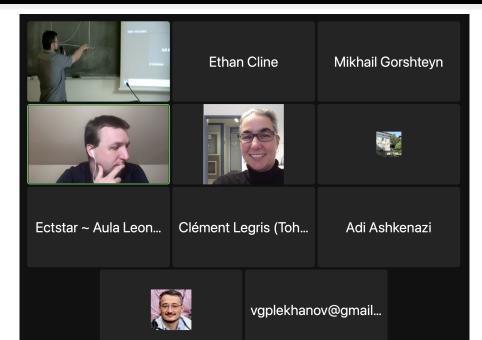
Radiative Corrections from Medium to High Energy Experiments

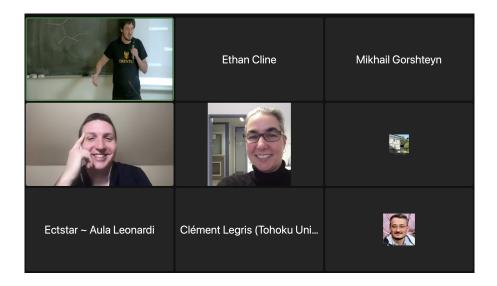
Ethan Cline*, Andrei Afanasev, Jan C. Bernauer, Ron Gilman, Hubert Spiesberger

* ethan.cline@stonybrook.edu

July 22, 2022

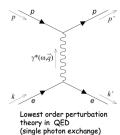
Thank **YOU**


Dinner

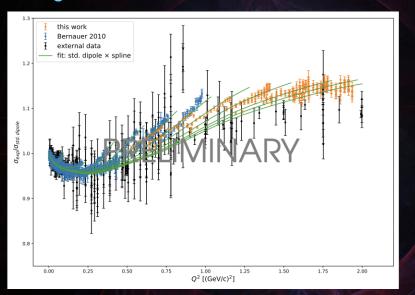

A Global Workshop

- From Detroit to Tohoku separated in time by 13 hours
- Covering ep, νp , μp , e^+e^- , $\gamma \pi$, and meson decays
- LO to NNLO, 10 MeV to 10 GeV, elastic to (PV)DIS, theory to experiment
- Some pseudo-randomly selected highlights

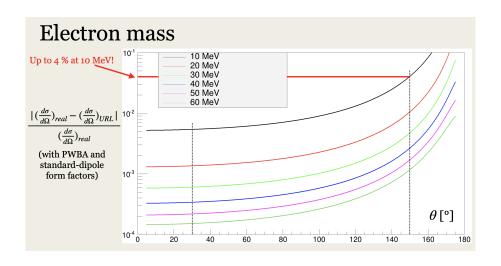
Impromptu Classes


Impromptu Classes

Results from our speakers - Gilman

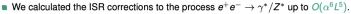

Background 1

- •I grew up in pion scattering, etc., then moved to electromagnetic scattering as a postdoc
- •I learned that electron scattering was well understood, with some small, well-understood, "radiative correction" hardly worth discussing

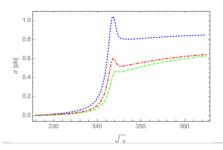


Results from our speakers - Bernauer

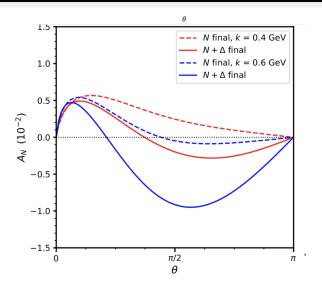
Mainz large Q^2 ff (PhD. thesis Julian Mueller)



Results from our speakers - Legris

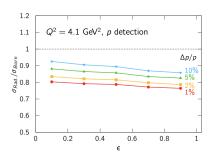

Results from our speakers - Bluemlein

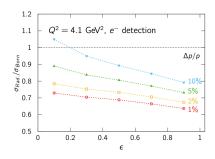
Conclusions



- This includes the first (up to) three logarithmic terms at lower orders.
- We calculated the leading logarithmic ISR corrections to the forward-backward asymmetry up to $O(\alpha^6 L^6)$.
- \blacksquare The corrections can become important at future e^+e^- machines running at high luminosities.
- The radiators can be used for various processes like $e^+e^- \to t\bar{t}$ and $e^+e^- \to ZH$.


```
blue: O(\alpha^0), obtained with QQbarThreshold [Beneke, Kiyo, Maier, Piclum (Comp. Phys. Com. (2009))]; green: O(\alpha^1); red: O(\alpha^2)
```

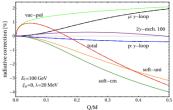

Results from our speakers - Goity


Goity, Weiss, Willemyns arXiv:2207.07588 transverse target SSA- approach based on the $1/\mbox{Nc}$ expansion

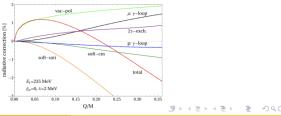
Results from our speakers - Schmidt

 ϵ -dependence of the radiative correction

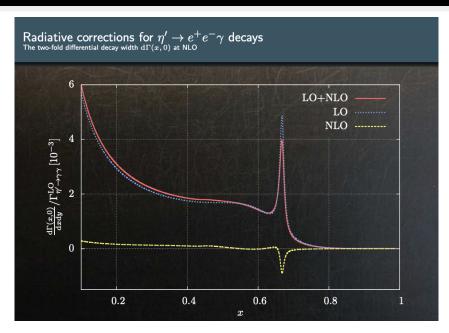
 ϵ -dependence of the radiative correction


"Finally, radiative corrections (mainly electron bremsstrahlung) . . . have smaller ε -dependence when the proton is detected."

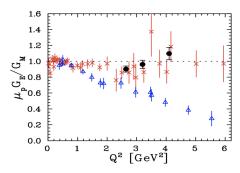
"Credit to A. Afanasev for already solving this back in 2001 (and thank you for sending me the paper!)."

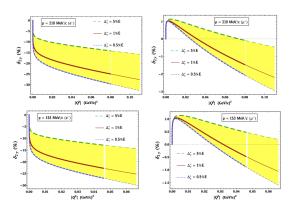

Results from our speakers - Kaiser

Pattern of radiative corrections for AMBER and MUSE


• Individual radiative corrections to $\mu^- p \to \mu^- p$ including proton structure

- Photon-loop around proton and 2γ -exchange are suppressed
- Major role played by vacuum polarization and soft photon radiation
- Requires calculation of (hard) bremsstrahlung incl. detector acceptance

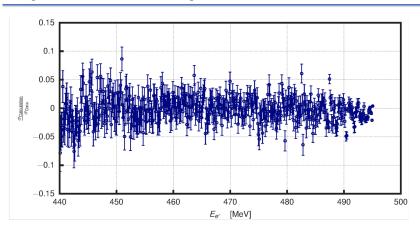

Results from our speakers - Husek


Results from our speakers - Gilman

Discrepancy Reconfirmed

•(Skipping a little forward in time...) I. Qattan et al., PRL 94 (2005) 142301 Rosenbluth separation measuring recoil protons rather than scattered electrons

Results from our speakers - Myrher


The lower limit of the photon energy detection $\sim \Delta_{\gamma}^*$.

Results are found in the soft photon approximation.

The (yellow) bands are the variation of the lab-frame detector resolution when $0.5\,\% < \Delta_\gamma^* < 5\,\%$ of the incident lepton energy E.

Results from our speakers - Mihovilovic

Experimental study of external corrections

- The experiment confirmed the theoretical predictions.
- The external radiative and collisional corrections impact the shape of the radiative tail.

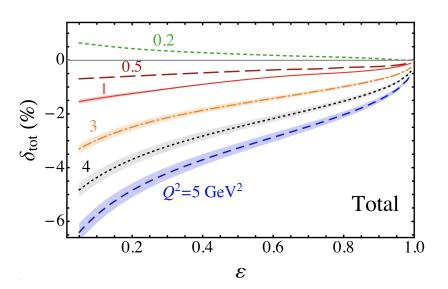
Results from our speakers - Akushevich

SIDIS event generator on radiative corrections

A Monte Carlo event generator created by Duane Byer from Duke University, based on the SIDIS RC paper: https://github.com/duanebyer/sidis

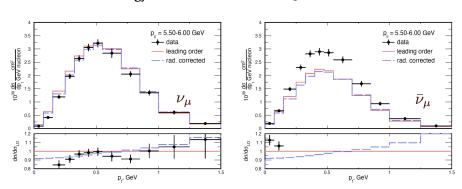
- Generates events for SIDIS six-fold cross sections computation
- All eighteen SIDIS structure functions implemented in Gaussian and Wandzura-Wilczek type approximations: S. Bastami et. al., JHEP06, 007 (2019)
- More fine tuning on the generator should be done for running it in the SoLID experiment's framework, including the neutron target
- In the meantime, the generator can be used for other experiments from medium to high energies, which also measure the SIDIS processes (CIAS12, COMPASS, etc.)

Results from our speakers - Ulrich


$$p_{\mu}^{\mathsf{in}} = 210\,\mathrm{MeV}$$
, $20^{\circ} < heta_{\mu} < 100^{\circ}$

mall mule-tools.gitlab.io/user-library/l-p-scattering/muse-legacy

Results from our speakers - Blunden


TPE corrections to cross section (CLAS resonances)

Results from our speakers - Tomalak

Comparison to data

- medium-energy flux data from MINERvA@FERMILAB

Lessons Learned

- Experimentalists must make it clear what corrections were applied!
- Theorists should provide equations experimentalists can understand (ratios and asymmetries are nice)!
- There are many excellent calculations, generators, and experiments out there!
- Radiative corrections are *important* for nuclear physics

Thoughts During the Workshop(revisited)

- Should we write a whitepaper?
 - NSAC charged the American DOE and NSF with recommending a new Long Range Plan by October 2023
 - EIC is on the distant horizon

Future Work

- Write something up on this workshop
 - At a minimum a list of relevant generators should be compiled and posted
 - Conveners for each subject?
 - Mailing list?
 - arXiv or journal?
- A database of cross sections would be very useful, along with details of radiative corrections that were applied
 - Give user ability to apply some prescription with minimal overhead
- Write a universal translator to interface generators and simulations
- Future workshop? ECT* or CFNS?

fin.

THANK YOU!