ECT*, Trento, July 18-22, 2022

Measurement of structure dependent radiative K⁺ → e⁺vγ decays using stopped positive kaons

Michael Kohl^{1,2} <kohlm@jlab.org> *

on behalf of the TREK/E36 Collaboration

¹Hampton University, Hampton, VA 23668 ²Jefferson Laboratory, Newport News, VA 23606

1

* Supported by DOE DE-SC0013941, following Early Career Award DE-SC0003884

Lepton non-universality?

- TREK Program
 - E06: Search for Time Reversal Symmetry Violation
 - E36: Test of Lepton Universality Search for Light Bosons

- Lower intensity

- TREK Apparatus
- Status & First Results

E36 data taking completed in 2015

http://trek.kek.jp

The TREK E06 and E36 program

E06 (Time Reversal Experiment with Kaons, TREK) "Measurement of T-violating transverse muon polarization (P_T) in $K^+ \rightarrow \pi^0 \mu^+ v$ decays " Proposal to PAC 1 (2006) 100-270 kW Stage-1 approved since July 2006 Spokespeople: Jun Imazato and M.K. **E36** (Test of Lepton Universality, Search for Heavy Neutrinos and Light Bosons) "Measurement of $\Gamma(K^+ \rightarrow e^+ v) / \Gamma(K^+ \rightarrow \mu^+ v)$ and search for heavy sterile neutrinos using the TREK detector system" Proposal to PACs 10 (2010), 11,13-18 30-50 kW Stage-1 approved since August 2012 Stage-2 approved since September 2013 Spokespeople: M.K. and Suguru Shimizu

Timeline of TREK E06 and E36

- 2006: E06 (T-violation) Proposal (PAC1)
- 2009: J-PARC PS and HF start operating
- 2010: E36 (LFU/HNS) Proposal (PAC10)
- 2011: E36 stage-1 recommended (PAC11)
- 2012: E36 stage-1 approved (PAC15)
- 2013: E36 stage-2 recommended (PAC17)
- 2014: E36 stage-2 approved (PAC18)
- Detector preparation November 2014 April 2015
- First commissioning run April 8 (24) May 7, 2015
- Second commissioning run June 3 26, 2015
- Implemented improvements in summer 2015
- Production run October 14 November 24, 2015
- Run extended until December 18, 2015
- 2016-2022: Analysis in progress and first results

Limits of lepton universality (LU)

- e, μ, and τ: Different masses, same gauge couplings
- Lepton universality has been rather well established at 10⁻³ 10⁻² level
- Summary by A. Pich, arXiv:1201.0537v1 [hep-ph] (2012)

		$\Gamma_{\tau \to \nu_\tau e \bar{\nu}_e} / \Gamma_{\mu \to \nu_\mu e \bar{\nu}_e}$	$\Gamma_{ au o u_{ au}} \pi / \Gamma_{\pi o \mu \bar{ u}_{\mu}}$	$\Gamma_{\tau \to \nu_\tau K} / \Gamma_{K \to \mu \bar{\nu}_\mu}$	$\Gamma_{W\to\tau\bar\nu_\tau}/\Gamma_{W\to\mu\bar\nu_\mu}$	
	$ g_{ au}/g_{\mu} $	1.0007 ± 0.0022	0.992 ± 0.004	0.982 ± 0.008	1.032 ± 0.012	
		$\Gamma_{\tau \to \nu_\tau \mu \bar{\nu}_\mu} / \Gamma_{\tau \to \nu_\tau e \bar{\nu}_e}$	$\Gamma_{\pi \to \mu \bar{\nu}_{\mu}} / \Gamma_{\pi \to e \bar{\nu}_{e}}$	$\Gamma_{K\to\mu\bar\nu_\mu}/\Gamma_{K\to e\bar\nu_e}$	$\Gamma_{K\to\pi\mu\bar\nu_{\mu}}/\Gamma_{K\to\pi e\bar\nu_{e}}$	
	$ g_{\mu}/g_{e} $	1.0018 ± 0.0014	1.0021 ± 0.0016	0.998 ± 0.002	1.001 ± 0.002	
		$\Gamma_{W\to\mu\bar\nu_\mu}/\Gamma_{W\to e\bar\nu_e}$		$\Gamma_{\tau \to \nu_\tau \mu \bar{\nu}_\mu} / \Gamma_{\mu \to \nu_\mu e \bar{\nu}_e}$	$\overline{\Gamma_{W\to\tau\bar\nu_\tau}/\Gamma_{W\to e\bar\nu_e}}$	
	$ g_{\mu}/g_{e} $	0.991 ± 0.009	$ g_{ au}/g_e $	1.0016 ± 0.0021	1.023 ± 0.011	
Co (Ll	oupling EP-II [P	s to <i>W</i> and <i>Z</i> ⁰ DG 2010])	$R^{W}_{\tau\ell} = \frac{2\mathrm{B}}{\mathrm{BR}(W\to\epsilon)}$	$\frac{\operatorname{BR}(W \to \tau \overline{\nu}_{\tau})}{\operatorname{Er}_{e}) + \operatorname{BR}(W \to \mu \overline{\nu}_{\mu})}$	$\overline{)} = 1.055(23)$ 2.4 c	o dev

- Belle, Babar, LHCb (HFLAV 2019) $\mathcal{R}(D^{(*)}) = \mathcal{B}(\overline{B} \to D^{(*)}\tau^{-}\overline{\nu}_{\tau})/\mathcal{B}(\overline{B} \to D^{(*)}\ell^{-}\overline{\nu}_{\ell})$ 3.6σ dev.
- LHCb (update from March 2021) BR(B⁺→ K⁺μ⁺μ⁻) / BR(B⁺→ K⁺e⁺e⁻) = 0.846^{+0.042}_{-0.039}^{+0.013}_{-0.012} 3.1σ dev.
- Muon anomalous mag. moment (Apr 2021) $a_{\mu} = 116592061(41) \times 10^{-11}$ 4.2 σ dev.
- Proton charge radius puzzle (since 2010) r_{e} (µH) = 0.84087 ± 0.00039 fm, r_{e} (CODATA2014) = 0.8751 ± 0.0061 fm 5.6 σ dev.

Lepton universality in Standard Model K₁₂

S

П

Standard Model:

•
$$\Gamma(K_{l2}) = g_l^2 \frac{G^2}{8\pi} f_K^2 m_K m_l^2 \left(1 - \frac{m_l^2}{m_K^2}\right)^2$$
 K⁺

• In the ratio of $\Gamma(K_{e2})$ to $\Gamma(K_{\mu2})$, hadronic form factors are cancelled

$$R_{K}^{SM} = \frac{\Gamma(K^{+} \to e^{+}\nu)}{\Gamma(K^{+} \to \mu^{+}\nu)} = \frac{m_{e}^{2}}{m_{\mu}^{2}} \left(\frac{m_{K}^{2} - m_{e}^{2}}{m_{K}^{2} - m_{\mu}^{2}}\right)^{2} \frac{(1 + \delta_{r})}{(1 + \delta_{r})}$$

$$\frac{helicity \ suppression}{helicity \ suppression} \qquad radiative \ correction \ (Internal \ Brems.)}$$

- Strong helicity suppression of the electronic channel enhances sensitivity to effects beyond the SM
- Highly precise SM value R_{K}^{SM} = (2.477±0.001) x 10⁻⁵ with δ_{r} = -0.036; (→ $\delta R_{K}/R_{K}$ =0.04%) V. Cirigliano, I. Rosell, Phys. Rev. Lett. 99, 231801 (2007)

 $g_e = g_\mu$?

 v_{e}, v_{μ}

W

Experimental status of *R*_K

- In-flight-decay experiments: kinematics overlap
- E36 stopped K⁺: detector acceptance and target
- E36 complementary to in-flight experiments
- E36 orig. goal: $\delta R_{\kappa}/R_{\kappa} = \pm 0.2\%$ (stat) $\pm 0.15\%$ (sys) [0.25% tot.]

Dark photon / light neutral boson search

- Dark photons (universal coupling) well motivated by dark matter observations (astronomical, direct, positron excess) and g_µ-2 anomaly
- Light neutral bosons (selective coupling) for Be-8 anomaly & R_p puzzle
- Search for visible decay mode of $A' \rightarrow e^+e^-$ in K⁺ decays Kaons: $K^+ \rightarrow \mu^+ v A'$; $K^+ \rightarrow \pi^+ A'$ (also invisible decay); Pions: $\pi^0 \rightarrow \gamma A'$, using $K^+ \rightarrow \pi^+\pi^0$ (21.13%) and $K^+ \rightarrow \mu^+ v \pi^0$ (3.27%)

E36: Light boson expected signal

Location of J-PARC

J-PARC Hadron Experimental Hall

K1.1BR beamline

- K1.1BR constructed in 2009/10, commissioned by TREK Coll. in Oct. 2010
- Re-aligned after 3/11 earthquake, re-commissioned June 2012, paused 2013/14
- Operated April-December 2015; decommissioned in 2016 for COMET+high-p π/K ratio ~1.3, av. kaon flux 2.3x10⁵ Hz at 40 kW [1.4x10⁶/(2s-spill) at 6s-rep.]

The TREK apparatus for E36

Stopped K⁺

- •K1.1BR beamline
- Fitch Cherenkov
- •*K*⁺ stopping target (TGT)

Tracking (π,μ,e)

- •MWPC (C2, C3, C4)
- •Spiral Fiber Tracker (SFT)
- •TGT, TOF1,2, TTC

- •TOF2-TOF1 (TOF)
- •Aerogel Ch. (AC)
- •Pb glass (PGC)

<u>Gamma</u>

CsI(TI)Gap scintillators (GSC)

The TREK apparatus for E36

TREK/E36 installation and commissioning

- Completed detector installation April 2015
- Electronics and DAQ set up and tested (area available only mid-January 2015)
- Conditioning of MWPCs

- Commissioning of TGT+TOF1+SFT with cosmic rays
- Check-out of all detectors with beam
- Commissioning of toroidal magnet including cryogenics

Scintillating-fiber kaon stopping target

- Built at TRIUMF (delivered to J-PARC in September 2014)
- 256 scintillating fibers (3x3 mm²), WLS fiber in groove, diameter 6 cm
- MPPC readout with VF-48 FADC

M. Hasinoff, S. Bianchin

Target performance

Spiral fiber tracker (SFT)

1-mm SciFi

Clear fiber

1.6-mm tube

I-mm CFi

- Double-layer fibers
 in 2 helicities wrapped around target bundle for near target vertex
- Using same VF-48 FADC as for fiber target
- V. Mineev et al., NIM A847, 13 (2017)

Kapton pipe (0.2 mm thick)

Csl(Tl) calorimeter

Csl(Tl) calorimeter calibration

- Energy and timing obtained by pulse shape data from FADC (VF48)
- Events from the K⁺ decays were selected
- K_{µ2} events with single crystal hit used for the energy calibration
- Deposited muon energy used for energy calibration of each crystal

Combining spectrometer + calorimeter

- K_{π2} events selected by analyzing momentum and TOF (M²)
- π⁰ invariant mass reconstructed 2 200
 by selecting two-cluster events 4 190
- Large π⁺ / π⁰ opening angle observed to select K_{π2}
- Confirmed that the total E36 system works correctly and is consistent with E246

H. Ito et al., PLB 826, 136913 (2022)

Momentum determination

- Charged particle momentum from tracking with C2, C3, C4 based on Kalman Filter technique (Tongtong Cao, Thir Gautam)
- Momentum evaluated at C4, C2, SFT, and vertex, corrected for energy loss, shifted from expected value by O(1%) (mag. field and vertex uncertainty)

Geant4 description of TREK/E36

Geant4 description of TREK/E36

K⁺ Channels

Label	Branch	Ratio
0	$K^+ \rightarrow e^+ \nu$	1.582×10^{-5}
1	$K^+ \rightarrow \mu^+ \nu$	6.355×10^{-1}
2	$K^+ \rightarrow e^+ \pi^0 \nu$	5.07×10^{-2}
3	$K^+ \rightarrow \mu^+ \pi^0 \nu$	3.352×10^{-2}
4	$K^+ \rightarrow e^+ \pi^0 \pi^0 \nu$	2.55×10^{-5}
5	$K^+ \rightarrow \pi^+ \pi^- e^+ \nu$	4.247×10^{-5}
6	$K^+ \to \pi^+ \pi^- \mu^+ \nu$	1.4×10^{-5}
7	$K^+ \to \pi^+ \pi^0$	2.067×10^{-1}
8	$K^+ \rightarrow \pi^+ \pi^0 \pi^0$	1.760×10^{-2}
9	$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	5.583×10^{-2}
10	$K^+ \rightarrow \mu^+ \nu \gamma$	6.2×10^{-3}
11	$K^+ \rightarrow e^+ \nu \gamma$	9.4×10^{-6}
12	$K^+ \rightarrow \mu^+ \pi^0 \nu \gamma$	1.25×10^{-5}
13	$K^+ \rightarrow \pi^+ \pi^+ \pi^- \gamma$	1.04×10^{-4}
14	$K^+ \to \mu^+ \nu A'$	$\epsilon^2 \times ratio \ of \ channel \ 16$
15	$K^+ \rightarrow \pi^+ A'$	$\epsilon^2 \times ratio \ of \ channel \ 17$
16	$K^+ \rightarrow \mu^+ e^+ e^- \nu$	2.5×10^{-5}
17	$K^+ \rightarrow \pi^+ e^+ e^-$	3×10^{-7}

π^0 Channels

Label	Branch	Ratio
0	$\pi^0 ightarrow \gamma\gamma$	9.8823×10^{-1}
1	$\pi^0 \rightarrow e^+ e^- \gamma$	1.174×10^{-2}
2	$\pi^0 ightarrow \gamma A'$	$\epsilon^2 \times ratio \ of \ channel \ 2$

ROOT based generator

- Interactive: utilizes Messenger Classes
- Allows for selection of decay modes and branching ratios

Bishoy Dongwi Tongtong Cao

μ⁺/e⁺ identification (designed)

Particle identification by AC, PGC, and TOF

- Positrons are selected by AC, PGC and TOF
- PID performance optimized by combining three PID systems
- Suppression of muon mis-identification below O(10⁻⁸) level

μ⁺/e⁺ identification (typical performance)

Redundant PID to maximize e⁺ efficiency and minimize μ^+ mis-ID

PID performance limitation requires subtraction of residual muon background

Extraction of K_{e2y}(SD) and K_{e2(y)}

- Subtraction of structure dependent K_{e2v} (SD) required
- Internal bremsstrahlung (IB) to be included in K_{e2}: "K_{e2(y)}"
- E36 and KLOE can measure the SD events
- $K_{e2\gamma}$ (SD) is important input for NA62 analysis ($\delta R_{\kappa}/R_{\kappa}=0.4\%$)

K. Horie, S. Shimizu

CsI(TI) calibration and accidental bg.

- K_{π2} (K⁺ → π⁺π⁰) recon. 2-cluster events
- Accidental bg: K_{µ2} + 1-cluster (~19%) exp. acc. spect.
- Mixing exp. acc. with simulated
 1-cluster K_{π2} for acc. background in 2-cluster evts.

Extraction of $K_{e2y}(SD)$ and $K_{e2(y)}$

- Positron momentum spectrum
- PID applied with AC, PGC, TOF
- Decomposition of $K_{e2(\gamma)}$, $K_{e2\gamma}^{SD}$, $K_{\mu2}$, K_{e3} yields
- Internal bremsstrahlung (IB) effect included in K_{e2(y)}

PLB 826, 136913 (2022)

H. Ito et al.,

E36 (Csl) result for $K_{e2\gamma}$ (SD): BR $(K_{e2\gamma}^{SD})/BR(K_{e2(\gamma)}) = 1.12 \pm 0.07$ stat. ± 0.04 sys.

Systematics

Table 2

Summary of the systematic uncertainties for the $Br(K_{e2\gamma}^{SD^+})/Br(K_{e2(\gamma)})$ ratio determination.

Source	Systematic uncertainty
Hole size of CsI(Tl) calorimeter	0.017
CsI(Tl) misalignment	< 0.001
Imperfect reproducibility of photon angular	< 0.001
distribution	
Accidental backgrounds in CsI(Tl)	0.004
Photon energy threshold of CsI(Tl)	0.007
Photon energy calibration of CsI(Tl)	< 0.001
Photon timing window	0.009
CsI(Tl) detection efficiency	0.012
AC detection(PID) efficiency	0.007
PGC detection(PID) efficiency	0.007
TOF detection(PID) efficiency	0.019
$K_{\mu 2}$ background subtraction	0.015
$K_{e2\gamma}^{\text{SD}^+}$ form factor	0.011
K^{+} stopping distribution	0.003
Material thickness in the central parts	< 0.001
Positron momentum resolution	0.002
Magnetic field	0.002
In-flight kaon decay	0.002
Total	0.036

Comparison of $K_{e2\gamma}$ (SD) w/ KLOE & Theory

E36: $BR(K_{e2\gamma}^{SD})/BR(K_{e2(\gamma)}) = 1.12 \pm 0.07 \text{ stat.} \pm 0.04 \text{ sys.}$ H. Ito *et al.*, PLB 826, 136913 (2022)

Comparison with KLOE: convert E36 ratio, reduce phase space $\frac{Br(K_{e2\gamma}^{\mathrm{SD}^+})}{Br(K_{\mu2})} = \frac{Br(K_{e2\gamma}^{\mathrm{SD}^+})}{Br(K_{e2(\gamma)})} \times \frac{Br(K_{e2(\gamma)})}{Br(K_{\mu2})} = \frac{Br(K_{e2\gamma}^{\mathrm{SD}^+})}{Br(K_{e2(\gamma)})} \times R_K^{\mathrm{SM}}$ $R_{\gamma} = \frac{Br(K_{e2\gamma}^{SD^+}, p > 200 \text{ MeV}/c, E_{\gamma} > 10 \text{ MeV})}{P_{\gamma}(W_{\gamma})}$ $Br(K_{\mu 2})$ **E36:** $R_{\nu} = (1.85 \pm 0.11_{\text{stat}} \pm 0.07_{\text{syst}}) \times 10^{-5}$ **KLOE:** $R_{\gamma} = (1.483 \pm 0.066_{\text{stat}} \pm 0.013_{\text{syst}}) \times 10^{-5}$ F. Ambrosino et al., Eur. Phys. J. C64, 627 (2009) ChPT: $R_{\nu} = 1.477 \times 10^{-5}$ Lattice-QCD: $R_{\gamma} = (1.74 \pm 0.21) \times 10^{-5}$ J. Bijnens, G. Ecker, J. Gasser, Nucl. Phys. B 396, 81 (1993) R. Frezzotti, et al., Phys. Rev. D 103, 053005 (2021)

E36: Agree with Lattice (~1 σ), disagree with ChPT (~3 σ)

New extraction of $K_{e^{2}y(y)}(SD)$ [preliminary]

- Caveat: IB correction was only applied to K_{e2(γ)}, not to K_{e2γ} (SD) Narrow e⁺ momentum interval requires accounting for acceptance loss due to hard photon IB tail
- Similarly, acceptance of $K_{e^{2\gamma(\gamma)}}$ (SD) affected by hard photon radiation, too
- Implementation: Following prescription by Gatti, using radiative MC generators for both K_{e2(γ)} and K_{e2γ(γ)} (SD)
 C. Gatti, Eur. Phys. J. C 45, 417 (2006)
- E36: Additional E36 data from Gap Scintillation Counters (GSC)
 → New, preliminary E36 result for Csl(Tl) + GSC:

Previously: BR($K_{e2\gamma}$)/BR($K_{e2(\gamma)}$) = 1.12 ± 0.07 stat. ± 0.04 sys. H. Ito *et al.*, PLB 826, 136913 (2022)

BR($K_{e2\gamma(\gamma)}^{SD}$)/BR($K_{e2(\gamma)}$) = 1.25 ± 0.14 stat. ± 0.08 sys. – GSC BR($K_{e2\gamma(\gamma)}^{SD}$)/BR($K_{e2(\gamma)}$) = 1.19 ± 0.07 stat. ± 0.04 sys. – Csl(Tl) [+6%] Error-weighted mean: 1.20 ± 0.07 (prel.) → R_γ = (1.97±0.12) x 10⁻⁵ Agree with Lattice (~1σ), disagree with ChPT (~4σ) A. Kobayashi *et al.*, to be published

MC prescription by Gatti

C. Gatti, Eur. Phys. J. C 45, 417 (2006)

Example spectrum

Fig. 1. Energy spectrum for $K^0 \rightarrow \pi e \nu \gamma$ MC decays. 2.4% of the events have $E_{\gamma} > 30 \,\text{MeV}$

Analytic expressions for IB

$$\frac{\mathrm{d}\Gamma_{\mathrm{incl}}}{\mathrm{d}E_{\gamma}} = \Gamma_0 b \frac{E_{\gamma}^{b-1}}{M^b} = \frac{\mathrm{d}\Gamma_{\mathrm{Brem}}}{\mathrm{d}E_{\gamma}} \left(\frac{E_{\gamma}}{M}\right)^b$$

$$b = -\frac{1}{8\pi^2} \sum_{m,n} \eta_m \eta_n e_m e_n \beta_{mn}^{-1} \ln \frac{1 + \beta_{mn}}{1 - \beta_{mn}}$$

$$\frac{\mathrm{d}\Gamma_{\mathrm{Brem}}}{\mathrm{d}E_{\gamma}} = \Gamma_0 \frac{b}{E_{\gamma}}$$

- Works also for differential decay widths
- Simple implementation in MC generators

Summary

- Lepton universality is challenged (BaBar, Belle, LHCb)
- TREK/E36: Measurement of K_{e2(γ)}/K_{µ2(γ)} ratio test of lepton universality; Measurement of structure-dependent BR(K^{SD}_{e2γ})
- Search for dark photons / light neutral bosons
- Production running has been completed (Oct. 14 Dec. 18, 2015)
- Analysis underway (calibration, simulation, systematic error studies); first results on K_{e2γ}; expect further results soon (R_K; light bosons)
- TREK/E06 (T-violation) in the future (Hadron Hall Extension)

TREK (E36/E06) collaboration

~30 collaborators

Spokespeople: M.K., S. Shimizu

CANADA

University of British Columbia Department of Physics and Astronomy TRIUMF

USA

University of South Carolina Department of Physics and Astronomy

University of Iowa Department of Physics

Hampton University Department of Physics JAPAN Osaka University Department of Physics

Chiba University Department of Physics

Rikkyo University Department of Physics

High Energy Accelerator Research Organization (KEK) Institute of Particle and Nuclear Studies

RUSSIA Russian Academy of Sciences (RAS) Institute for Nuclear Research (INR)

Backup