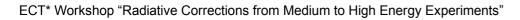
Radiative Correction for PVDIS at JLab, from 6 to 12 GeV using SoLID

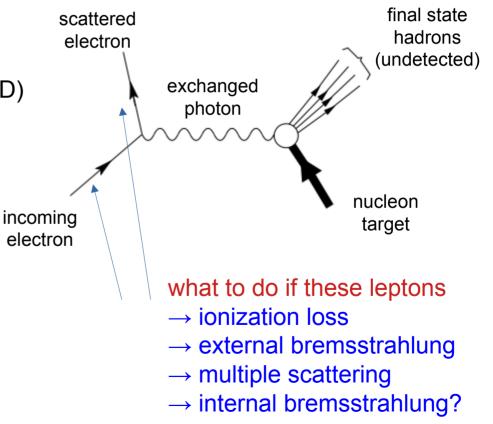
July 21, 2022

Xiaochao Zheng University of Virginia

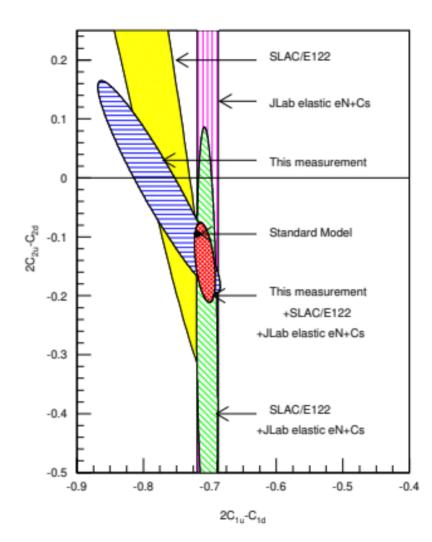
1

ECT* Workshop "Radiative Corrections from Medium to High Energy Experiments"


Radiative Corrections


- General approach at JLab
 - apply corrections to the measured cross section
 - full simulation method
- What was done for PVDIS 6 GeV
- What we plan to do for PVDIS 11 GeV (SoLID)
- Note: we do not typically deal with
 - box diagrams
 - weak effects
 - QED effects (quark line)

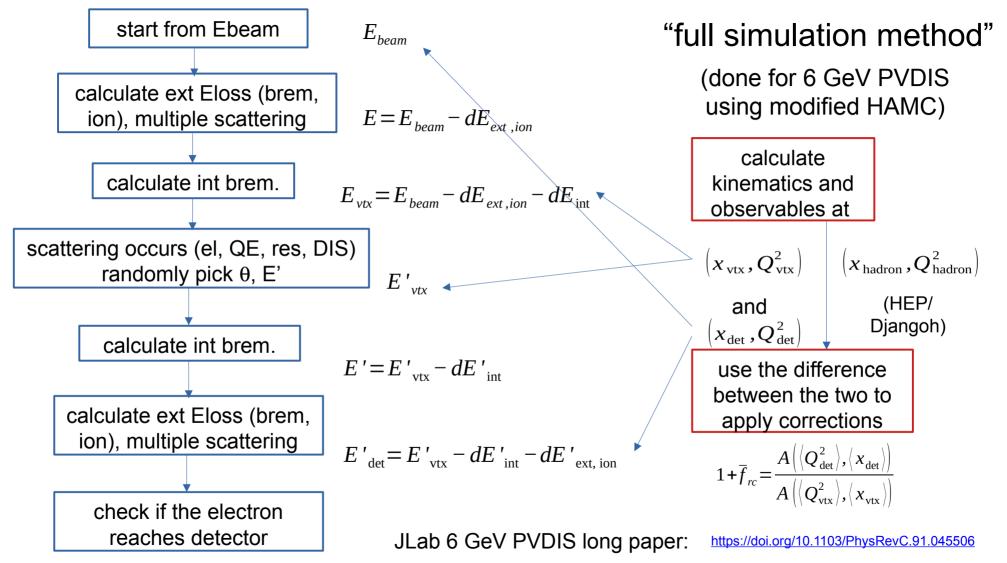
JLab 6 GeV PVDIS long paper:


https://doi.org/10.1103/PhysRevC.91.045506

e-Print: <u>1411.3200</u> [nucl-ex]

6 GeV PVDIS at JLab

ECT* Workshop "Radiative Corrections from Medium to High Energy Experiments"


PVDIS at JLab 6 GeV

- Experiment (E05-007 \rightarrow) E08-011 was done in Hall A of JLab from Oct-Dec. 2009
- Inclusive electrons detected by the two Hall A High Resolution Spectrometers (HRS) •
- Measured PVDIS asymmetry at two Q² settings to (4-5)% relative •
- Similar to SLAC E122, counting DIS electrons (not integrating as other modern PVES)

$$A_{RL} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \qquad A_d = |P_b| (108 \ ppm) Q^2 [(2 \ C_{1u} - C_{1d}) + Y(y)(2 \ C_{2u} - C_{2d}) R_V(x)]$$

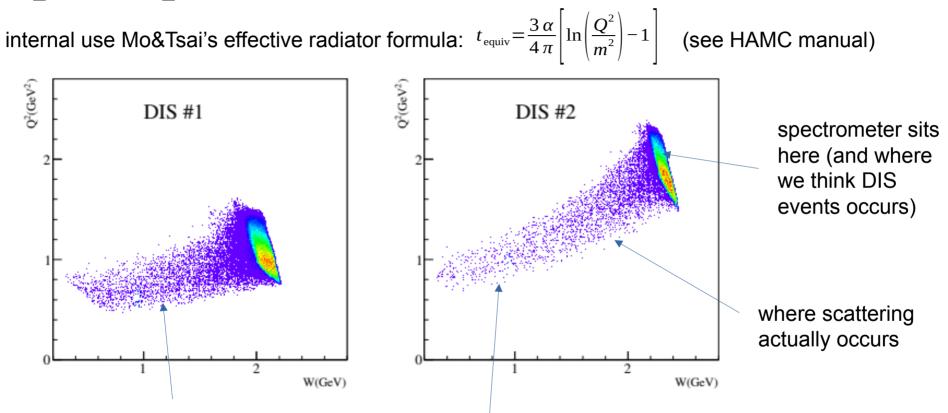
beam polarization
$$Y(y) = \frac{1 - (1 - y)^2}{1 + (1 - y)^2} \qquad R_V(x) = \frac{u_V(x) + d_V(x)}{u(x) + \overline{u}(x) + d(x) + \overline{d}(x)}$$

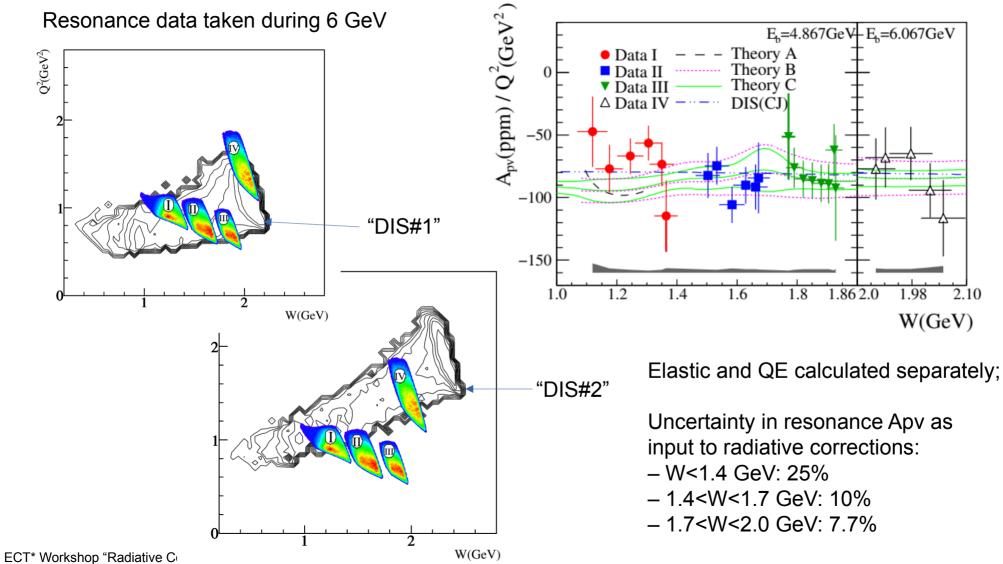
(indicates spin flip of quarks)
$$E_{\text{beam}} = 6.067 \text{ GeV} \qquad \text{(indicates spin flip of quarks)}$$

DIS Kine #1: DIS Kine #2:
$$\theta = 12.9^\circ, E' = 3.66 \text{ GeV} \qquad \theta = 20^\circ, E' = 2.63 \text{ GeV}$$

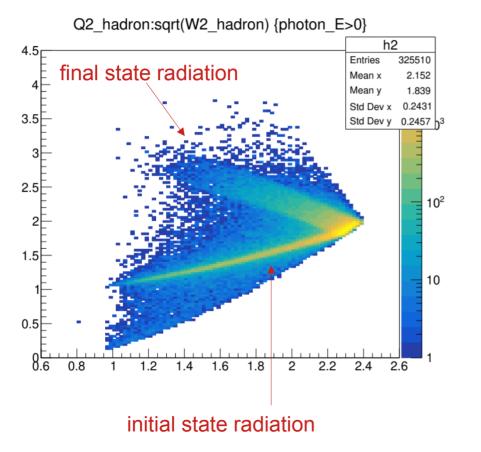
(x)_{data} = 0.241, $\langle Q^2 \rangle_{\text{data}} = 1.085 \text{ GeV}^2 \qquad \langle x \rangle_{\text{data}} = 0.295, \langle Q^2 \rangle_{\text{data}} = 1.901 \text{ GeV}^2$

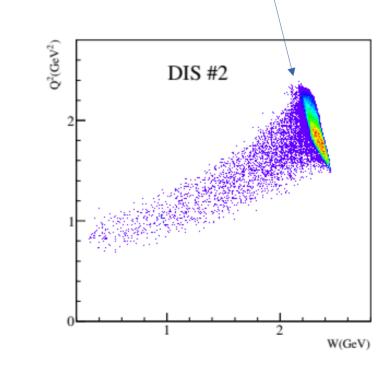
E


D


ECT* Workshop "Radiative Corrections from Medium to High Energy Experiments"

Radiative Correction for 6 GeV PVDIS


Q2_vertex vs. W_vertex for 6 GeV that includes both internal and external radiations


resonance Apv: used model, checked with data (next slide)

Q2_vertex vs. W_vertex for 6 GeV that includes only internal radiations (Djangoh simulation)

simulation from 6 GeV (both int and ext radiation), barely any seen for final state radiation (note that this is a linear z plot), or could it be that initial state radiation dominates for fixed-target experiments (due to extended target material)?

ECT* Workshop "Radiative Corrections from Medium to High Energy Experiments"

6 GeV PVDIS long paper: $A^{\text{rad-corrected}} = A^{\text{meas}} (1 + \bar{f}_{rc})$ DIS Kine #1: $E_{\text{beam}} = 6.067 \text{ GeV}$ $\theta = 12.9^{\circ}, E' = 3.66 \text{ GeV}$ $\langle x \rangle_{\text{data}} = 0.241, \langle Q^2 \rangle_{\text{data}} = 1.085 \text{ GeV}^2$ $1 + f_{\text{rc}} = 1.015 \pm 0.02$ $f_{\gamma\gamma} = -0.002 \pm 0.002$ $A_{\text{phys}} = -91.10 \pm 4.30 \text{ ppm} (4.7\%)$

 $1 + \overline{f}_{rc} = \frac{A(\langle Q_{det}^2 \rangle, \langle x_{det} \rangle)}{A(\langle Q_{vtx}^2 \rangle, \langle x_{vtx} \rangle)}$ E_{beam} = 6.067 GeV $\theta = 20^\circ, E' = 2.63 \text{ GeV}$ $\langle x \rangle_{data} = 0.295, \langle Q^2 \rangle_{data} = 1.901 \text{ GeV}^2$ $1 + f_{rc} = 1.019 \pm 0.004$ $f_{\gamma\gamma} = -0.003 \pm 0.003$ $A_{phys} = -160.80 \pm 7.12 \text{ ppm} (4.4 \%)$

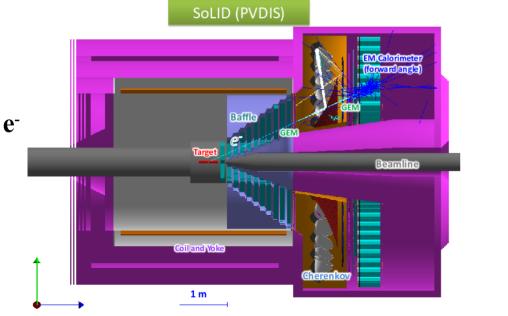
γ –Z box

Electroweak radiative corrections were applied to all couplings used in the calculation of the asymmetry. The electromagnetic fine structure constant α was evolved to the measured Q^2 -values from $\alpha_{EM}|_{Q^2=0} = 1/137.036$ [52]. The evaluation takes into account purely electromagnetic vacuum polarization. The Fermi constant is $G_F = 1.1663787(6) \times 10^{-5}$ GeV⁻² [52]. The $C_{1q,2q}$ were evaluated using Table 7 and Eq. (114-115) of Ref. [91] at our measured Q^2 -values in the modified minimal subtraction ($\overline{\text{MS}}$) scheme using a fixed Higgs mass $M_H = 125.5$ GeV:

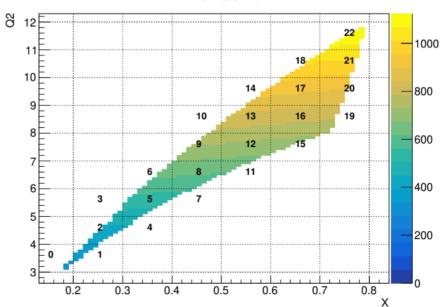
$$C_{1u}^{\rm SM} = -0.1887 - 0.0011 \times \frac{2}{3} \ln(\langle Q^2 \rangle / 0.14 \,{\rm GeV}^2)$$
 (86)

$$C_{1d}^{\rm SM} = 0.3419 - 0.0011 \times \frac{-1}{3} \ln(\langle Q^2 \rangle / 0.14 \,{\rm GeV}^2)$$
 (87)

$$C_{2u}^{\rm SM} = -0.0351 - 0.0009 \ln(\langle Q^2 \rangle / 0.078 \, {\rm GeV}^2)$$
(88)


$$C_{2d}^{\rm SM} = 0.0248 + 0.0007 \ln(\langle Q^2 \rangle / 0.021 \, {\rm GeV}^2)$$
(89)

and it is expected that the uncertainty is negligible. Equations (86.89) include the "charge radius effect" and an estimate of the interference between γ -exchange and the γZ box, but not the effect from the $\gamma \gamma$ box. The effect from the $\gamma \gamma$ box was applied as a correction to the measured asymmetry as described in previous sections.


12 GeV PVDIS with SoLID (11 GeV beam)

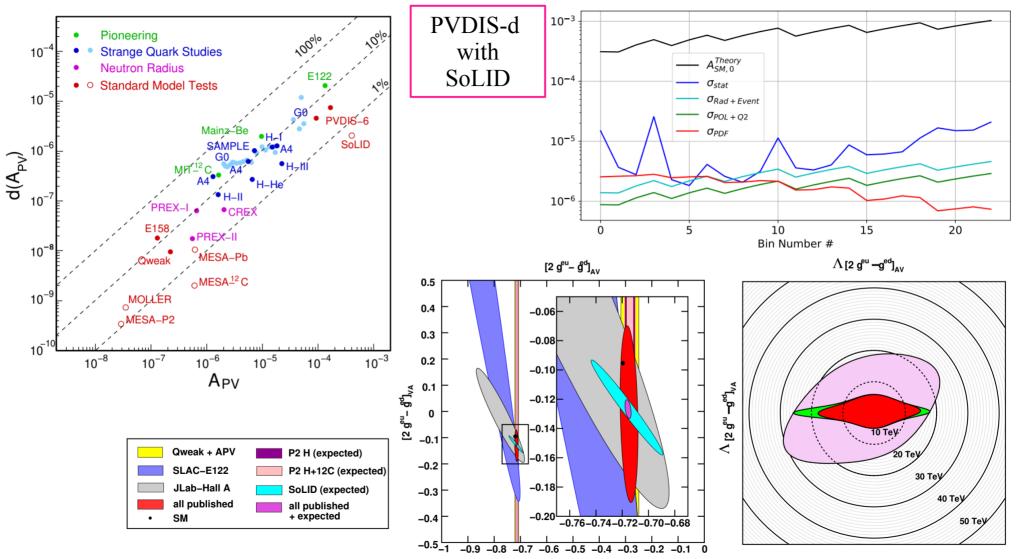
SoLID (Solenoid Large Intensity Device)

- A general purpose, large acceptance spectrometer for Jefferson Lab Hall A
- Three pillars of physics programs started in 2009-2012
 - SIDIS, J/Psi
 - PVDIS (p and D)
 - (GPD/DVCS in progress)

ECT* Workshop "Radiative Corrections from Medium to High Energy Experiments"

Apv(ppm)

PVDIS-d (11 GeV


beam, 22-35 deg DIS)

SoLID Recent Activities

- DOE Science Review (3/2021): waiting for report (and CD0)
- Magnet Cold Test
- Pre-R&D activities: LGC, DAQ, FTBF ECal, current beam test
- Software and Simulation Development
 - Synergy with EIC software development
 - Continue AI/ML collaboration with JLab data science group
 - Update event generators
 - PID and Tracking developments
- INT22-81W "PVDIS at JLab 12 GeV and Beyond"
- JLab <u>PAC50</u>: All 5 approved SoLID experiments successfully passed jeopardy review
 - J/Psi scientific rating $A \rightarrow A$
 - PV-EMC proposal C2 approval
 - BNSSA (A_n) proposal approved for 38 PAC days, A-
- Next: White paper, NSAC LRP

ECT* Workshop "Radiative Corrections from Medium to High Energy Experiments"

Uncertainty Budget

Polarimetry	0.4
Q^2	0.2
Radiative Corrections	0.2
Event reconstruction	0.2
Statistics	0.3
Total systematic (before)	0.53
Total statistic and systematic (before)	0.61
PDF uncertainty	0.2
Total systematic (after)	0.57
Total statistic and systematic (after)	0.64

0.2% Radiative Correction

 \rightarrow 0.1% external, take data with 6.6 and 4.4 GeV beam for low W, low Q² Apv values (a PV-resonance run-group proposal is in progress, for PAC51)

 $\rightarrow 0.1\%$ on internal, higher-order effects

Table 1: Error budget for the SoLID deuterium PVDIS asymmetry measurement in percent (%), before and after adding the PDF uncertainty.

6 GeV PVDIS long paper:	$A^{\text{rad-corrected}} = A^{\text{meas}} \left(1 + \bar{f}_{rc} \right)$	$1 + \overline{f}_{rc} = \frac{A(\langle Q_{det}^2 \rangle, \langle x_{det} \rangle)}{A(\langle Q_{vtx}^2 \rangle, \langle x_{vtx} \rangle)}$
DIS Kine #1:	DIS Kine #2:	$\frac{1 + \gamma_{rc}}{A\left(\left\langle Q_{vtx}^{2} \right\rangle, \left\langle x_{vtx} \right\rangle\right)}$
$E_{\text{beam}} = 6.067 \text{GeV}$	$E_{\text{beam}} = 6.067 \text{GeV}$	
$\theta = 12.9^{\circ}$, E'=3.66 GeV	$\theta = 20^{\circ}, E' = 2.63 \text{GeV}$	
$\left< x \right>_{ m data} = 0.241$, $\left< Q^2 \right>_{ m data} = 1.085~ m GeV^2$	$\langle x angle_{ m data} \!=\! 0.295$, $\langle Q^2 angle_{ m data} \!=\! 1.200$	$901\mathrm{GeV}^2$
$1 + f_{\rm rc} = 1.015 \pm 0.02$	$1 + f_{\rm rc} = 1.019 \pm 0.004$	
$f_{\gamma\gamma} = -0.002 \pm 0.002$	$f_{\gamma\gamma} = -0.003 \pm 0.003$	
$A_{\rm phys} = -91.10 \pm 4.30 \rm ppm (4.7 \%)$	$A_{\rm phys} = -160.80 \pm 7.12 \rm pp$	pm (4.4 %)

Recent calculation using stand-alone Mo&Tsai equivalent radiator:
internal: -0.7% (original HAMC -0.33%)-1.2% (original HAMC -0.7%)Djangoh:
internal with lepton radiation: -0.75%-1.23%
-1.23%
-0.7%yy and γZ boxes:0.026%0.03%

6 GeV PVDIS long pap	Der: $A^{\text{rad-corrected}} = A^{\text{meas}} \left(1 + \overline{f_{rc}} \right)$	
DIS Kine #1:	Def: $A^{\text{rad-corrected}} = A^{\text{meas}} (1 + f_{rc})$ DIS Kine #2: $1 + \overline{f}_{rc} = \frac{A(\langle Q_{\text{det}}^2 \rangle, \langle x_{\text{det}} \rangle)}{A(\langle Q_{\text{vtx}}^2 \rangle, \langle x_{\text{vtx}} \rangle)}$	
$E_{\text{beam}} = 6.067 \text{GeV}$	$E_{\text{beam}} = 6.067 \text{GeV}$	
$\theta = 12.9^{\circ}$, <i>E</i> '=3.66 GeV	$\theta = 20^{\circ}, E' = 2.63 \text{GeV}$	
$\langle x angle_{ m data} = 0.241$, $\langle Q^2 angle_{ m data} = 1.085$	$(\mathbf{x})_{data} = 0.295, \langle Q^2 \rangle_{data} = 1.901 \mathrm{GeV}^2$	
$1 + f_{\rm rc} = 1.015 \pm 0.02$	$1 + f_{rc} = 1.019 \pm 0.004$	
$f_{\gamma\gamma} = -0.002 \pm 0.002$	2012 vs. now:	
$A_{\rm phys} = -91.10 \pm 4.30 \rm ppm$	 size of internal Bremsstrahlung seems to be consistent/comparable; 	
Recent calculation using internal: -0.7% (ori		
Djangoh: internal with lepton radiat internal with both lepton a $\gamma\gamma$ and γ Z boxes:		

Radiative Correction for SoLID PVDIS – some ideas

Internal: Mo&Tsai does not deal with weak, box, etc \rightarrow switch to Djangoh or another modern tool

Djangoh generator:

- specify Ebeam, specify (x,Q²) range
- parton-model based physics
- custom input F_{1,2} possible
- can run in 3 modes:
 - generate full events (lepton, hadron)
 - generate just final-state lepton
 - do not generate events, calculate cross section only:
 - unpolarized (also for event-gen mode)
 - R-L (PV) or LC difference
- can turn on/off leptonic radiation, quark (QED) radiation, and interference
- can turn on/off pure-weak box diagrams

ECT* Workshop "Radiative Corrections from Medium to High Energy Experiments"

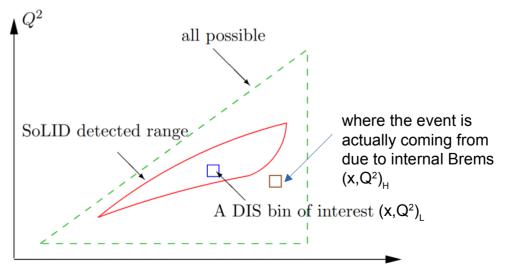
External: using GEANT-based SoLID simulation

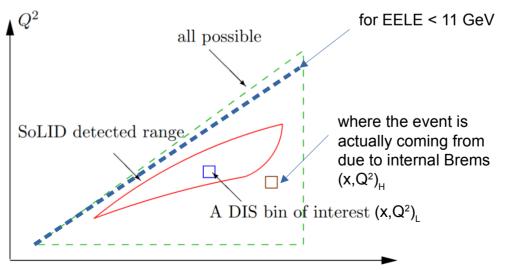
technicality:

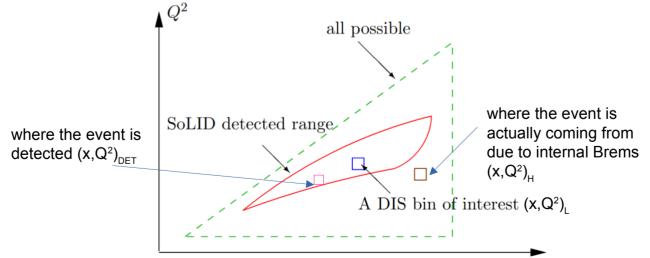
- beam energy loss in target needs implemented (ref. COMPASS)
- what about low W, low Q²?
- custom-input of F^{gZ} would be helpful, for R-L (PV) cross section calculation
- could be useful for background study (?)
- can combine with SoLID sim for external energy loss correction in the final state

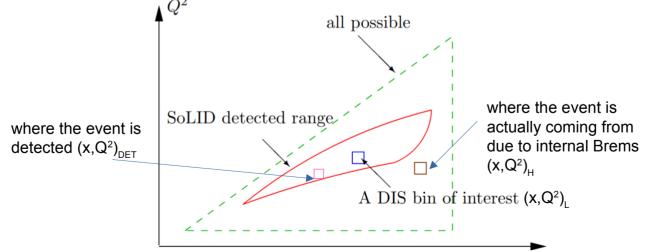

 can these corrections be separated from int/ext radiative corrections? JLab theory group factorization approach (see T. Liu's talk at INT22-81W)

Comparison with Traditional Method


QED impact on A_{pv} $Q^2 = 1 \text{ GeV}^2$ $Q^2 = 2 \text{ GeV}^2$ $Q^2 = 4 \text{ GeV}^2$ $A^D_{
m pv}/Q^2~{
m ppm/GeV^2}$ -75-80= 6 (GeV) (LO + LL)_{OED} 6 (GeV) (Xiaochao) $E_l = 12 \text{ (GeV)} (LO + LL)_{OED}$ 12 (GeV) (Xiaochao) $E_l = 24 \text{ (GeV)} (LO + LL)_{OED}$ $E_l = 24$ (GeV) (Xiaochao) -8 1.02 $A_{pv}^{D(no~QED)} \big/ A_{pv}^{D(with~QED)}$ 1.011.000.99W = 2 GeV0.980.20.4 0.6 0.20.4 0.6 0.2 0.40.6 $x_{
m bj}$ $x_{
m bj}$ $x_{
m bj}$ dotted curves from X. Zheng, generated using "Mo&Tsai" approach.


- Generate energy spectrum for electron beam in 40-cm LD2 target
- Choose 100(?) different EELE, sampled from the spectrum above


- Generate energy spectrum for electron beam in 40-cm LD2 target
- Choose 100(?) different EELE, sampled from the spectrum above
- Use Djangoh to generate events for the full allowed region for each EELE value, generate 1M (?) events (lepton only)
 - with internal Bremsstrahlung turned on


- Generate energy spectrum for electron beam in 40-cm LD2 target
- Choose 100(?) different EELE, sampled from the spectrum above
- Use Djangoh to generate events for the full allowed region for each EELE value, generate 1M (?) events (lepton only)
 - with internal Bremsstrahlung turned on

- Generate energy spectrum for electron beam in 40-cm LD2 target
- Choose 100(?) different EELE, sampled from the spectrum above
- Use Djangoh to generate events for the full allowed region for each EELE value, generate 1M (?) events (lepton only)
 - with internal Bremsstrahlung turned on
 - output final-states in LUND format that can be passed onto SoLID sim

- Generate energy spectrum for electron beam in 40-cm LD2 target
- Choose 100(?) different EELE, sampled from the spectrum above
- Use Djangoh to generate events for the full allowed region for each EELE value, generate 1M (?) events (lepton only)
 - with internal Bremsstrahlung turned on
 - output final-states in LUND format that can be passed onto SoLID sim
- Use cross-section only mode of Djangoh, calculate σ_0 and Apv for 100x(~9000) bins
 - If there is an alternative method, calculate/generate the same "grid"

- Generate energy spectrum for electron beam in 40-cm LD2 target
- Choose 100(?) different EELE, sampled from the spectrum above
- Use Djangoh to generate events for the full allowed region for each EELE value, generate 1M (?) events (lepton only)
 - with internal Bremsstrahlung turned on
 - output final-states in LUND format that can be passed onto SoLID sim
- Use cross-section only mode of Djangoh, calculate σ_0 and Apv for 100x(~9000) bins
 - If there is an alternative method, calculate the same "grid"
- Generate 1000(?) MC events along target length
- look for closest(?) EELE Djangoh simulation and input all 1M events
- pass 1G final-state electrons to SoLID simulation for evaluating final-state electrons
- for each detected events, look for Apv at the interaction vertex $(x,Q^2)_H$
- apply proper normalization=
- evaluate Apv_detected vs. Apv_true(H), the difference would be the RC factor

Summary

For SoLID 11 GeV PVDIS (note: statistical goal 0.4% on Apv, need RC uncertainty at 0.2% or smaller)

- Can external, internal EM effects be determined to <0.1% precision?
 - Can we do a data-driven approach (like 6 GeV) for low W, low Q²?
 - Three methods now exist for internal: 6 GeV approach, JLab's factorization approach, and Djangoh/SoLID MC. Is any of these tools working for the precision needed? What is the difference among three and what if there is a large difference?
- Can ext/int EM effects be separated from all box diagram corrections (as in 6 GeV)?
- Do we need 2-loop corrections? Can we have two parallel methods for these higher-order corrections and constrain them to <<(?)0.1% precision?
- What about QCD, HT? → factorization approach (global constraint provide consistency in HT fitting, one single experiment cannot be used to determine both HT and EW parameters)
- PVDIS (or any asymmetry measurement) at EIC: unfolding uncertainty?

Backup Slides

$$\begin{aligned} \text{using SF, "full" expression (include F_L, TMC)} & \eta_{vz} = \frac{G_F Q^2}{2\sqrt{2}\pi\alpha} \frac{M_z^2}{M_z^2 + Q^2} \\ A_{RL}^{e^-} = \frac{|\lambda|\eta_{vz} \left[g_A^e 2\,y\,F_1^{vz} + g_A^e \left(\frac{2}{xy} - \frac{2}{x} - \frac{2M^2 xy}{Q^2}\right)F_2^{vz} + g_V^e(2 - y)F_3^{vz}\right]}{2\,y\,F_1^{vz} + \left(\frac{2}{xy} - \frac{2}{x} - \frac{2M^2 xy}{Q^2}\right)F_2^{vz} - \eta_{vz} \left[g_V^e 2\,y\,F_1^{vz} + g_V^e \left(\frac{2}{xy} - \frac{2}{x} - \frac{2M^2 xy}{Q^2}\right)F_2^{vz} + g_A^e(2 - y)F_3^{vz}\right]} \\ & \text{ignore TMC and assuming F2=2x * F1} \\ \text{using SF, with approximations} & C_{1u} = 2\,g_A^e\,g_V^u = -\frac{1}{2} + \frac{4}{3}\sin^2(\theta_W) \\ A_{RL}^{e^-} = |\lambda| \left(\frac{G_F Q^2}{2\sqrt{2}\pi\alpha}\right) \left[g_A^e \frac{F_1^{vz}}{F_1^v} + \frac{g_V^e}{2}\,Y(y)\frac{F_3^{vz}}{F_1^v}\right] & C_{2u} = 2\,g_V^e\,g_A^u = -\frac{1}{2} + 2\sin^2(\theta_W) \\ & \text{using parton-model interpretation of F1,3 and PDF:} \\ A_{RL}^{e^-} = |\lambda| \left(\frac{3\,G_F Q^2}{2\sqrt{2}\pi\alpha}\right) \frac{[2(1+R_C)C_{1u} - (1+R_S)C_{1d}] + Y(y)(2C_{2u} - C_{2d})R_V(x)}{5 + 4\,R_C + R_S} \end{aligned}$$

ECT* Workshop "Radiative Corrections from Medium to High Energy Experiments"

Measurement of the Beam-Normal Single Spin Asymmetry in Deep Inelastic Scattering using the SoLID Spectrometer

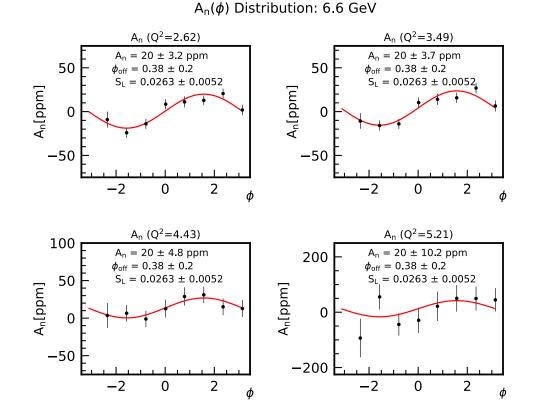
On behalf of

William Henry¹, Michael Nycz², Ye Tian³, Weizhi Xiong⁴, Xiaochao Zheng²

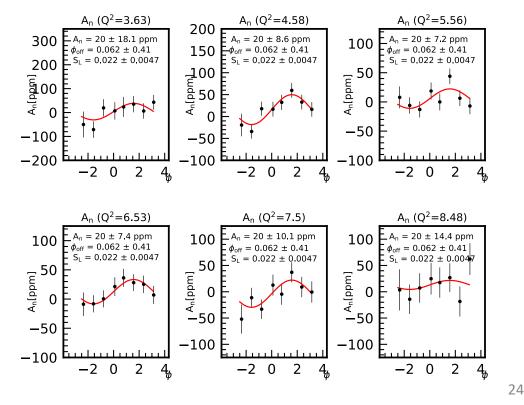
¹Jefferson Lab

²University of Virginia ³Syracuse University

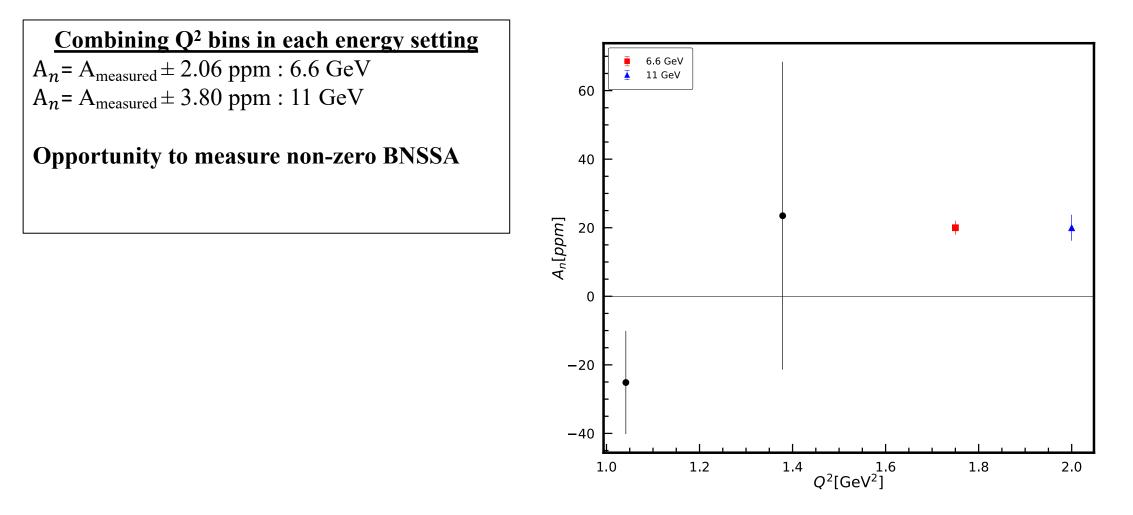
⁴ShandongUniversity


PAC 50 A Hall A and SoLID proposal 07/12/2022

Projected Results


SoLID simulation based on PVDIS configuration

40-cm LH₂ target W >2, 22°< θ < 35°, P_b=85%

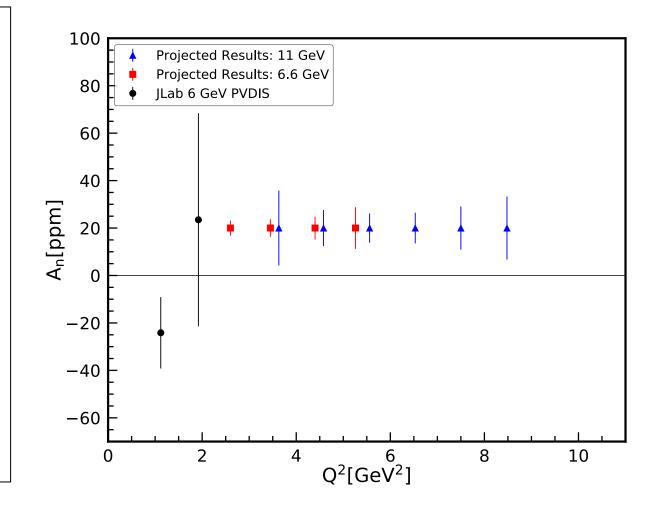

Beam-normal SSA extracted from multi-parameter fit: $C_n \sin(\varphi + \varphi_{offset}) + S_L A_{PVDIS}$

$A_n(\phi)$ Distribution: 11 GeV

Projections: Result and Uncertainty

Projected results not at expected Q² values

Projections: Result and Uncertainty


Combining Q² bins in each energy setting

 $A_n = A_{\text{measured}} \pm 2.06 \text{ ppm} : 6.6 \text{ GeV}$ $A_n = A_{\text{measured}} \pm 3.80 \text{ ppm} : 11 \text{ GeV}$

Opportunity to measure non-zero BNSSA

TAC Theory: "...it will be interesting to observe the Q² dependence of the asymmetry empirically, to test whether the scattering takes place on a single quark or involved more complicated nonperturbative multi-parton interactions."

The opportunity to observe a Q² dependence with sufficient precision is primarily due to the design SoLID

Summary

- The proposed experiment would be the **first high-precision measurement** of the beam-normal single spin asymmetry in deep inelastic scattering
- No other planned measurements
- The beam-normal single spin asymmetry provides an essential tool for studying the two-photon exchange effect
 - Will add a new observable to the TPE landscape
- Important for theoretical models
 - Further insight into dominant mechanism (single or two quark)
 - Complementary to the already approved target-normal single spin asymmetry
- Theoretical support
 - INT: PVDIS at JLab 12 GeV and beyond
 - <u>Radiative Corrections from medium to high energy experiments</u>
 - Drive interest of both experimental and theoretical communities

• Jefferson Lab and SoLID make this a realistic measurement

First method

- apply correction directly to measured cross sections
- more suitable for small-acceptance spectrometers
- ("RC_external" code calculates both Born and radiated cross sections)

Radiative correction

$$\sigma_{rad}(E_s, E_p) = \int_0^T \frac{dt}{T} \int_{E_s \min(E_p)}^{E_s} \int_{E_p}^{E_p} dE_p' \int_{E_p}^{E_p \max(E_s')} dE_p' I(E_s, E_s', t) \sigma_r(E_s', E_p') I(E_p', E_p, T-t)$$

(Mo. & Tsai method, SLAC-PUB-848 (1971).)

- I(E, E', t): the probability of energy loss due to the external radiation.
- T: total path length before and after scattering.

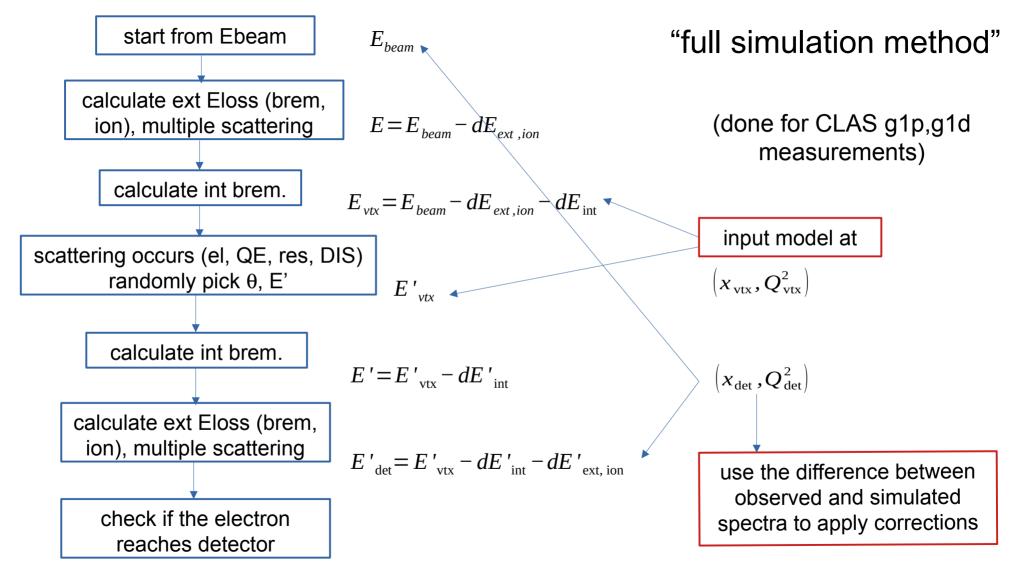
•
$$\sigma_r = \sigma_r^{DIS} + \sigma_r^{quasi-elastic} + \sigma_r^{elastic} \leftarrow require a cross section input$$

• For ³*H* and ³*He* born cross section model, we use F_2^d from Bodek *et al.* ¹ and the EMC model $(F_2({}^{3}He)/F_2^d)$ from S. Kulagin and R. Petti (KP) ²

MARATHON

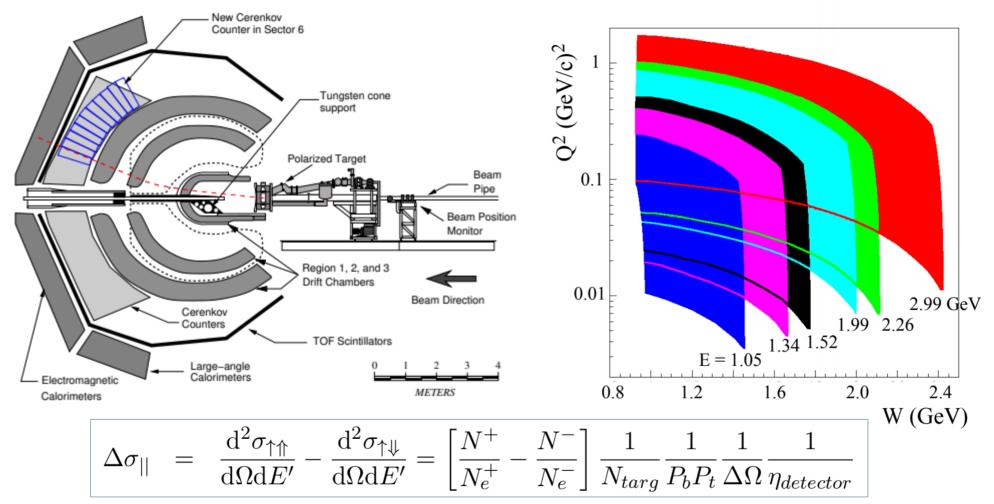
• RC error is the deviation caused by using different cross section models

```
<sup>1</sup>Phys. Rev. D20, 1471 (1979)
<sup>2</sup>Nucl Phys A765 (2006) 126
```


(from H. Liu's talk at INT workshop)

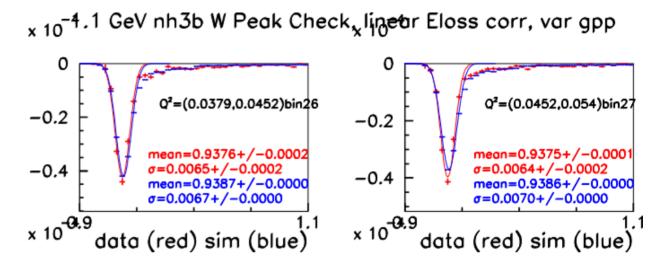
900

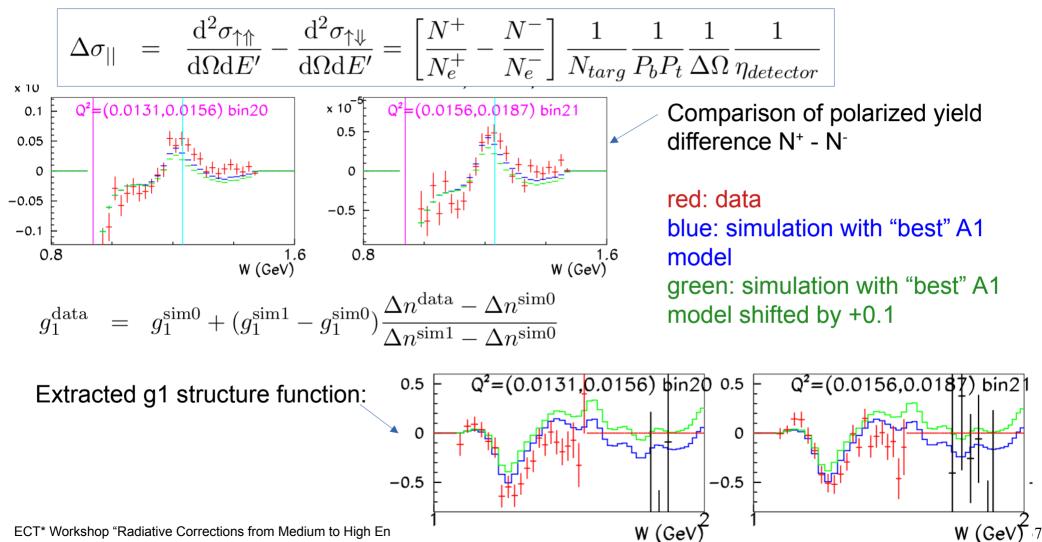
16/26


Second method (fully forward simulation method)

- use a full simulation method to calculate "Born" and to simulate "measured" observables using model inputs
- if simulated "measured" observables do not agree with real data, adjustment is made to the model inputs
- more suitable for large-acceptance spectrometers
- can be added to any existing, experimental full simulation packages
- technical complications:
 - tails from elastic scattering may need to be subtracted first
 - positive and negative cross section (difference) regions need to be done separately

ECT* Workshop "Radiative Corrections from Medium to High Energy Experiments"


Radiative Corrections for CLAS EG4


ECT* Workshop "Radiative Corrections from Medium to High Energy Experiments"

Simulation of EG4 Proton Elastic Peak

- simulation reproduces measured double-polarized yield (N/Ne) difference
- cross-checking PbPt measurement, tuning detector smearing, material thickness, etc.
- Radiative tail from elastic peak can be determined and subtracted from inelastic data

Simulation of EG4 Proton Resonance Region

