

ECT* Workshop

Radiative Corrections from medium to high energy experiments

NNLO results with McMule

Yannick Ulrich (for the McMule collaboration)

IPPP, University of Durham

 $21^{\rm st}$ July 2022

Yannick Ulrich, 21.07.22 - p.1/21

$\begin{array}{l} \text{methods} \rightarrow & \text{Adrian Signer's talk} \\ 6+ \text{ processes implemented at NNLO} \end{array}$

- $\mu
 ightarrow
 u ar{
 u} e$ (*) [Engel, Signer, YU 18]
- $e\mu
 ightarrow e\mu$ (*) and $ee
 ightarrow \mu\mu$ [Banerjee, Engel, Signer, YU 20], [Kollatzsch, YU 2?], [YU et al. 2?]
- ep
 ightarrow ep and $\mu p
 ightarrow \mu p$ (#) [Banerjee, Engel, Signer, YU 20]
- $e\nu \rightarrow e\nu$ (#)
- $e^-e^-
 ightarrow e^-e^-$ (*) and $e^+e^-
 ightarrow e^+e^-$ (#) [Banerjee, Engel, Schalch, Signer, YU 21]
- $ee \rightarrow \gamma\gamma$ (#)
- + many more at NLO
- *: complete
- #: complete exepct some hadronic effects

get the code https://gitlab.com/mule-tools/mcmule

- compile with ./configure && make
- define observables in src/user.f95
- run all necessary pieces (SLURM script available)
- ℓ -p scattering at NNLO
- plot results with python
- \Rightarrow examples from all published results online

gitlab.com/mule-tools/user-library

example: $e(q_1)p(q_2) \rightarrow e(q_3)p(q_4)$ user-library:1-p-scattering/mesa-legacy/ep2ep_mesa_paper/user.f95

```
integer, parameter :: nr_q = 1
integer, parameter :: nr_bins = 200
real, parameter :: min_val(nr_q) = (/ 25. /)
real, parameter :: max_val(nr_q) = (/ 45. /)
```

```
FUNCTION QUANT(q1,q2,q3,q4,q5,q6,q7)
```

```
real(kind=prec) :: q1(4),q2(4),q3(4),q4(4),q5(4),q6(4),q7(4)
real(kind=prec), parameter :: ez = (/0.,0.,1.,0./)
real(kind=prec) :: quant(nr_q), thetae
```

```
thetae = acos(cos_th(ez,boost_rf(q2, q3)))
```

```
pass_cut = .true.
if(thetae < 25*pi/180._prec) pass_cut=.false.
if(thetae > 45*pi/180._prec) pass_cut=.false.
```

```
names(1) = "thetae"
quant(1) = 180*thetae/pi
END FUNCTION QUANT
```


- analytic approximations at NNLO $\mathcal{O}(lpha^2 \log^{\{1,2\}}(m_e/m_\mu))$ [Arbuzov, Melnikov 02]
- numerical loop calculation
 [Anastasiou, Melnikov, Petriello 05]

Durham

- first NNLO calculation in MCMULE to test FKS² [Engel, Signer, YU 18]
- averaged over the neutrinos \Rightarrow currently redoing things to fix that [Proust, Rocco, Signer, YU 2?]

mule-tools.gitlab.io/user-library/michel-decay/validation

mule-tools.gitlab.io/user-library/michel-decay/neutrino-spectrum

- largest uncertainty in $(g-2)_{\mu}$ is HVP
- lattice or $e^+e^-
 ightarrow$ hadrons data

new-ish proposal: MUonE

[Carloni Calame et al. 15, Abbiendi et al. 17, MUonE Letter of Intent 19]

- $150 \, {
 m GeV}$ muon beam (M1 @ CERN) on Be electrons
- measure $\theta_{e,\mu} \rightarrow$ re-construct $t < 0 \rightarrow \Delta \alpha_{had}(t) \rightarrow (g-2)^{HVP}_{\mu}$
- target precision $10^{-5} \rightarrow \text{NNLO} \oplus \text{leading N}^3 \text{LO} \oplus \text{PS} \oplus \cdots$ [MUonE Theory Initiative 20]

• full EW-NLO

[Alacevich, Carloni Calame, Chiesa, Montagna, Nicrosini, Piccinini 18]

hadronic corrections

[Fael 18, Fael, Passera 19, Balzani, Laporta, Passera 22]

- New Physics: contamination & searches [Masiero, Paradisi, Passera 20, ...] [di Cortona, Nardi 22, ...]
- dominant NNLO \Rightarrow agreement!

[Carloni Calame, Chiesa, Hasan, Montagna, Nicrosini, Piccinini 20] & [Banerjee, Engel, Signer, YU 20]

pair-production and fermion loops

[Budassi, Carloni Calame, Chiesa, Del Pio, Hasan, Montagna, Nicrosini, Piccinini 21 & 22]

• two-loop with m = 0

[Bonciani, Broggio, Di Vita, Ferroglia, Mandal, Mastrolia, Mattiazzi, Primo, Ronca, Schubert, Torres Bobadilla, Tramontano 22]

μ -e scattering: dominant contribution

compared with [Carloni Calame, Chiesa, Hasan, Montagna, Nicrosini, Piccinini 20]

mule-tools.gitlab.io/user-library/mu-e-scattering/muone

Yannick Ulrich, 21.07.22 - p.10/21

~ IP3~ Durham

massified $0 \leq m$, compared RV+RR [Broggio, Engel, Ferroglia, Mandal, Mastrolia, Passera, Rocco, Ronca, Signer, Torres Bobadilla, Zoller, YU 2?]

leptonic corrections for e-p and $\mu\text{-}p$ scattering at NNLO [Banerjee, Engel, Signer, YU 20]

- parametrise proton as form factor $\gamma_{\mu} \rightarrow F_1 \gamma^{\mu} + F_2 \frac{\mathrm{i} \sigma^{\mu\nu} q_{\nu}}{2m}$
- part of dominant μ -e scattering \Rightarrow very well checked!
- discrepancy with previous calculation [Bucoveanu, Spiesberger 18]
 - but agree on matrix elements
 - integration the same as μ -e scattering
- trivial to switch e-p to $\mu\text{-}p$ scattering $F_2
 ightarrow 0$
- examples for MESA ($p_e = 155 \,\mathrm{MeV}$) and MUSE ($p_\mu = 210 \,\mathrm{MeV}$)

TPE contribution

• WIP [Engel, Hagelstein, Rocco, Sharkovska, YU ??]

$p_e^{\rm in} = 155 \,{\rm MeV}, \ E_e^{\rm out} > 45 \,{\rm MeV}$

 ${\sf mule-tools.gitlab.io/user-library/l-p-scattering/mesa-legacy}$

Yannick Ulrich, 21.07.22 - p.13/21

Ip3)~~

mall mule-tools.gitlab.io/user-library/l-p-scattering/muse-legacy

Yannick Ulrich, 21.07.22 - p.14/21

• used for normalisation by PRad ($E = 1.4 \,\mathrm{GeV}$)

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\theta}\right)_{ep} = \Big[\frac{N_{\mathrm{exp}}(ep \to ep, \theta_i)}{N_{\mathrm{exp}}(ee \to ee, \theta_i)}\Big] \Big(\frac{\mathrm{d}\sigma}{\mathrm{d}\theta}\Big)_{ee}$$

- massless two-loop known [Bern, Dixon, Ghinculov 00]
- NLO calculations [Kaiser 10, Akushevich, Gao, Ilyichev, Meziane 15], and generators [Afanasev, Chudakov, Ilyichev, Zykunov 06, Epstein, Milner 16]
- NNLO with MCMULE using NTS stabilisation & massification [Banerjee, Engel, Schalch, Signer, YU 21]
- validated by comparing $e^+e^- \rightarrow e^+e^-$ to Babayaga (NLO \oplus PS) [Carloni Calame, Montagna, Nicrosini, Piccinini 04]
- two indistinguishable particles \Rightarrow 'narrow' and 'wide' electron

$0.5^{\circ} < \theta_i < 6.5^{\circ}$, $\Delta E < 130 \,\mathrm{MeV}$, $\Delta \phi < 7.35^{\circ}$

mule-tools.gitlab.io/user-library/moller-scattering/prad

Durham

1P³)~~

Yannick Ulrich, 21.07.22 - p.16/21

Miscellaneous

- $ee \rightarrow \tau \tau$ EW-NLO [Kollatzsch, YU 2?]
- $e \nu \rightarrow e \nu$ at NLO used for event generation
- best possible theory spectrum for $\mu \to \nu \bar{\nu} e$

 $\sqrt{s} = m_{\Upsilon(4s)} = 10.5 \,\mathrm{GeV} \Rightarrow \,\mathrm{EW} \,\mathrm{effects}$

21.07.22 - p.18/21

application: $\sin^2 \theta_W$ in e-u scattering

 $\sin^2 heta_W$ @ DUNE [de Gouvêa, Machado, Perez-Gonzalez, Tabrizi 19]

• what is the best observable?

Durham

Ip3)~~

- what influence do flux uncertainties and radiative corrections have? $\Rightarrow~$ full (N)NLO

- ALPs in the muon decay $\mu
 ightarrow eX$
- \Rightarrow need $\mathcal{O}(10^{-5})$ at end point of E_e if $m_X \ll m_\mu$
 - large logarithms due to soft-photons \Rightarrow resummation

MCMULE

P. Banerjee^a, A. Coutinho^b, T. Engel^{b,c}, A. Gurgone^{d,e}, F. Hagelstein^{f,b}, S. Kollatzsch^g, L. Naterop^{b,c}, A. Proust^h, M. Rocco^b, N. Schalchⁱ, V. Sharkovska^{b,c}, A. Signer^{b,c}, Y. Ulrich^j

- ^a Zhejiang University, China
- ^b Paul Scherrer Institut, CH
- ^c University of Zurich, CH
- ^d University of Pavia, Italy
- ^e INFN Pavia, Italy

- ^f University of Mainz, Germany
- ^g TU Dresden, Germany
- ^h ENS Lyon, France
- i University of Bern, CH
- ^j University of Durham, UK